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Abstract: We clarify and identify the condition for smoothness at
the center of spherically symmetric solutions of the Einstein equations,
and use the new condition to introduce a new asymptotic ansatz that
describes general smooth solutions near the center of symmetry. Ap-
plying the ansatz to the k = 0, p = 0 Friedman approximation to the
Standard Model of Cosmology (SM), we prove that smooth perturba-
tions trigger an instability in the SM on the scale of the supernova
data. The instability creates a large, under-dense region of accelerated
uniform expansion which produces precisely the same range of correc-
tions to redshift vs luminosity as are produced by the cosmological
constant in the theory of Dark Energy. A universal behavior is ex-
hibited because all spherically symmetric solutions that are smooth at
r = 0 in Standard Schwarzschild Coordinates (SSC) are characterized
by the two dimensional phase portrait of the instability, and according
to this phase portrait, all sufficiently small under-dense perturbations
evolve to a unique stable rest-point. The instability is triggered by
the one parameter family of self-similar waves which the authors pre-
viously proposed as possible local time-asymptotic wave patterns for
perturbations of the SM at the end of the radiation epoch. A numer-
ical simulation determines a unique wave in the family that accounts
for the same Hubble constant and quadratic correction to redshift vs
luminosity as in a universe with seventy percent Dark Energy, and the
third order correction, .58 larger than that produced by Dark Energy,
distinguishes the two theories.

1. Introduction

In this announcement we accomplish the program set out by the
first two authors in [25, 20, 21], to evolve a one parameter family of
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GR simple-waves1 which the authors identified as canonical perturba-
tions of the Standard Model of cosmology (SM)2 during the radiation
epoch of the Big Bang, up through the p = 0 epoch to present time.
Our purpose is to investigate a possible connection with the observed
anomalous acceleration of the galaxies, [20, 13]. The analysis of these
waves led us to identify a condition for smoothness at the center of
spherically symmetric spacetimes that respects the Einstein evolution
equations. The constraint of smoothness provides a new closed ansatz
for Taylor expanding smooth spherically symmetric solutions about the
center of symmetry.3 Applying this ansatz to perturbations of the SM
when p = 0, we discover that smooth spherical perturbations of the
SM evolve near the center according to a universal phase portrait in
which the SM appears as an unstable saddle rest point, (see Figure
1). The instability is triggered when the pressure drops to p = 0, and
this mechanism creates large regions of accelerated uniform expansion
within Einstein’s original theory without the cosmological constant.
We prove that these accelerated regions introduce precisely the same
range of corrections to redshift vs luminosity as are produced by the
cosmological constant in the theory of Dark Energy. A universal behav-
ior is exhibited because all sufficiently small perturbations tend time
asymptotically to a unique stable rest point where the spacetime is
Minkowski. Based on this, we accomplish our initial program by prov-
ing that these perturbations are consistent with, and the instability is
triggered by, the one parameter family of self-similar waves proposed
by the authors in [20], as possible time-asymptotic wave patterns for
perturbations of the SM at the end of the radiation epoch. By numer-
ical simulation we identify a unique wave in the family that accounts
for the same values of the Hubble constant and quadratic correction
to redshift vs luminosity as are implied by the theory of Dark Energy

1By simple-wave we mean a perturbation of the Friedman space-time on which
the Einstein equations reduce to ODE’s, c.f. [6].

2Assuming the so-called Cosmological Principle, that the universe is uniform
on the largest scale, the evolution of the universe on that scale is described by a
Friedman spacetime, [27], which is determined by the equation of state in each
epoch. In this paper we let SM denote the approximation to the Standard Model of
cosmology without Dark Energy given by the critical k = 0 Friedman universe with

equation of state p = c2

3 ρ during the radiation epoch, and p = 0 thereafter, (c.f.
the ΛCDM model with Λ = 0, [13]). We consider here spherical perturbations
from SM, a simplification in which large scale aspherical effects and small scale
inhomogeneities are neglected.

3This analysis makes no assumptions about solutions far from the center of
symmetry. Author’s work in [8] shows that solutions with positive velocity can be
extended beyond a given radius with arbitrary initial density and velocity profiles.
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with ΩΛ ≈ .7. A numerical simulation of the third order correction
associated with that unique wave establishes a testable prediction that
distinguishes this theory from the theory of Dark Energy. Note that
earlier attempts to identify an instability in the SM were inconclusive,
c.f. [29, 38]. Here we characterize the sought after instability, show it
is triggered by a family of simple wave perturbations from the radia-
tion epoch, and use it to identify an alternative, testable mathematical
explanation for the anomalous acceleration of the galaxies that does
not invoke Dark Energy.

Most of the expansion of the universe before the pressure drops to
p ≈ 0, is governed by the radiation epoch, a period in which the large
scale evolution is approximated by the equations of pure radiation.
These equations take the form of the relativistic p-system of shock wave
theory, and for such highly nonlinear equations, one expects compli-
cated solutions to become simpler. Solutions of the p-system typically
decay to a concatenation of simple waves, solutions along which the
equations reduce to ODE’s, [12, 6, 21]. Based on this, together with the
fact that large fluctuations from the radiation epoch (like the baryonic
acoustic oscillations) are typically spherical, [13], the authors began
the program in [25] by looking for a family of spherically symmetric
solutions that perturb the SM during the radiation epoch when the
equation of state p = c2

3
ρ holds, and on which the Einstein equations

reduce to ODE’s. In [20, 21], we identified a unique family of such
solutions which we refer to as a-waves, parameterized by the so called
acceleration parameter a > 0, normalized so that a = 1 is the SM4, and
is the only known family of solutions which both (1) perturb Friedman
spacetimes, and (2) reduce the Einstein equations to ODEs, [1, 21, 2].
Since when p = 0, under-densities relative to the SM are a natural
mechanism for creating anomalous accelerations, (less matter present
to slow the expansion implies a larger expansion rate, [13]), we restrict
to the perturbations a < 1 which induce under-densities relative to the
SM, [20, 21]. Thus our starting hypothesis was that the anomalous
acceleration of the galaxies is due to a local under-density relative to
the SM, on the scale of the supernova data [4], created by a pertur-
bation that has decayed (locally near the center) to an a-wave, a < 1,

4This family of waves was first discovered from a different point of view in the
fundamental paper [1]. C.f. also the self-similarity hypothesis in [2]. As far as we
know, our’s is the first attempt to connect this family of waves with the anomalous
acceleration.
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by the end of the radiation epoch.5 From this starting hypothesis we
discovered more.

In this paper we prove the following: (i) The k = 0, p = 0 Friedman
spacetime is unstable, and smooth spherical perturbations evolve near
the center, according to a universal phase portrait, in which the SM
appears as an unstable saddle rest point; (ii) A small under-density
created by an a-wave at the end of radiation, triggers the formation of
a large region of accelerated expansion which extends further and fur-
ther outward from the center, becoming more flat and more uniform,
as time evolves; (iii) Neglecting errors in the measurable quantities at
fourth order in fractional distance to the Hubble radius, (c.f. footnote
8 below), this extended region moving outward from the center evolves
according to an autonomous system of two ODE’s, and is described
by a solution trajectory that starts near the unstable rest point cor-
responding to the SM at the end of radiation, and evolves along the
unstable manifold to a unique stable rest point M where the metric is
Minkowski. All solutions within the entire domain of attraction, evolve
to the rest point M . (iv) We identify the Euclidean coordinate systems
in a neighborhood of r = 0 which naturally impose smoothness at the
center of solutions in SSC. We show that all spherically symmetric so-
lutions of the Einstein equations for p = 0 that are smooth and locally
inertial at r = 0 in SSC, are gauge equivalent to solutions characterized
by the two dimensional phase portrait of the leading order equations
near the center. During the evolution from SM to M , the quadratic
correction to redshift vs luminosity (as measured near the center) as-
sumes precisely the same range of values as Dark Energy theory. That
is, letting

H d` = z +Qz2 + Cz3 +O(z4) (1.1)

denote the relation between redshift factor z and luminosity distance d`
at a given value of the Hubble constant H as measured at the center6,
the value of the quadratic correction Q increases from the SM value
Q = .25 at the end of radiation, to the value Q = .5 as t→∞. This is
precisely the same range of values Q takes on in Dark Energy theory
as the fraction ΩΛ of Dark Energy to classical energy increases from its
value of ΩΛ ≈ 0 at the end of radiation, to ΩΛ = 1 as t → ∞. This

5Since time asymptotic wave patterns typically involve multiple simple waves,
we make no hypothesis regarding the space-time far from the center of the a-wave,
taking the secondary waves as unknown.

6For FRW, Q is determined by the value of the so-called deceleration parameter
q0, and C is determined by the jerk j, c.f., [13]. The deceleration parameter gives
Q through H0d` = z− 3+q0

2 z2 +O(z3), with q0 = −10/3 < 0 in SM.
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holds for any a < 1 near a = 1, and for any value of the cosmological
constant Λ > 0, assuming only that a and Λ both induce a negligibly
small correction to the SM value Q = .25 at the end of radiation.7

Indeed, this holds for any under-dense perturbation that follows the
unstable trajectory of rest point SM into the rest point M , (c.f. Figure
1).

These results are recorded in the following theorem. Here we let
present time in a given model denote the time at which the Hubble
constant H (as defined in (1.1)) reaches its present measured value
H = H0, this time being different in different models.

Theorem 1. Let t = t0 denote present time in the wave model and
t = tDE present time in the Dark Energy 8 model. Then there exists a
unique value of the acceleration parameter a = 0.999999426 ≈ 1−5.74×
10−7 corresponding to an under-density relative to the SM at the end
of radiation, such that the subsequent p = 0 evolution starting from
this initial data evolves to time t = t0 with H = H0 and Q = .425,
in agreement with the values of H and Q at t = tDE in the Dark
Energy model. The cubic correction at t = t0 in the wave theory is then
C = 0.359, while Dark Energy theory gives C = −0.180 at t = tDE.
The times are related by t0 ≈ .95 tDE.

In principle, adding acceleration to a model increases the expansion rate
H and consequently the age of the universe because it then takes longer
for the Hubble constant H to decrease to its present small value H0.
The numerics confirm that the age of the universe well approximates
the age obtained by adding in Dark Energy.

We emphasize that t0, Q and C in the wave model, are determined
by a alone. Indeed, the initial data at the end of radiation, which de-
termines the p = 0 evolution, depends, at the start, on two parameters:
the acceleration parameter a of the self-similar waves, and the initial
temperature T∗ at which the pressure is assumed to drop to zero. But
our numerics show that the dependence on the starting temperature
is negligible for T∗ in the range 3000oK ≤ T∗ ≤ 9000oK, (the range
assumed in cosmology, [13]). Thus for the temperatures appropriate
for cosmology, t0, Q and C are determined by a alone.

7We qualify with this latter assumption only because, in Dark Energy theory,
the value of ΩΛ is small but not exactly equal to zero at the end of radiation; and
in the wave theory, the value of Q jumps down slightly below Q = .25 at the end
of radiation before it increases to Q = .5 from that value as t→∞.

8By the Dark Energy model we refer to the critical k = 0 Friedman universe
with cosmological constant, taking the present value ΩΛ = .7 as the best fit to the
supernova data among the two parameters (k,Λ),[15, 16].
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A measure of the severity of the instability created by the a = a
perturbation of the SM , is quantified by the numerical simulation. For
example, comparing the initial density ρwave for a = a at the center of
the wave, to the corresponding initial density ρsm in the SM at the end
of radiation t = t∗, gives ρwave

ρsm
≈ 1 − (1.88) × 10−6 ≈ 1. During the

p = 0 evolution, this ratio evolves to a seven-fold under-density in the
wave model relative to the SM by present time, i.e., ρwave

ρsm
= 0.144 at

t = t0.
Our wave theory is based on the self-similarity variable ξ = r/ct < 1,

which we introduce as a natural measure of the outward distance from
the center of symmetry r = 0 in the inhomogeneous spacetimes we
describe in SSC. We call ξ the fractional distance to the Hubble radius
because 1/ct is the Hubble radius in the Friedman spacetime, and t is
chosen to be proper time at r = 0 in our SSC gauge. Thus it is con-
venient to define 1/ct to be the Hubble radius in our inhomogeneous
spacetimes as well. Moreover, the SSC radial variable approximately
measures arclength distance at fixed time in our SSC spacetimes when
ξ << 1, and exactly measures arclength at fixed time in the Friedman
spacetime in co-moving coordinates. Thus when ξ << 1, ξ tells ap-
proximately how far out relative to the Hubble radius an observer at
the center of our inhomogeneous spacetimes would conclude an object
observed at ξ were positioned, if he mistakenly thought he were in a
Friedman spacetime.9 We show below (c.f. Section 4.2), that if we
neglect errors O(ξ4), and then further neglect small errors between the
wave metric and the Minkowski metric (which tend to zero, at that
order, with approach to the stable rest point, c.f. (iii) above), and also
neglect errors due to relativistic corrections in the velocities of the fluid
relative to the center (where the velocity is zero), the resulting space-
time is, like a Friedman spacetime, independent of the choice of center.
Thus the central region of approximate uniform density at present time
t = t0 in the wave model extends out from the center r = 0 at t = 0 in
SSC, to radial values r small enough so that the fractional distance to
the Hubble radius ξ = r/ct0 satisfies ξ4 << 1.

The cubic correction C to redshift vs luminosity is a verifiable predic-
tion of the wave theory which distinguishes it from Dark Energy theory.
In particular, C > 0 in the wave model and C < 0 in the Dark Energy
model implies that the cubic correction increases the right hand side
of (1.1), (i.e., increases the discrepancy between the observed redshifts
and the predictions of the SM ) far from the center in the wave theory,

9Here ξ is just a measure of distance in SSC, and need not have a precise physical
interpretation for ξ >> 1, [27, 18, 21].
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while it decreases the right hand side of (1.1) far from the center in the
Dark Energy theory. Now the anomalous acceleration was originally
derived from a collection of data points, and the ΩΛ ≈ .7 critical FRW
spacetime is obtained as the best fit to Friedman spacetimes among the
parameters (k,Λ). We understand that the current data is sufficient
to provide a value for Q, but not C, [10]. Presently it is not clear to
the authors whether or not there are indications in the data that could
distinguish C < 0 from C > 0.

Finally, we remark that the problems we posed and solved in this
paper resulted from a self-contained line of reasoning stemming from
questions that naturally arose from authors’ earlier investigations on
incorporating a shock wave into the SM of cosmology, [19, 20, 21].
Other interesting attempts to model the anomalous acceleration by
under-density theories based on spherically symmetric solutions repre-
sented in Lemaitre-Tolman-Bondi (LTB) assuming p = 0 coordinates
can be found in [4, 5], and references [37]-[65] of [26], including [28]-[37]
listed below. In principle, this involves choosing initial data to match
the observations, and proposing the LTB time reversal from this as the
cosmological model. Our approach in SSC is significantly different in
principle, because we identify a mechanism, (the instability), by which
the redshift vs luminosity data is generically created. (C.f [29] for ear-
lier attempts to identify an instability in a long wavelength limit.) We
begin in the the next section by explaining our views on why we believe
our under-density theory is clear and definitive in SSC, but would be
at best problematic to accomplish in LTB. This is further discussed
in the Appendix. For the analysis here, we assume the existence of a
smooth solution of the Einstein equations representing a large under-
dense region that expands outward from the end of radiation out to
present time, and obtain rigid constraints on such solutions by expand-
ing about the center. No assumption except existence is made about
the solution far from the center. In forthcoming work the authors will
address the mathematical existence problem along the lines set out in
[8].

In Section 2 we explain how to impose smoothness at the center r = 0
in SSC, and explain the difficulties this overcomes in LTB coordinates.
This is further developed in the Appendix. In Section 3.1 we derive
an alternative formulation of the p = 0 Einstein equations in spheri-
cal symmetry, and prove that the evolution preserves smoothness. In
Section 4.1 we introduce our new asymptotic ansatz for corrections to
the SM which are consistent with the condition at r = 0 for smooth
solutions derived in Section 2. In Section 4.2 we use the exact equa-
tions together with our ansatz to derive asymptotic equations for the
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corrections, and use these to derive the universal phase portrait. In
Section 4.3 we derive the correct redshift vs luminosity relation for
the SM including the corrections. In Section 4.4 we introduce a gauge
transformation that converts the a-waves at the end of radiation into
initial data that is consistent with our ansatz. In Section 4.5 we present
our numerics that identifies the unique a-wave a = a in the family that
meets the conditions H = H0 and Q = .425 at t = t0, and explain
our predicted cubic correction C = 0.359. In Section 4.6 we discuss
the uniform space-time created at the center of the perturbation. Con-
cluding remarks are given in Section 5. Details are omitted in this
announcement. We use the convention c = 1 when convenient.

2. The Advantages of SSC over LTB

The discovery of the instability in SM in this paper relies on the
derivation of a new phase portrait for smooth spherical perturbations
of the critical k = 0, p = 0 Friedman spacetime near the center of
symmetry. Earlier attempts to explain the anomalous acceleration by
spherical under-dense perturbations of Friedman expressed in LTB co-
ordinates failed to identify this universal phase portrait. We start by
explaining why we were able to accomplish this in SSC coordinates, but
not in LTB. The answer is that smoothness is imposed at the center by
the condition that all odd order derivatives of metric components and
functions vanish at r = 0 in SSC, and this is a complicated solution
dependent condition in LTB. (This condition first emerged when we
Taylor expanded a-waves at r = 0 in SSC, [20, 21].)

The problem centers around the validity of approximating solutions
by finite Taylor expansions about the center of symmetry, so the main
issue is to guarantee that our solutions are indeed smooth in a neigh-
borhood of the center. Of course the universe is not smooth on small
scales, so our assumption is simply that the center is not special regard-
ing the level of smoothness assumed in the large scale approximation
of the universe. Smoothness at a point P in a spacetime manifold is
determined by the atlas of coordinate charts defined in a neighborhood
of P , the smoothness of tensors being identified with the smoothness
of the tensor components as expressed in the coordinate systems of
the atlas. The problem with using spherical coordinates like LTB and
SSC in GR is that r = 0 is a coordinate singularity, and functions are
defined only for radial coordinate r ≥ 0, but a coordinate system must
be specified in a neighborhood of r = 0 to impose the conditions for
smoothness at the center.
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We begin by showing that this issue can be resolved relatively easily
in SSC because the SSC coordinates are precisely the spherical coordi-
nates associated with Euclidean coordinate charts defined in a neigh-
borhood of r = 0. Based on this, we show below that the condition for
smoothness of metric components and functions in SSC is simply that
all odd derivatives should vanish at r = 0. Identifying these Euclidean
coordinate charts and the associated condition within the LTB frame-
work is problematic because the radial coordinate in LTB is taken to
be co-moving with the fluid, and so unlike SSC, the LTB radial coordi-
nate is not associated with any Euclidean coordinate chart defined in
a neighborhood of r = 0. Thus unlike SSC, it is problematic to express
a condition for smoothness in terms of derivatives at r = 0 in LTB
coordinates, because such a criterion would be solution dependent. We
believe that this has been the main obstacle to prior attempts to es-
tablish a connection between under-density models and the anomalous
acceleration in LTB spacetimes. Indeed, previous attempts to model
the anomalous acceleration in LTB have confronted the problem that
models with a negative deceleration parameter consistent with the su-
pernova data, all exhibit a “central weak singularity” at r = 0, c.f.
[29, 38, 37]. Since no criterion is given to distinguish smooth from non-
smooth solutions based on derivatives at r = 0 in LTB coordinates,
it is almost impossible to untangle the essential from the removable
singularities at r = 0 in LTB. Allowing “singularities” at r = 0 in the
LTB spacetimes has the problem of introducing a plethora of new non-
smooth solutions of the Einstein equations that obscure the existence
of the simple phase portrait which applies only to the actual smooth
perturbations which would appear without singularities if expressed in
SSC instead of LTB.

Consider now in more detail the problem of representing a smooth,
spherically symmetric perturbation of the Friedman spacetime in GR.
To start, assume the existence of a solution of Einstein’s equations
representing a large, smooth under-dense region of spacetime that ex-
pands from the end of radiation out to present time. For smooth
perturbations, there should exist a coordinate system in a neighbor-
hood of the center of symmetry, in which the solution is represented as
smooth. Assume we have such a coordinate system (t,x) ∈ R×R3 with
x = 0 at the center, and use the notation x = (x0, x1, x2, x3) ≡ (t,x),
x ≡ (x, y, z), (there should be no confusion with the ambiguity in
x). Spherical symmetry makes it convenient to represent the spatial
Euclidean coordinates x ∈ R3 in spherical coordinates (r, θ, φ), with
r = |x|. Since generically, any spherically symmetric metric can be
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transformed locally to SSC form, [18], we assume the spacetime repre-
sented in the coordinate system (t, r, θ, φ) takes the SSC form

ds2 = −B(r, t)dt2 +
dr2

A(r, t)
+ r2dΩ2. (2.2)

This is equivalent to the metric in Euclidean coordinates x taking the
form

ds2 = −B(|x|, t)dt2 +
dr2

A(|x|, t)
+ |x|2dΩ2, (2.3)

with

dr2 =
x2dx2 + y2dy2 + z2dz2√

x2 + y2 + z2
, (2.4)

and

dx2 + dy2 + dz2 = dr2 + r2dΩ2. (2.5)

To guarantee the smoothness of our perturbations of Friedman at the
center, we assume a gauge in which

B(t, r) = 1 +O(r2), (2.6)

A(t, r) = 1 +O(r2), (2.7)

so also

1

A(t, r)
= 1 +O(r2). (2.8)

This sets the SSC time gauge to proper geodesic time at r = 0, and
makes the SSC coordinates locally inertial at r = 0 at each time t > 0, a
first step in guaranteeing that the spherical perturbations of Friedman
which we study, are smooth at the center. Keep in mind that the SSC
form is invariant under arbitrary transformation of time, so we are free
to choose geodesic time at r = 0; and the locally inertial condition
at r = 0 simply imposes that the corrections to Minkowski at r = 0
are second order in r. (These assumptions make physical sense, and
their consistency is guaranteed by reversing the steps in the argument
to follow.) In particular, the SSC metric (2.2) tends to Minkowski at
r = 0. We now ask what conditions on the metric functions A,B are
imposed by assuming the SSC metric be smooth when expressed in our
original Euclidean coordinate chart (t,x) defined in a neighborhood of
a point at r = 0, t > 0.

Transforming the SSC metric (2.2) to (t,x) coordinates and using
(2.3)-(2.7) gives
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ds2 = −B(|x|, t)dt2 + dx2 + dy2 + dz2 (2.9)

1

r2

(
1

A(|x|, t)
− 1

)(
x2dx2 + y2dy2 + z2dz2 + 2xydxdy

)
.

Thus the smoothness of A and B guarantees the smoothness of the Eu-
clidean spacetime metric (2.9) in (t,x) coordinates everywhere except
at x = 0, and for smoothness at x = 0, the |x| requires that the met-
ric functions A and B satisfy the condition that all odd r-derivatives
vanish at r = 0. To see this, observe that a function f(r) represents a
smooth spherically symmetric function of the Euclidean coordinates x
at r = |x| = 0 if and only if the function

g(x) = f(|x|)
is smooth at x = 0. Assuming f is smooth for r ≥ 0, (by which we
mean f is smooth for r > 0, and one sided derivatives exist at r = 0),
and taking the n’th derivative of g from the left and right and setting
them equal gives the smoothness condition fn(0) = (−1)nfn(0). We
state this formally as:

Lemma 1. A function f(r) of the radial coordinate r = |x| represents
a smooth function of the underlying Euclidean coordinates x if and
only if f is smooth for r ≥ 0, and all odd derivatives vanish at r = 0.
Moreover, if any odd derivative f (n+1)(0) 6= 0, then f(|x|) has a jump
discontinuity in its n+ 1 derivative, and hence a kink singularity in its
n’th derivative at r = 0.

As an immediate consequence we obtain the condition for smoothness
of SSC metrics at r = 0:

Corollary 1. The SSC metric (2.2) is smooth at r = 0 in the sense that
the metric components in (2.9) are smooth functions of the Euclidean
coordinates (t,x) if and only if the component functions A(r, t), B(r, t)
are smooth in time and smooth for r > 0, all odd one-sided r-derivatives
vanish at r = 0, and all even r-derivatives are bounded at r = 0.

To conclude, solutions of the Einstein equation in SSC have four
unknowns, the metric components A,B, the density ρ and the scalar
velocity v. It is easy to show that if the SSC metric components satisfy
the condition that all odd order r-derivatives vanish at r = 0, then
the components of the unit 4-velocity vector u associated with smooth
curves that pass through r = 0 will have the same property10, and the

10This implies that the coordinates are smooth functions of arclength along
curves passing through r = 0.
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scalar velocity v = 1√
AB

dr
dt

will have the property that all even deriva-

tives vanish at r = 0 (because v is an outward velocity which picks
up a change of sign when represented in x). Thus smoothness of SSC
solutions at r = 0 at fixed time is equivalent to requiring that the met-
ric components satisfy the condition that all odd r-derivatives vanish
at r = 0. These then give conditions on SSC solutions equivalent to
the condition that the solutions are smooth in the ambient Euclidean
coordinate systems x. Theorem 2 of Section 3.1 below proves that
smoothness in the coordinate system x at r = 0 at each time in this
sense is preserved by the Einstein evolution equations for SSC metrics
when p = 0. In particular, this demonstrates that our condition for
smoothness of SSC metrics at r = 0 is equivalent to the well-posedness
of solutions in the ambient Euclidean coordinates defined in a neigh-
borhood of r = 0. Thus we obtain the condition for smoothness of
SSC metrics at r = 0 based on the Euclidean coordinate systems as-
sociated with SSC, and show this is preserved by the evolution of the
Einstein equations. Since smoothness of the SSC metric components
in this sense is equivalent to smoothness of the x-coordinates with re-
spect to arclength along curves passing through r = 0, in this sense,
our condition for smoothness is geometric.

Now note that we could just as well start with an SSC metric (2.2)
satisfying (2.8), (2.7), and then take x to any Euclidean coordinate
system x = (x0, x1, x2, x3) which satisfies r = |x| and dx2 +dy2 +dz2 =
dr2 + r2dΩ2, so that x is determined to within a rotation. The point is
that the connection between the Euclidean coordinate system and the
spherical coordinate system employed in SSC is a Euclidean coordinate
relationship, independent of the spacetime manifold represented in that
coordinate system. In LTB coordinates, it is difficult to untangle the
natural Euclidean coordinate system defined in a neighborhood of r = 0
because the radial LTB coordinate is not the radial coordinate of any
Euclidean coordinate system, and the mapping to SSC depends on the
solution. Thus the condition on derivatives of functions at r = 0 in
LTB that guarantee the SSC condition for smoothness would depend
on solutions as well. This might explain why it has proven difficult to
express the condition of “smoothness at the center” in the literature
on LTB spacetimes, and why SSC is crucial to our discovery of the
instability of SM.

3. Presentation of Results

We begin by recalling that a-waves form a 1-parameter family of
spherically symmetric solutions of the Einstein equations G = κT that
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Figure 1. Phase Portrait for Central Region
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depend only on the self-similarity variable ξ = r/t, and exist when

p = c2

3
ρ. They reduce to the critical SM Friedman spacetime for pure

radiation when a = 1. In contrast, no such family of self-similar per-
turbations of SM exist when p = 0, and only the SM k = 0 Friedman
spacetime itself can be expressed in self-similar form when p = 0. Thus
to evolve the self-similar waves into the p = 0 epoch, we Taylor expand
the solutions in even powers of ξ about the center in SSC, using the
fact of Lemma 1, (and Theorem 2 below), that the vanishing of odd
powers is equivalent to the smoothness of solutions at the center. This
ansatz is sufficiently general to incorporate initial data from the self-
similar waves at the end of radiation, and we deduce the evolution of
the corrections induced by a-waves at the end of radiation near the cen-
ter from the phase portrait of the resulting asymptotic equations. In
fact, our results apply not just to perturbations by a-waves, but to any
perturbation consistent with our asymptotic ansatz at the end of radi-
ation, so long as the perturbation lies within the domain of attraction
of the stable rest point to which the perturbation a = a evolves.
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3.1. The p = 0 Einstein Equations in Coordinates Aligned with
the Physics. In this section we introduce a new formulation of the
p = 0 Einstein equations that describe outwardly expanding spherically
symmetric solutions. We do not employ co-moving coordinates, [4], but
rather use ξ as a spacelike variable because it is better aligned with
the physics. That is, our derivation starts with metrics in Standard
Schwarzschild Coordinates (SSC), where the metric takes the canonical
form,

ds2 = −B(t, r)dt2 +
1

A(t, r)
dr2 + r2dΩ2, (3.10)

but our subsequent analysis is done in (t, ξ) coordinates, where ξ =
r/t. Our starting point is the observation that the SSC metric form is
invariant under transformations of t, and there exists a time coordinate
in which SM is self-similar in the sense that the metric components
A,B, the velocity v and ρr2 are functions of ξ alone. This self-similar
form exists, but is different for p = c2

3
ρ and p = 0, [2, 22]. Taking

p = 0, letting v denote the SSC velocity and ρ the co-moving energy
density, and eliminating all unknowns in terms of v and the Minkowski
energy density T 00

M = ρ

1−( vc )
2 , (c.f. [8]), the locally inertial formulation

of the Einstein equations G = κT introduced in [8] reduce to

(κT 00
M r

2)t +
{√

AB v
r

(κT 00
M r

2)
}
r

= −2
√
AB v

r
(κT 00

M r
2) ,(

v
r

)
t
+ r
√
AB

(
v
r

) (
v
r

)
r

= −
√
AB

{(
v
r

)2
+ 1−A

2Ar2

(
1− r2

(
v
r

)2
)}

,

rA
′

A
=
(

1
A
− 1
)
− 1

A
κT 00

M r
2,

rB
′

B
=
(

1
A
− 1
)

+ 1
A

(
v
c

)2
κT 00

M r
2,

where prime denotes d/dr. Note that the 1/r singularity is present in
the equations because incoming waves can amplify without bound. We
resolve this for outgoing expansions by assuming w = v/ξ is positive

and finite at r = ξ = 0. Making the substitution D =
√
AB, taking

z = κT 00
M r

2 as the dimensionless density, w = v
ξ

as the dimensionless

velocity with ξ = r/t and rewriting the equations in terms of (t, ξ), we



15

obtain

tzt + ξ {(−1 +Dw)z}ξ = −Dwz, (3.11)

twt + ξ (−1 +Dw)wξ = w −D
{
w2 + 1−ξ2w2

2A

[
1−A
ξ2

]}
(3.12)

ξAξ = (1− A)− z (3.13)

ξDξ
D

= 1
A

{
(1− A)− (1−ξ2w2)

2
z

}
. (3.14)

That is, since the sound speed is zero when p = 0, w(t, 0) > 0 restricts
us to expanding solutions in which all information from the fluid prop-
agates outward from the center.

4. Smoothness of solutions in the ambient Euclidean
coordinate system in a neighborhood of r = 0

In this section we prove that the ambient Euclidean coordinate sys-
tem x = (x0, x1, x2, x3) = (t, x, y, z) associated with spherical SSC
coordinates is preserved by the evolution of the Einstein equations. By
Lemma 1, smoothness of SSC solutions at r = 0 is imposed by the con-
dition that odd order r-derivatives of the metric components and the
density vanish at r = 0, and even derivatives of the velocity v vanish
at r = 0. Since ξ = r/t, imposing this condition on r-derivatives at
t > 0 is equivalent to imposing it on ξ-derivatives, and since w = ξv,
D =

√
AB, z = ρr2, smoothness at r = 0 is equivalent to the condition

that all odd derivatives of (z, w,A,D) vanish at ξ = 0, t > 0. The
following theorem establishes that smoothness in the ambient coordi-
nate system x is preserved by the evolution of the Einstein equations
in SSC, and hence that SSC solutions meeting this condition are well
posed in x.

Theorem 2. Assume z(t, ξ), w(t, ξ), A(t, ξ), D(t, ξ) are a given smooth
solution of our p = 0 equations (3.11)-(3.14) satisfying

z = O(ξ2), w = w0(t) +O(ξ2), (4.15)

A = 1 +O(ξ2), D = 1 +O(ξ2), (4.16)

for 0 < t0 ≤ t < t1, and assume that at t = t0 the solution agrees with
initial data

z(t0, ξ) = z̄(ξ), w(t0, ξ) = w̄(ξ), (4.17)

A(t0, ξ) = Ā(ξ), D(t0, ξ) = D̄(ξ) (4.18)
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such that each initial data function z̄(ξ), w̄(ξ), Ā(ξ), D̄(ξ) satisfies
the condition that all odd ξ-derivates vanish at ξ = 0. Then all odd ξ-
derivatives of the solultion z(t, ξ), w(t, ξ), A(t, ξ), D(t, ξ) vanish at ξ =
0 for all t0 < t < t1.

Proof: Start with equations (3.11)-(3.14) in the form

tzt = −ξ {(−1 +Dw)z}ξ −Dwz, (4.19)

twt = −ξ (−1 +Dw)wξ + w (4.20)

−D
{
w2 +

1− A
2Aξ2

(1− ξ2w2)

}
,

ξAξ = (1− A)− z, (4.21)

ξDξ =
D

2A

{
2(1− A)− z + ξ2w2z

}
. (4.22)

First note that products and quotients of smooth functions that satisfy
the condition that all odd derivatives vanish at ξ = 0, also have this

property. Now for a function F (t, ξ), let F
(n)
ξ (t) denote the n’th partial

derivative of F with respect to ξ at ξ = 0. We prove the theorem by
induction on n. For this, assume n ≥ 1 is odd, and make the induction

hypothesis that for all odd k < n, F
(k)
ξ (t) = 0 for all t ≥ t0 and all

functions F = z, w,A,D, (functions of (t, ξ)). We prove that F
(n)
ξ (t) =

0 for t > t0. For this we employ the following simple observation: If n
is odd, and the n’th derivative of the product of m functions

∂n

∂ξn
(F1 · · ·Fm)

is expanded into a sum by the product rule, the only terms that will
not have a factor containing an odd derivative of order less than n are
the terms in which all the derivatives fall on the same factor. This
follows from the simple fact that if the sum of k integers is odd, then
at least one of them must be odd. Taking the n’th derivative of (4.19)
and setting ξ = 0 gives the ODE at ξ = 0:

t
d

dt
z

(n)
ξ = −n ∂

n

∂ξn
((−1 +Dw)z)− ∂n

∂ξn
(DWz) . (4.23)

Since all odd derivatives of order less than n are assumed to vanish at
ξ = 0, we can apply the observation and the assumptions (4.15), (4.16)
that D = 1, w = w0(t) and z = 0 at ξ = 0, to see that only the n’th

order derivative z
(n)
ξ survives on the RHS of (4.23). That is, by the
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induction hypothesis, (4.23) reduces to

t
d

dt
z

(n)
ξ = [n− (n+ 1)w0(t))] z

(n)
ξ . (4.24)

Since under the change of variable t→ ln(t), (4.24) is a linear first order

homogeneous ODE in z
(n)
ξ (t) with z

(n)
ξ (t0) = 0, it follows by uniqueness

of solutions that z
(n)
ξ (t) = 0 for all t ≥ t0. This proves the theorem for

the solution component z(t, ξ).
Consider next equation (4.21). Differentiating both sides n times

with respect to ξ and setting ξ = 0 gives

(n+ 1)A
(n)
ξ (t) = −z(n)

ξ (t) = 0, (4.25)

thus

A
(n)
ξ (t) = 0 (4.26)

for t ≥ t0, which verifyies the theorem for component A.
Consider equation (4.22). Differentiating both sides n times with re-

spect to ξ, setting ξ = 0 and applying the observation and the induction
hypothesis gives

nD
(n)
ξ =

∂n

∂ξn

(
D

1− A
A

)
(4.27)

= D
(n)
ξ

(
1− A
A

)
+

∑
k<n odd

ckD
(k)
ξ +D

(
1− A
A

)(n)

ξ

= 0

for t ≥ t0 because A = 1 at ξ = 0, all lower order odd derivatives are
assumed to vanish at ξ = 0, and we have already verified the theorem
for the component A. This proves

D
(n)
ξ (t) = 0 (4.28)

for t ≥ t0, verifying the theorem for component D.
Consider lastly the equation (4.21). Differentiating both sides n

times with respect to ξ, setting ξ = 0 and applying our observation
gives

t
d

dt
w

(n)
ξ = −n(−1 + w0(t))w

(n)
ξ + w

(n)
ξ −

∂n

∂ξn
(
w2
)

(4.29)

= −n(−1 + w0(t))w
(n)
ξ + w

(n)
ξ − 2ww

(n)
ξ

= [−n(−1 + w0(t)) + 1− 2w]w
(n)
ξ



18

for t ≥ t0 because A = 1 and ξ = 0, all lower order odd derivatives are
assume to vanish at ξ = 0, and we have established the theorem for the

component A. Thus w
(n)
ξ (t) solves the first order homogeneous ODE

t
d

dt
w

(n)
ξ = [−n(−1 + w0(t)) + 1− 2w]w

(n)
ξ , (4.30)

starting from zero initial data at t = t0, so again we conclude

w
(n)
ξ (t) = 0 (4.31)

for t ≥ t0. This verifies the theorem for the final component w, thereby
completing the proof of Theorem 2.�

4.1. A New Ansatz for Corrections to SM. In this section we
derive the phase portrait which describes any spherical perturbation
of the k = 0, p = 0 Friedman spacetime which is smooth in SSC co-
ordinates. Our condition for smooth solutions is that (z, w,A,B) are
smooth functions away from ξ = 0, all time derivatives are smooth,
and all odd ξ-derivatives vanish at ξ = 0. Since solutions are assumed
smooth at ξ = 0, t > 0, Taylor’s theorem is valid at ξ = 0, so the
following ansatz for corrections to SM near ξ = 0 is valid in a neigh-
borhood of ξ = 0, t > 0, with errors bounded by derivatives of the
corresponding functions at the corresponding orders.

z(t, ξ) = zsm(ξ) + ∆z(t, ξ) ∆z = z2(t)ξ2 + z4(t)ξ4 (4.32)

w(t, ξ) = wsm(ξ) + ∆w(t, ξ) ∆w = w0(t) + w2(t)ξ2 (4.33)

A(t, ξ) = Asm(ξ) + ∆A(t, ξ) ∆A = A2(t)ξ2 + A4(t)ξ4 (4.34)

D(t, ξ) = Dsm(ξ) + ∆D(t, ξ) ∆D = D2(t)ξ2 (4.35)

where zsm, wsm, Asm, Dsm are the expressions for the unique self-similar
representation of the SM when p = 0, given by, [22],

zsm(ξ) = 4
3
ξ2 + 40

27
ξ4 +O(ξ6), wsm(ξ) = 2

3
+ 2

9
ξ2 +O(ξ4),(4.36)

Asm(ξ) = 1− 4
9
ξ2 − 8

27
ξ4 +O(ξ6), Dsm(ξ) = 1− 1

9
ξ2 +O(ξ4).(4.37)

This gives

z(t, ξ) =

(
4

3
+ z2(t)

)
ξ2 +

{
40

27
+ z4(t)

}
ξ4 +O(ξ6),

w(t, ξ) =

(
2

3
+ w0(t)

)
+

{
2

9
+ w2(t)

}
ξ2 +O(ξ4).

Consistent with Theorem 2, we verify the equations close within this
ansatz, at order ξ4 in z and order ξ2 in ws with errors O(ξ6) in z
and O(ξ4) in w. Corrections expressed in this ansatz create a uniform
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spacetime of density ρ(t), constant at each fixed t, out to errors of order
O(ξ4). That is, since the ansatz,

z(ξ, t) = κρ(t, ξ)r2 +O(ξ4) =

(
4

3
+ z2(t)

)
ξ2 +O(ξ4), (4.38)

neglecting the O(ξ4) error gives κρ = (4/3 + z2(t))/t2, a function of
time alone. For the SM , z2 ≡ 0 and this gives κρ(t) = (4/3) t−2, which
is the exact evolution of the density for the SM Friedman spacetime
with p = 0 in co-moving coordinates, [18]. For the evolution of our
specific under-densities in the wave theory, we show z2(t) → −4/3 as
the solution tends to the stable rest point, implying that the instability
creates an accelerated drop in the density in a large uniform spacetime
expanding outward from the center. (C.f. Section 4.6 below.)

4.2. Asymptotic equations for Corrections to SM. Substituting
the ansatz (4.32)-(4.35) for the corrections into the Einstein equations
G = κT , and neglecting terms O(ξ4) in w and O(ξ6) in z, we obtain
the following closed system of ODE’s for the corrections z2(τ)), z4(τ),
w0(τ), w2(τ), where τ = ln t, 0 < τ ≤ 11. (Introducing τ renders the
equations autonomous, and solves the long time simulation problem.)
Letting prime denote d/dτ , the equations for the corrections reduce to
the autonomous system

z′2 = −3w0

(
4

3
+ z2

)
, (4.39)

w′0 = −1

6
z2 −

1

3
w0 − w2

0, (4.40)

z′4 = 5

{
2

27
z2 +

4

3
w2 −

1

18
z2

2 + z2w2

}
(4.41)

+5w0

{
4

3
− 2

9
z2 + z4 −

1

12
z2

2

}
,

w′2 = − 1

10
z4 −

4

9
w0 +

1

3
w2 −

1

24
z2

2 +
1

3
z2w0 (4.42)

+
1

3
w2

0 − 4w0w2 +
1

4
w2

0z2.

We prove that for the equations to close within the ansatz (4.32)-(4.35),
it is necessary and sufficient to assume the initial data satisfies the
gauge conditions

A2 = −1

3
z2, A4 = −1

5
z4, D2 = − 1

12
z2. (4.43)
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We prove that if these constraints hold initially, then they are main-
tained by the equations for all time. Conditions (4.43) are not invariant
under time transformations, even though the SSC metric form is invari-
ant under arbitrary time transformations, so we can interpret (4.43),
and hence the ansatz (4.32)-(4.35), as fixing the time coordinate gauge
of our SSC metric. This gauge agrees with FRW co-moving time up to
errors of order O(ξ2).

The autonomous 4 × 4 system (4.39)-(4.42) contains within it the
closed, autonomous, 2 × 2 sub-system (4.39), (4.40). This sub-system
describes the evolution of the corrections (z2, w0), which we show in
Section 4.3 determines the quadratic correction Qz2 in (1.1). Thus
the sub-system (4.39), (4.40) gives the corrections to SM at the order
of the observed anomalous acceleration, accurate within the central
region where errors O(ξ4) in z and orders O(ξ3) in v = w/ξ can be
neglected. The phase portrait for sub-system (4.39), (4.40) exhibits an
unstable saddle rest point at SM = (z2, w0) = (0, 0) corresponding to
the SM, and a stable rest point at (z2, w0) = (−4/3, 1/3). These are
the rest points referred to in the introduction. From the phase por-
trait, (see Figure 1), we see that perturbations of SM corresponding
to small under-densities will evolve away from the SM near the unsta-
ble manifold of (0, 0), and toward the stable rest point M . By (4.36)
and (4.37), A2 = 4/9, D2 = 1/9 at (z2, w0) = (−4/3, 1/3), so by (4.37)
the metric components A and B are equal to 1 + O(ξ4), implying the
metric at the stable rest point (−4/3, 1/3) is Minkowski up to O(ξ4).
Thus during evolution toward the stable rest point, the metric tends
to flat Minkowski spacetime with O(ξ4) errors.

Note that we have only assumed a smooth SSC solution and ex-
panded in finite Taylor series about the center, so our only asymptotic
assumption has been that ξ is small, not that the perturbation from
the k = 0, p = 0 Friedman spacetime is small. Thus the phase portrait
in Figure 1 is universal in that it describes the evolution of every SSC
smooth solution in a neighborhood of ξ = 0, t > 0. We state this as a
theorem:

Theorem 3. Let (z, w,A,B) be an SSC solution which is smooth in
the ambient Euclidean coordinate system x associated with the spherical
SSC coordinates, and meeting condition (2.8). Then there exists an
SSC time gauge in which the solution satisfies equations (4.39)-(4.42)
and (4.43) up to the appropriate orders. Thus the phase portrait of
Figure 1 is valid in a neighborhood of ξ = 0 with errors O(1)ξ6 in
z and O(1)ξ4 in w, where by Taylor’s theorem, the O(1) errors are



21

bounded by the maximum of the sixth and fourth derivatives of the
solution components z and w, respectively.

4.3. Redshift vs Luminosity Relations for the Ansatz. In this
section we obtain formulas for Q and C in (1.1) as a function of the
corrections z2, w0, z4, w2 to the SM , we compare this to the values of Q
and C as a function of ΩΛ in DE theory, and we show that remarkably,
Q passes through the same range of values in both theories.

Recall that Q and C are the quadratic and cubic corrections to red-
shift vs luminosity as measured by an observer at the center of the
spherically symmetric perturbation of the SM determined by these cor-
rections.11 The calculation requires taking account of all of the terms
that affect the redshift vs luminosity relation when the spacetime is
not uniform, and the coordinates are not co-moving.

The redshift vs luminosity relation for the k = 0, p = σρ, FRW
spacetime, at any time during the evolution, is given by,

Hd` =
2

1 + 3σ

{
(1 + z)− (1 + z)

1−3σ
2

}
, (4.44)

where only H evolves in time, [9]. For pure radiation σ = 1/3, which
gives Hd` = z, and when p = σ = 0, we get, (c.f. [21]),

Hd` = z +
1

4
z2 − 1

8
z3 +O(z4). (4.45)

The redshift vs luminosity relation in the case of Dark Energy the-
ory, assuming a critical Friedman space-time with the fraction of Dark
Energy ΩΛ, is

Hd` = (1 + z)

∫ z

0

dy√
E(y)

, (4.46)

where

E(z) = ΩΛ(1 + z)2 + ΩM(1 + z)3, (4.47)

and ΩM = 1 − ΩΛ, the fraction of the energy density due to matter,
(c.f. (11.129), (11.124) of [9]). Taylor expanding gives

Hd` = z +
1

2

(
−ΩM

2
+ 1

)
z2 +

1

6

(
−1− ΩM

2
+

3Ω2
M

4

)
z3 +O(z4), (4.48)

where ΩM evolves in time, ranging from ΩM = 1 (valid with small errors
at the end of radiation) to ΩM = 0 (the limit as t→∞). From (4.48)

11The uniformity of the center out to errors O(ξ4) implies that these should be
good approximations for observers somewhat off-center with the coordinate system
of symmetry for the waves.
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we see that in Dark Energy theory, the quadratic term Q increases
exactly through the range

.25 ≤ Q ≤ 5, (4.49)

and the cubic term decreases from −1/8 to −1/6, during the evolution
from the end of radiation to t → ∞, thereby verifying the claim in
Theorem 1. In the case ΩM = .3, ΩΛ = .7, representing present time
t = tDE in Dark Energy theory, this gives the exact expression,

H0d` = z +
17

40
z2 − 433

2400
z3 +O(z4), (4.50)

verifying that Q = .425 and C = −.1804, as recorded in Theorem 1.
In the case of a general non-uniform spacetime in SSC, the formula

for redshift vs luminosity as measured by an observer at the center is
given by, (see [9]),

d` = (1 + z)2re = t0(1 + z)2ξe

(
te
t0

)
, (4.51)

where (te, re) are the SSC coordinates of the emitter, and (0, t0) are the
coordinates of the observer. A calculation based on using the metric
corrections to obtain ξe and te/t0 as functions of z, and substituting
this into (4.51), gives the following formula for the quadratic correction
Q = Q(z2, w0) and cubic correction C = C(z2, w0, z4, w2) to redshift vs
luminosity in terms of arbitrary corrections w0, w2, z2, z4 to SM . We
record the formulas in the following theorem:

Theorem 4. Assume a GR spacetime in the form of our ansatz (4.32)-
(4.35), with arbitrary given corrections w0(t), w2(t), z2(t), z4(t) to SM .
Then the quadratic and cubic corrections Q and C to redshift vs lumi-
nosity in (1.1), as measured by an observer at the center ξ = r = 0 at
time t, is given explicitly by

Hd` = z

{
1 +

[
1

4
+ E2

]
z +

[
−1

8
+ E3

]
z2

}
+O(z4), (4.52)

where

H =

(
2

3
+ w0(t)

)
1

t
,

so that

Q(z2, w0) =
1

4
+ E2, C(w0, w2, z2, z4) = −1

8
+ E3, (4.53)

where E2 = E2(z2, w0), E3 = E3(z2, w0, z4, w2) are the corrections to
the p = 0 standard model values in (4.45). The function E2 is given
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explicitly by

E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2
. (4.54)

The function E3 is defined by the following chain of variables:

E3 = 2I2 + I3, (4.55)

I2,3 = J2 +
9w0

2(2 + 3w0)
, J3 + 3

[
−1 +

(
8− 8J2 + 3w0 − 12J2w0

2(2 + 3w0)2

)]
,

J2 =
1

4

{
1− 1 + 9K2(

1 + 3
2
w0

)2

}
,

J3 =
5

8

{
1−

1− 18
5
K2 − 81

5
K2

2 + 9
5
w0 + 27

5
K3 + 81

10
Q3w0(

1 + 3
2
w0

)4

}
,

K2,3 =
2

3
w0 +

1

2
w2

0 −
1

12
z2,

2

9
w0 + w2

0 +
1

2
w3

0 + w2 −
1

18
z2 −

1

3
z2w0.

From (4.54) one sees that Q depends only on (z2, w0), Q(0, 0) = .25,
(the exact value for the SM ), Q(−4/3, 1/3) = .5, (the exact value for
the stable rest point), and from this it follows that Q increases through
precisely the same range (4.49) of DE, from Q ≈ .25 to Q = .5, along
the orbit of (4.39), (4.40) that takes the unstable rest point SM =
(z2, w0) = (0, 0) to the stable rest point (z2, w0) = (−4/3, 1/3), (c.f.
Figure 1).

4.4. Initial Data from the Radiation Epoch. In this section we
compute the initial data for the p = 0 evolution from the restriction
of the one parameter family of self-similar a-waves to a constant tem-
perature surface T = T∗ at the end of radiation, and convert this to
initial data on a constant time surface t = t∗, these two surfaces being
different when a 6= 1. We then define a gauge transformation that con-
verts the resulting initial data to equivalent initial data that meets the
gauge conditions (4.43). (Recall that condition (4.43) fixes a time co-
ordinate, or gauge, for the underlying SSC metric associated with our
ansatz, and the initial data for the a-waves is given in a different gauge
because time since the big bang depends on the parameter a, as well
as on the pressure, so it changes when p drops to zero.) The equation
of state of pure radiation is derived from the the Stefan-Boltzmann
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Law, which relates the initial density ρ∗ to the initial temperature T∗
in degrees Kelvin by

ρ∗ =
asc

4
T 4
∗ , (4.56)

where as is the Stefan-Boltzmann constant, [14]). According to cur-
rent theories in cosmology, (see e.g. [14]), the pressure drops precipi-
tously to zero at a temperature T = T∗ somewhere between 3000oK ≤
T∗ ≤ 9000oK, corresponding to starting times t∗ roughly in the range
10, 000yr ≤ t∗ ≤ 30, 000yr after the Big Bang. We make the assump-
tion that the pressure drops discontinuously to zero at some tempera-
ture T∗ within this range. That our resulting simulations are numer-
ically independent of starting temperature, (c.f. Section 4.5), justifies
the validity of this assumption. Using this assumption, we can take
the values of the a-waves on the surface T = T∗ as the initial data for
the subsequent p = 0 evolution. Using the equations we convert this to
initial data on a constant time surface t̄ = t̄∗, where t̄ is the time coor-
dinate used in the self-similar expression of the a-waves which assumes
p = c2

3
ρ. Our first theorem proves that there is a gauge transformation

t̄→ t which converts the initial data for a-waves at the end of radiation
at t̄ = t̄∗, to initial data that both meets the assumptions of our ansatz
(4.32)-(4.35), as well as the gauge conditions (4.43).

Theorem 5. Let t̄ be the time coordinate for the self-similar waves
during the radiation epoch, and define the transformation t̄→ t by

t = t̄+
1

2
µ(t̄− t̄∗)2 − tB, (4.57)

where µ and tB are given by

µ =
a2

2(2− a2)
, (4.58)

tB = t̄∗(1− α), (4.59)

where

α = 4
2− a2

7− 4a2
. (4.60)

Then upon performing the gauge transformation (4.57), the initial data
from the a-waves at the end of radiation t̄ = t̄∗, meets the conditions
for the ansatz (4.32)-(4.35), as well as the gauge conditions (4.43).

Our conclusions are summarized in the following theorem:
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Theorem 6. The initial data for the p = 0 evolution determined by the
self-similar a-wave on a constant time surface t = t∗ with temperature
T = T∗ at r = 0, is given as a function of the acceleration parameter a
and the temperature T∗, by

z2(t∗) = ẑ2, z4(t∗) = ẑ4 + 3ŵ0

(
4
3

+ ẑ2

)
γ,

w0(t∗) = ŵ0, w2(t∗) = ŵ2 +
(

1
6
ẑ2 + 1

3
ŵ0 + ŵ2

0

)
γ,

where ẑ2, ẑ4, ŵ0, ŵ2 and γ are functions of acceleration parameter a
given by

ẑ2 = 3a2α2

4
− 4

3
, ẑ4 = 2α3(1− α)γ̄Z2 + α4Z4 − 40

27
,

Z2 = 3a2

4
, Z4 =

[
9a2

16
+ 15a2(1−a2)

40

]
,

ŵ0 = α
2
− 2

3
, ŵ2 = α2(1− α)γ̄W0 + α3W2 − 2

9
,

W0 = 1
2
, W2 =

[
1
8

+ (1−a2)
20

]
,

where

γ = αγ̄ = α

(
2− a2

4

)
, (4.61)

and α is given in (4.60).
The time t∗ is then given in terms of the initial temperature T∗ by

t∗ =
aα

2

√
3

κρ∗
, ρ∗ =

as
4c
T 4
∗ . (4.62)

Taking the leading order part of the initial data gives a curve param-
eterized by a in the (z2, w0)-plane that cuts through the saddle point
SM in system (4.39), (4.40), between the stable and unstable manifold,
(the lighter dotted line in Figure 1). This implies that a small under-
density corresponding to a < 1 will evolve to the stable rest point M ,
(z2, w0) = (−4/3, 1/3), (c.f. Figure 1).

4.5. The Numerics. In this section we present the results of our nu-
merical simulations. We simulate solutions of (4.39)-(4.42) for each
value of the acceleration parameter a < 1 in a small neighborhood of
a = 1, (corresponding to small under-densities relative to the SM),
and for each temperature T∗ in the range 3000oK ≤ T∗ ≤ 9000oK.
We simulate up to the time ta, the time depending on the accelera-
tion parameter a at which the Hubble constant is equal to its present
measured value H = H0 = 100h0

km
smpc

, with h0 = .68. From this we

conclude that the dependence on T∗ is negligible. We then asked for
the value of a that gives Q(z2(ta), w0(ta)) = .425, the value of Q in
Dark Energy theory with ΩΛ = .7. This determines the unique value
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a = a = 0.999999426, and the unique time t0 = ta . These results are
recorded in the following theorem:

Theorem 7. At present time t0 along the solution trajectory of (4.39)-
(4.42) corresponding to a = a, our numerical simulations give H = H0,
Q = .425, together with the following:

z(t0, ξ) = (−1.142)ξ2 + (1.385)ξ4 +O(ξ6),

w(t0, ξ) = 0.247− (0.348)ξ2 +O(ξ4),

and

A(t0, ξ) = 1 + (0.381)ξ2 − (0.277)ξ4, (4.63)

D(t0, ξ) = 1 + (0.095)ξ2 +O(ξ4). (4.64)

The cubic correction to redshift vs luminosity as predicted by the wave
model at a = a is

C = 0.359. (4.65)

Note that (4.63) and (4.64) imply that the spacetime is very close
to Minkowski at present time up to errors O(ξ4), so the trajectory in
the (z2, w0)-plane is much closer to the stable rest point M than to
the SM at present time, c.f. Figure 1. The cubic correction associated
with Dark Energy theory with k = 0 and ΩΛ = .7 is C = −0.180,
so (4.65) is a theoretically verifiable prediction which distinguishes the
wave theory from Dark Energy theory. A precise value for the actual
cubic correction corresponding to C in the relation between redshift vs
luminosity for the galaxies appears to be beyond current observational
data.

4.6. The Uniform Spacetime at the Center. In this section we
describe more precisely the central region of accelerated uniform ex-
pansion triggered by the instability due to perturbations that meet
the ansatz (4.32)-(4.35). By (4.38) we have seen that neglecting terms
of order ξ4 in z, the density ρ(t) depends only on the time. Further
neglecting the small errors between (z2, w0) and the stable rest point(
−4

3
, 1

3

)
at present time t0 when a = a, we prove that the spacetime is

Minkowski with a density ρ(t) that drops like O(t−3), so the instability
creates a central region that appears to be a flat version of a uniform
Friedman universe with a larger Hubble constant, in which the density
drops at a faster rate than the O(t−2) rate of the SM.
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Specifically, as t → ∞, our orbit converges to
(
−4

3
, 1

3

)
, the stable

rest point for the (z2, w0) system(
z2

w0

)′
=

(
−3w0

(
4
3

+ z2

)
−1

6
z2 − 1

3
w0 − w2

0

)
. (4.66)

Setting z2 = −4/3 + z̄(t), w0 = 1/3 + w̄(t) and discarding higher order
terms, we obtain the linearized system at rest point (−4

3
, 1

3
),

(
z̄
w̄

)′
=

(
−1 0
−1

6
−1

)(
z̄
w̄

)
. (4.67)

The matrix in (4.67) has the single eigenvalue λ = −1 with single
eigenvector R = (0, 1). From this we conclude that all orbits come into
the rest point (−4

3
, 1

3
) from below along the vertical line z2 = −4/3.

This means that z2(t) and ρ(t) = z2(t)/t2 can tend to zero at algebraic
rates as the orbit enters the rest point, but w0(t) must come into the
rest point exponentially slowly, at rate O(e−t). Thus our argument
that w̄ = w0 − 1/3 is constant on the scale where ρ(t) = k0/t

α gives
the precise decay rate,

ρ(t) =
k0

t3(1+w̄)
. (4.68)

That is, w̄ ≡ w̄(t) → 0 and k0 ≡ k0(t) are changing exponentially
slowly, but the density is dropping at an inverse cube rate, O(1/t3(1+w̄)),
which is faster than the O(1/t2) rate of the standard model.

Therefore, neglecting terms of order ξ4 together with the small errors
between the metric at present time t0 and the stable rest point, the
spacetime is Minkowski with a density ρ(t) that drops like O(t−3), a
faster rate than the O(t−2) of the SM. Furthermore, we show that
neglecting relativistic corrections to the velocity of the fluid near the
center where the velocity is zero, evolution toward the stable rest point
creates a flat, center independent spacetime which evolves outward
from the origin, and whose size is proportional to the Hubble radius.

We conclude that the effect of the instability triggered by a perturba-
tion of the SM consistent with ansatz (4.32)-(4.35) near the stable rest
point

(
−4

3
, 1

3

)
, is to create an anomalous acceleration consistent with

the anomalous acceleration of the galaxies in a large, flat, uniform,
center-independent spacetime, expanding outward from the center of
the perturbation.



28

5. Conclusion

Our purpose is to identify a mechanism that could account for the
anomalous acceleration of the galaxies within Einstein’s original the-
ory, without the cosmological constant. We find such a mechanism
by deriving a universal phase portrait for spherical perturbations of
the Friedman space-time of the Standard Model of Cosmology. It is
universal in the sense that it describes the evolution near the center
of symmetry of any smooth radial perturbation of the k = 0, p = 0
Friedman spacetime that is locally inertial at the center. The phase
portrait places SM at an unstable saddle rest point, and the resolu-
tion of this instability creates the same anomalous accelerations as the
cosmological constant, without assuming it. The phase portrait of the
instability shows that only under-dense and over dense perturbations
of SM are observable, (not SM itself), and the under-dense case would
imply that we live within a large region of approximate uniform density
that is expanding outward from us at an accelerated rate relative to
the SM . The idea that the Milky Way lies near the center of a large
region of under-density has already been proposed and studied in the
physics literature. (See [4] and the Appendix below.)

The central region created by the instability is different from, but
looks a lot like, a speeded up Friedman universe tending more rapidly to
flat Minkowski space than the SM. The phase portrait for the perturba-
tions provides a verifiable mathematical explanation for the anomalous
acceleration of the galaxies that does not invoke Dark Energy.

At this stage we have made no assumptions regarding the space-time
far from the center of the perturbations that trigger the instabilities
in the SM. The purpose of our paper is not to solve all the problems
of Cosmology in one grand solution. Our purpose is to introduce and
demonstrate a new instability in the Friedman space-time of the Stan-
dard Model of Cosmology, to identify mechanisms that trigger it, to
show how it naturally could account for the anomalous acceleration
within Einstein’s original theory without Dark Energy, and then to
derive new predictions from it. Given that SM is unstable, the paper
raises the fundamental question as to whether it is reasonable to expect
to observe an unperturbed Friedman space-time, with or without Dark
Energy, on the scale of the supernova data. The consistency of this
model with other observations in astrophysics would require additional
assumptions.12

12Note that when p = 0, the only sound speed is the fluid velocity, so one should
expect that solutions constructed asymptotically near ξ = 0 could be extended by
initial data whose evolution maintains a positive fluid velocity up to present time.
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6. Appendix: The Problem of Regularity at the Center
in LTB Coordinates

In LTB coordinates, the metric is spherically symmetric and diago-
nal, but particles are assumed co-moving so particle paths are geodesics,
and this involves a change of radial coordinate r → r̂ and time coordi-
nate t→ t̂ relative to SSC. It is not difficult to show by construction of
an integrating factor [27, 18] that (under obvious assumptions), met-
rics in SSC are coordinate equivalent to metrics in LTB form. But
although the condition for smoothness at r = 0 is easily expressed in
SSC in terms of r-derivatives at r = 0, (odd order derivatives of the
metric components and scalar functions should vanish at r = 0), iden-
tifying such a condition for smoothness at r̂ = 0 in LTB appears to
be a subtle issue not adequately addressed in the literature. Lacking
clear criteria for smoothness has led theorists to admit solutions with
LTB coordinate singularities at r̂ = 0, and aside from the problem of
determining which solutions are physical, and what mechanisms might
create “singularities”, lacking such criteria allows for solutions with
derivatives at r̂ = 0 either undefined, or unconstrained by the equa-
tions, [29, 38, 37]. Thus unlike SSC, expanding LTB solutions in finite
Taylor series about the origin is problematic. We finish by recording
formulas for the first three derivatives at r̂ = 0 of density functions
which are smooth in SSC at r = 0 to show that no such simple crite-
ria in LTB identifies smoothness at r̂ = 0 in terms of r̂-derivatives at
r̂ = 0.

Consider then a coordinate transformation that takes a p = 0 grav-
itational metric from LTB coordinates (t̂, r̂) over to SSC coordinates
(t, r) given by

t = t(t̂, r̂), r = r(t̂, r̂).

Now LTB and SSC are diagonal metrics such that the coordinates meet
the conditions that the fluid is co-moving with respect to r̂, r̂ = const
are geodesics, t̂ is geodesic time along r̂ = const, and r measures
arclength distance at fixed t in the radial direction, [9]. In the following
lemma we record formulas for derivatives of the scalar density function
ρ(t, r) in terms of its SSC derivatives and the mapping from SSC to
LTB, under the assumption that the function is smooth in SSC in the
sense that all its even r-derivatives vanish at r = 0.

Lemma 2. Assume that ρ(t, r) is a scalar density function which ex-
tends to a smooth function ρ(t, |x|) in SSC coordinates, so that it is

Note also there are large scale aspherical anomalies observed in the microwave
background radiation, [3].
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given near r = 0 by

ρ(t, r) = f0(t) + f2(t)r2 + · · · , (6.69)

where the dots indicate that the expansion includes only even powers
of r. Assume that the mapping (t, r) → (t̂, r̂) from SSC to LTB co-
ordinates is smooth and invertible on r ≥ 0, and meets the minimal
regularity condition that all derivatives of ∂t

∂r̂
(t̂, r̂) up to order three

have continuous one-sided limits at r̂ = 0, together with

lim
r̂→0

r(t̂, r̂) = r(t̂, 0) = 0. (6.70)

Finally, let

ρ̂(t̂, r̂) = ρ(t(t̂, r̂), r(t̂, r̂)) (6.71)

denote the representation of the function ρ(t, r) in LTB coordinates.
Then among odd order derivatives, the first three partial derivatives of
ρ̂ with respect to r̂ are given by

∂ρ̂

∂r̂
(t̂, 0) =

∂ρ

∂t

∂t

∂r̂
, (6.72)

∂2ρ̂

∂r̂2
(t̂, 0) =

∂2ρ

∂t2

(
∂t

∂r̂

)2

+
∂ρ̂

∂t

∂2t

∂r̂2
+
∂2ρ

∂r2

(
∂r

∂r̂

)2

, (6.73)

∂3ρ̂

∂r̂3
(t̂, 0) =

∂3ρ

∂t3

(
∂t

∂r̂

)3

+ 3
∂2ρ

∂t2
∂t

∂r̂

∂2t

∂r̂2
(6.74)

+
∂ρ

∂t

∂3t

∂r̂3
+ 3

∂3ρ

∂r2∂t

(
∂r

∂r̂

)2
∂t

∂r̂
+ 3

∂2ρ

∂r2

∂r

∂r̂

∂2r

∂r̂2
.

Proof of Lemma 2: Taking the first partial derivative of ρ̂ with
respect to r̂ using (6.71) gives

∂

∂r̂
ρ̂(t̂, r̂) =

∂ρ

∂t

∂t

∂r̂
+
∂ρ

∂r

∂r

∂r̂
, (6.75)

so assuming ∂ρ
∂r

= 0 at (t, 0) by (6.69) gives (6.72). Then

∂2

∂r̂2
ρ̂(t̂, r̂) =

∂2ρ

∂t2

(
∂t

∂r̂

)2

+
∂ρ

∂t

∂2t

∂r̂2
(6.76)

+2
∂2ρ

∂r∂t

∂t

∂r̂

∂r

∂r̂
+
∂2ρ

∂r2

(
∂r

∂r̂

)2

+
∂ρ

∂r

∂2r

∂r̂2
,

and again using ∂ρ
∂r

= 0 at (t, 0) by (6.69) gives (6.73). For the third
derivative, differentiate (6.73) and use that all partial derivatives of
ρ(t, r) that are odd order in r vanish at r = 0. �
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We conclude from (6.72)-(6.74) that it would be difficult to identify the
density functions satisfying the SSC smoothness condition that all odd
SSC r-derivatives vanish at r = 0 by a condition on derivates at r̂ = 0
in LTB coordinates, and such a condition would depend on the solution
dependent mapping from SSC to LTB. Lacking this, the smoothness of
LTB metrics and scalars at r̂ = 0 is unresolved.

Acknowledgement: The authors would like to thank the editors of
RSPA for bringing to their attention references [11] and [37]-[65] of [26]
on LTB spacetimes.
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