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Abstract

In this article, we discuss, at an accessible level, the relativistic theory of stars. We
overview the history of the problem, paying particular attention to the monumental
results that lay at the foundations of the theory. Our primary attention will be directed
towards the Buchdahl Stability Theorem, as well as the work of Chandrasekhar on
relativistic stability. We assume a basic knowledge of General Relativity – up to the
Schwarzschild solution, along with an understanding of the techniques of perturbation
theory.

1 Introduction – The History of the Problem

Einstein’s General Theory of Relativity profoundly impacted our perception of the Uni-
verse. General Relativistic corrections helped us understand the precession of the perihe-
lion of Mercury, as well as the deflection of light passing by a massive body. Since the
corrections of General Relativity tended to be extremely small, it was not clear whether
or not Relativity had any bearing on general astrophysical phenomenon. Indeed, Chan-
drasekhar’s famous work on the mass limit of white dwarf stars restricted itself to the
study of Newtonian Stars.

Another curiousity was the mysterious mass limit that creates a singularity in the
Schwarzschild solution of the Einstein equations. One may ask, if it is possible that there
are celestial objects whose radii are less than the Schwarzschild limit? If so, do the objects
form stable planets? Any attempt to explore such a “planet” would be futile, since its
escape speed would exceed the speed of light – an unbreakable barrier. Can one at least
then assess what kind of objects could be allowed to live “inside” the Schwarzschild radius?

Buchdahl’s theorem indicates that if we consider a stable star (composed of a perfect
fluid in thermodynamic equilibrium), then its radius necessarily exceeds the Schwarszchild
radius. That is to say, a star never has the property that its escape speed is larger than
light as long as the assumptions that we took are fulfilled. We will begin by deriving the
equations of hydrodynamic stability of a star (the Tolman-Oppenheimer-Volkoff equations)
and then derive the Buchdahl Result.
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2 The Tolmann-Oppenheimer-Volkoff Equations
We will begin with a spherically symmetric system, i.e. a metric of the form:

or in matrix form:

Recall, the Einstein field equations:

where

and are the Christoffel connection symbols given by

(commas represent derivatives, and is the inverse of ), and

The value of is the stress-energy tensor of a perfect fluid

where is the four-velocity, is the energy density, and is the pressure of the fluid.
When the fluid is static, there are no other contributions to the fluid velocity except the
time-like component ( ); the velocity is normalized so that . This gives us:

When we raise the index of both sides of the Einstein equations we obtain

Now, we have a more simpler formula for
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Now, we will solve for the Christoffel symbols using the standard trick. Let us define
a curve as a function of some parameter . the arclength of this curve is given
by:

where the dot refers to derivatives with respect to . We find the geodesics of this curve by
applying the Euler-Lagrange equations to the integrand (we can square the integrand and
still obtain the same geodesics in this case). Once we apply the Euler Lagrange equations
to the integrand we compare them with the geodesic equation

to find out the Christoffel symbols. We obtain (assuming and are functions of and
alone) the following:

,

all other components are either zero or can be determined by symmetry of the lower two
indices.

Now for the Ricci Tensor , we calculate:

,

where, again all other components are zero or can be determined by the symmetry of the
indices. Now the Ricci Scalar is

which is:

There is one more set of equations that arise from the condition that the covariant
divergence of must be zero (the Bianchi Identity) which means:
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the semicolon denotes a covariant derivative. The result is the two equations (we keep
certain off-diagonal terms in , namely, the and components for reasons that will
become clear later):

where we have used and .
We will utilize these formulas later, but for the equation of stellar equilibrium, there

is no time dependence for and (so the becomes diagonal). Also, we will use the
subscript zero to denote the functions at stellar equilibrium. Now we have two independent
field equations:

which implies

(1)

and

which implies

(2)

We now use the fact that the covariant divergence of is zero (we modify the previous
equation so that the non-diagonal components are zero):

(3)

We define the mass as:

(4)

and integrating 1 we obtain

which we insert into 2 and 3 to obtain:

(5)

Equations 4 and 5 are the Tolmann-Oppenheimer-Volkoff equations of stellar stability.
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The Tolmann-Oppenheimer-Volkoff equations are not enough to close the system, we
need an equation of state that will help determine the pressure in terms of the density.
This is often taken to be the polytrope equation when modelling stars:

where and are constants.

3 The Buchdahl Stability Limit
Obtaining the Buchdahl Stability limit is straightforward given the Tolmann-Oppenheimer-
Volkoff equations. The criterion says that the radius of the star is:

where is the Schwarzschild radius. One thing to note is that this stability criterion
does not depend on any equation of state relating and . This stability theorem relies
on the following:

The density, , and the pressure at the center of the star must be finite

The density must decrease as a function of , i.e. must be negative while inside
the star

The density must be zero outside the star’s radius

and must be positive

which are all reasonable assumptions for a stable star.
In order to proceed we must make use of 2 and 3 rewritten as

(6)

and
(7)

Defining the function

we have

from which it follows

(8)
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Before deriving 8, let us see how to use it to derive the Buchdahl limit. Rewriting 6 in
terms of

we note that since and we have

and since we have

so that

( must be finite). Now writing

where is the average density which satisfies (since ) we have

Hence, if we analyze the right hand side of 8 we see

and is finite, upon integrating from a radius to the radius of the star we have

Now at , becomes the Schwarzschild exterior solution which means that

and

Therefore
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so that

which we integrate from to

rearranging and using the fact that

we have

giving us

which yields the Buchdahl Result

Now to prove 8, we begin by differentiating 6 to obtain

which using 7 we see that

We note that

and that
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which when inserted into the second equation from the previous sentence, we obtain (after
simplification):

and by finally using 6 this yields us 8.

4 Stability of the Star
In order to obtain the stability limit of the star, we must perturb the solution of the star
in stellar equilibrium. The method that was used by Chandrasekhar was the following: he
began with the Einstein field equations (from the previous section) and allowed a non-zero
radial velocity for the fluid. The radial velocity of the fluid creates off-diagonal terms in

, and causes and to depend on time. Chandrasekhar accounted for each dependence
on time by perturbing each variable , , , and . He then proceeded to solve each
perturbation to first order in terms of non-perturbed quantities. To obtain the equation
of state, he used the conservation of particle number as a condition. Letting denote the
integral of the radial velocity w.r.t time, he obtains a differential equation of the form

where is a linear differential operator that is self adjoint, i.e. satisfies:

where is an inner product on function space; physicists will be familiar with the
inner product used in quantum mechanics. Chandrasekhar then assumed has time

dependence of the form , which we insert into the above equation to obtain a condition
on . The Rayleigh-Ritz principle insures us that for any test function satisfying the
boundary conditions of the problem,

if this tells us that is negative, then grows without bound, so there is a perturbation
that is unstable. This method is the same, in spirit, to the methods used in phase plane
analysis to determine the stability of fixed points – except in this context the phase plane
is instead function space.

8



4.1 The Perturbed Einstein Equations
We introduce a small radial oscillation to the star, which means that is now non-zero.
Now, , , , and are all perturbed from stability, so we denote:

(9)
(10)
(11)

and
(12)

as the first order perturbations of each quantity.
To first order, there is no radial component in the metric when we calculate or
there is only the component

which means
(13)

and
(14)

where .
Now we calculate the stress-energy tensor to first order and obtain:

(15)

We will proceed to derive the Einstein equations one-by-one. First,

yields (only to first order)

we expand out the perturbations

and we keep only the first order terms
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and then by using the equilibrium solution we simplify to the equation

(16)

Second,

yields (only to first order)

we expand out the perturbations

and we keep only the first order terms

and then using the equilibrium solution we simplify the equation

(17)

Third, we use

yields (only to first order)

we expand out the perturbations and simultaneously use the equilibrium solution we sim-
plify to obtain

(18)

Fourth, we use

yields (only to first order)
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we expand out the perturbations (and notice that the equilibrium values have no time
dependence)

and then using the equilibrium solution we obtain

(19)

We have thus obtained the four field equations we will use in the upcoming sections.

4.2 Solving for the Perturbations
First we must introduce a variable such that

(20)

Now 18 we integrate both sides with respect to time:

(21)

We use 21 in 16 to obtain

which we simplify to obtain

(22)

And then we use 21 in 17 to obtain

(23)

Before we proceed we need an identity. If we subtract the first Einstein equation with the
second ( by ), we obtain at equilibrium

(24)

This means that when we apply the identity 24, 21, and 23 into 19 we find

(25)

As can be seen in 25, all that remains is determining in terms of the unperturbed
quantities. We can solve our problem by obtaining the equation of state of the system.
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4.3 Equation of State
The last necessary equation of state comes from the condition of conservation of particle
number per unit volume, . The way this is acheived is through a relativistic version of
the continuity equation from fluid dynamics (we use a covariant divergence rather than
ordinary divergence):

expanding this out we obtain

Since we are dealing with the perturbed case, only and are non-zero. Therefore the
covariant divergence becomes

Now following the same procedure of the previous sections, we introduce a perturbation

(26)

and now expand the conservation equation (and use the fact that the equilibrium values
are time-independent)

which we simplify to obtain

(27)

We proceed to integrate 27 to obtain

the second term on the right hand side disappears on the account that 21 together with
24 implies

so that
(28)
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Before proceeding, we must cast 22 in a different form by expanding it out

we then use 3 and rewrite

which simplifies into

(29)

We finally obtain the equation of state by assuming which also says
and so we solve for

Now using 28 and 29

we can simplify to obtain the final expression

(30)

where

is expressed in this way because in the classical theory of gasses it refers to the ratio
of the specific heats (specific heat at constant pressure to the specific heat at constant
volume), called the adiabatic index.

4.4 The Variational Principle
Now that we have the expression for we can now proceed to obtain the necessary
variational principle. Using 30 and 22 in 25

(31)
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Now we substitute 3 into 31 term-by-term:

and we expand out the term:

and we sum all of these three terms along with

to obtain:
(32)

If we recall the second Einstein equation ( ) in equilibrium we have:

which we insert into 32:

and using 3 we have

(33)

We have thus been able to simplify 31 into:

(34)

To finish deriving the variational principle, we now let have time dependence of the
form (now represents the amplitude of the oscillations), we multiply both sides of
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34 with , and conclude by integrating over the range of :

(35)

this gives us the variational principle given the boundary conditions that at
and at . The reader can varify that the differential operator acting on is
self-adjoint.

4.5 The Stability Limit
We now arrive to the point that we can derive the General Relativistic Stability result. In
order to do this, we start with a solution to the Tolmann-Oppenheimer-Volkoff equations.
This solution will be a simple one – we assume is a constant. Thus equation 4 becomes:

and equation 5 yields:

where

We now solve the previous differential equation by integrating from the surface of the star
at to some radius inside the star:

we integrate the left expression using partial fractions and use the fact that the pressure
is zero at the surface of the star

and integrating the right hand side yields
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where

and

Upon rearranging the expression we obtain:

and

Notice that the condition that the pressure is positive implies which implies
the Buchdahl limit.

Now we proceed to insert this solution (carefully) into 35:

(36)

where

We used the fact that

Now in 36 we select as a trial function

and obtain

(37)
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we now use a trigonometric substitution , , and to give

(38)

As approaches zero, the trial function tends to the true solution. Therefore we will
divide both sides of 38 by and expand each of the expressions in terms of : first,

second,

finally,

which we put all together

(39)

To figure out the stability condition, we note that instability occurs when becomes
negative so in 39

where the inequality comes from the fact that the bound for Newtonian stability is
so that to find a non-Newtonian instability we need . We now expand the previous
formula and obtain
(40)

hence if is slightly larger than then instability occurs at the radius shown in this
expression. This instability is purely relatavistic in nature.
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