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Dimensional Analysis,
Modelling, and Invariance

1.1 Introduction

In this chapter we introduce the ideas of invariance concretely through
a thorough treatment of dimensional analysis. We show how dimensional
analysis is connected to modelling and the construction of solutions ob-
tained through invariance for boundary value problems for partial differ-
ential equations.

Often for a quantity of interest one knows at most the independent quan-
tities it depends upon, say n in total, and the dimensions of all n + 1 quan-
tities. The application of dimensional analysis usually reduces the number
of essential independent quantities. This is the starting point of modelling
where the objective is to reduce significantly the number of experimen-
tal measurements. In the following sections we will show that dimensional
analysis can lead to a reduction in the number of independent variables
appearing in a boundary value problem for a partial differential equation.
Most importantly we show that for partial differential equations the reduc-
tion of variables through dimensional analysis is a special case of reduction
from invariance under groups of scaling (stretching) transformations.

1.2 Dimensional Analysis—Buckingham
Pi-Theorem

The basic theorem of dimensional analysis is the so-called Buckingham
Pi-theorem, attributed to the American engineering scientist Buckingham
(1914, 1915a, b). General references on the subject include those of Birkhoff
(1950), Bridgman (1931), Barenblatt (1979), Sedov (1959), and Bluman
(1983a). A historical perspective is given by Gortler (1975). For a detailed
mathematical perspective see Curtis, Logan, and Parker (1982).

The following assumptions and conclusions of dimensional analysis con-
stitute the Buckingham Pi-theorem.
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1.2.1 ASSUMPTIONS BEHIND DIMENSIONAL ANALYSIS

Essentially no real problem violates the following assumptions:

(i)

A quantity u is to be determined in terms of n measurable quantities
(variables and parameters), (W, Wa, ..., W,):

’ U‘:f(Wl,Wz,...,Wn), (1.1)

where f is an unknown function of (Wy, Wa,...,Wy).

(i) The quantities (u, Wy, Wa,...,W,) involve m fundamental dimen-

(iii)

sions labelled by Ly, Lo, ..., Ly. For example in a méchanical prob-
lem these are usually the mechanical fundamental dimensions L; =
length, L, = mass, and L3 = time.

Let Z represent any of (u, Wi, Wa,...,Wy). Then the dimension of
Z, denoted by [Z], is a product of powers of the fundamental dimen-
sions, in particular

(2] = L LS? - Ler (1.2)
for some real numbers, usually rational, (a1, a2, ...,am,) which are
the dimension exponents of Z. The dimension vector of Z is the

column vector
(451

a?

a=|.|. (1.3)

Qm

A quantity Z is said to be dimensionless if and only if [Z] = 1,
i.e. all dimension exponents are zero. For example, in terms of the
mechanical fundamental dimensions, the dimension vector of energy
Eis

2
a(F) = 1
-2
Let
. b
. bog
bi=1{ . (1.4)
bmi
be the dimension vector of W;, i = 1,2,...,n, and let
by b1z - bin
bay baz --- bag
B = . . . (1.5)

bml bm2 e bmn

be the m x n dimension matriz of the given problem.
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(iv) For any set of fundamental dimensions one can choose a system of

units for measuring the value of any quantity Z. A change from one
system of units to another involves a positive scaling of each funda-
mental dimension which in turn induces a scaling of each quantity Z.
For example for the mechanical fundamental dimensions the common
systems of units are MKS, c.g.s. or British foot-pounds. In changing
from c.g.s. to MKS units, L; is scaled by 10~2, L, is scaled by 1073,
L3 is unchanged, and hence the value of energy E is scaled by 107,
Under a change of system of units the value of a dimensionless quan-
tity is unchanged, i.e. its value is invariant under an arbitrary scaling
of any fundamental dimension. Hence it is meaningful to deem dimen-
sionless quantities as large or small. The last assumption of dimen-
sional analysis is that formula (1.1) acts as a dimensionless equation
in the sense that (1.1) is invariant under an arbitrary scaling of any
fundamental dimension, i.e. (1.1) is independent of the choice of sys-
tem of units.

1.2.2 CONCLUSIONS FROM DIMENSIONAL ANALYSIS

The assumptions of the Buckingham Pi-theorem stated in Section 1.2.1
lead to:

(i) Formula (1.1) can be expressed in terms of dimensionless quantities.

(i) The number of dimensionless quantities is k +1 = n + 1 — r(B)

where »(B) is the rank of matrix B. Precisely k of these dimensionless
quantities depend on the measurable quantities (Wy, W, ..., W,).

(iii) Let

T1i

. L5
= |, i=1,2,.. 0k (1.6)

Tni

represent the k = n — r(B) linearly independent solutions x of the
system

Bx = 0. (1.7)
Let
as
a= . (1.8)
ap,

o

f



tem of
m one
funda-
tity Z.
mmon
anging
. 10-—3,
-10-7,
quan-
scaling
limen-
limen-
uation
of any
of sys-

1 1.2.1
itities.
- r(B)

onless

V).

(1.6)

of the

(1.7)

(1.8)

be the dimension vector of u and let

n
Y2
y=| . (1.9)
Yn
represent a solution of the system
By = —a. (1.10)
Then formula (1.1) simplifies to
7= g(my,m2, ..., k) (1.11)
where 7, 7;, are dimensionless quantities,
r=uW{'Wi... Wi, (1.12a)
o= WENWe . Wem~, i=1,2,...k, (1.12b)
and ¢ is an unknown function of its arguments. In particular (1.1)
becomes
u= W VW ¥ .. WV g(my,ma, ..., T). (1.13)

[In terms of experimental modelling formula (1.13) is “cheaper” than
(1.1) by »(B) orders of magnitude.]

1.2.3 PROOF OF THE BUCKINGHAM PI-THEOREM

First of all, ‘
[u] = L{*L3?--- Lpm, (1.14a)

W] = LiLb» ... L) i=1,2,...,n. (1.14b)

Next we use assumption (iv) and consider the invariance of (1.1) under ar-
bitrary scalings of the fundamental dimensions by taking each fundamental
dimension in turn. We scale L; by letting

ol %
V= e‘L“l‘,( eeR. (1.15)
Then accordingly
- u* = e“u, (1.16a)
W =W, i=1,2,...,n (1.16b)

Equations (1.16a,b) define a one-parameter (¢) Lie group of scaling trans-
formations of the n + 1 quantities (u, Wy, Ws,...,W,) with ¢ = 0 cor-
responding to the identity transformation. This group is induced by the
one-parameter group of scalings (1.15) of the fundamental dimension L;.
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From assumption (iv), formula (1.1) holds if and only if
u = f(Wy,Wo, ... W),
le.,
ey = f(e‘éb“ Wy, ez W, ... eP"W,), foralle € R. (1.17)

Case I. by; = bjy = -+ = by, = a; = 0. Here L; is not a fundamental
dimension of the problem or, in other words, formula (1.1) is dimensionless
with respect to L.

Case Il. by; = bjg=--- =by1n, =0, a; # 0. It follows that u = 0, a trivial
situation.

Hence it follows that by; # 0 for some i = 1,2,...,n. Without loss of
generality we assume by, # 0. We define new measurable quantities

Xioy = Wiwhelt =93 n, (1.18)

and let
X, =W;. (1.19)

We choose as the new unknown
v = uW; /0, (1.20)
In terms of the quantities (1.18)—(1.20), formula (1.1) is equivalent to
v=F(X1, Xa, ..., Xn) (1.21)

where F is an unknown function of (X, Xs,...,X,), and the group of
transformations (1.16a,b) becomes

vt =, (1.22a)
X=X, i=12,...,n—1, (1.22b)
X =eX,, (1.22¢)

so that (v, X, Xa,...,Xu~1) are invariants of (1.16a,b). Moreover the
quantities (v, X1, X2,..., X,,) satisfy assumption (iii), and formula (1.21)
satisfies assumption (iv). Ilence

v=F(X1, Xoy .o, Xz, e X,), (1.23)

for all e € R. Consequently F is independent of X,,. Moreover the measur-
able quantities (X, Xa,..., X;,—1) are products of powers of (W, W, ...,
W,) and v is a product of u and powers of (W1, Wa, ..., Wy). Formula (1.1)
reduces to

‘U:G(Xl,Xg,...,Xn_l), (124)

—— T —
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where (v, X1, X3, ..., X,_1) are dimensionless with respect to L; and G is
an unknown function of its n — 1 arguments.

Continuing in turn with the other m — 1 fundamental dimensions, we
reduce formula (1.1) to a dimensionless formula

T=g(m, o, ..., M), (1.25)

where [7] = [m;] = 1, g is an unknown function of (71,73, ...,m),

T=uWy Wy .. . W (1.26a)
and
7 = WINWES . o (1.26b)

for some real numbers {y;,z;;},1=1,2,...,k;j=1,2,...,n.
Next we show that the number of measurable dimensionless quantities is
k = n — r(B). This follows immediately since

W wye - Wir =1

if and only if
T
£ )

Tn

satisfies (1.7). Equation (1.7) has k = n — r(B) linearly independent solu-
tions x(*) given by (1.6). The real numbers

Y2
y= .
yﬂ
follow from setting
[uWi' Wiz ... Wi =1,
leading to y satisfying (1.10). O

Note that the proof of the Buckingham Pi-theorem makes no assumption
about the continuity of the unknown function f, and hence of g, with
respect to any of their arguments.

1.2.4 EXAMPLES
(1) The Atomic Ezplosion of 1945

Sir Geoffrey Taylor (1950) deduced the approximate energy released by the
first atomic explosion in New Mexico from motion picture records of J.E.
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Mack declassified in 1947. But the amount of energy released by the blast
was still classified in 1947! [Taylor carried out the analysis for his deduction
in 1941.) A dimensional analysis argument of Taylor’s deduction follows:

An atomic explosion is approximated by the release of a large amount of
energy E from a “point.” A consequence is an expanding spherical fireball
whose edge corresponds to a powerful shock wave. Let u = R be the radius
of the shock wave. We treat R as the unknown and assume that

R = f(Wh, Wa, Wa, Wa) (1.27)

where

W, = E, the energy released by the explosion,
W, = t, the elapsed time after the explosion takes place,
W5 = po, the initial or ambient air density,
and
W4 = Po, the initial or ambient air pressure.

For this problem we use the mechanical fundamental dimensions. The
corresponding dimension matrix is

2 0 -3 -1
B= 10 1 11}. (1.28)
-2 1 0 -2
r(B) = 3 and hence k = n —r(B) = 4 - 3 = 1. The general solution of
Bx=0i1sz; = —%az.;, g = §m4, I3 = —;;’-a:,; where z4 is arbitrary. Setting
24 = 1, we get the measurable dimensionless quantity
t6 1/5
m = P() [m] . (1.29)
The dimension vector of R is
1
a—= 0 . (130)
0
The general solution of By = —a is
-1
1] -2
y=rx 1| t% (1.31)
0

where x is the general solution of Bx = 0. Setting x = 0 in (1.31), we
obtain the dimensionless unknown

21 -1/5
=r|EZE| . (1.32)
Po
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Thus from dimensional analysis

Et2 1/5 ,
R= [——] g(my) ‘ (1.33)
Po
where ¢ is an unknown function of .
Now we assume that g(m;) is continuous at m; = 0 so that g(m;) =~ g(0)

if 1 << 1. Moreover, we assume that g(0) # 0. This leads to Taylor’s
approximation formula

R = At*® (1.34)

A= (f%)l/sg(()). (1.35)

Plotting log R versus logt for a light explosives experiment, one can de-
termine that g(0) ~ 1. Using Mack’s motion picture for the first atomic
explosion, Taylor plotted 3 log;y R versus log;,t with R and t measured in
c.g.s. units. [See Figure 1.2.4-1 where the motion picture data is indicated
by +.] This verified the use of the approximation g(;) =~ g(0) and led to
an accurate estimation of the classified energy E of the explosion!

where

A
+/
/+
10.5+ 4
£
/
i /"’
95}
1 +/£
O
g #‘f
0l +,++
/
85} F
/
/"
75 + ) | ] I ] .
-4.0 -30 -2.0 -1.0
loq,ot

Figure 1.2.4-1

(2) An Ezample in Heat Conduction Hlustrating the Choice of Fundamental
Dimensions

Consider the standard problem of one-dimensional heat conduction in an
“infinite” bar with constant thermal properties, initially heated by a point
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source of heat. Let u be the temperature at any point of the bar. We assume

that
u = f(l"Vl,VVQ,W3,W4,W5,W6) (1.36)

where

W, = z, the distance along the bar from the point source of heat,

W, = t, the elapsed time after the initial heating,

W3 = p, the mass density of the bar,

W, = ¢, the specific heat of the bar,

Ws = K, the thermal conductivity of the bar,

Ws = Q, the strength of the heat source measured in energy units per
(length units)?.

It is interesting to consider the effects of dimensional analysis in simpli-
fying (1.36) with two different choices of fundamental dimensions.

Choice I (Dynamical Units). Here we let L; = length, Ly = mass, Lz =
time, and L4 = temperature. Correspondingly, the dimension matrix 1s

10 -3 2 1 0
0o 1 0 1 1
Br=lo 1 o0 -2 -3 -2 (137)
00 0 -1 -1 0
r(B;) = 4 and hence k = 6 —4 = 2 is the number of measurable dimen-

sionless quantities. One can choose two linearly independent solutions x(1)
and x(? of Byx = 0 such that 7, is linear in z and independent of t; mo 1s
linear in ¢t and independent of z. Then

2
_ . peQ
T =€= 2 (1.38a)
302
peQ
=T1= t. 1.38b
T2 I3 ( )
It is convenient to choose as the dimensionless quantity = a solution of
0
Bry=-a= 8
-1

where y; = y2 = 0, so that 7 is independent of z and t. Consequently

K?
= —u.
Q%c

(1.39)

T

Hence dimensional analysis with dynamical units reduces (1.36) to

2
u = Q[-_\—,LTCF(f,T) ‘ (1.40)

1
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where F is an unknown function of ¢ and 7.

Choice II (Thermal Units). Motivated by the implicit assumption that
in the posed problem there is no conversion of heat energy to mechanical
energy, we refine the dynamical units by introducing a thermal unit Ly =
“calories.” The corresponding dimension matrix is

-

10 -3 0 -1 -2
00 1 -1 0 0

Bu=|01 0 0 -1 0]. (1.41)
00 0 -1 -1 0
(00 0 1 1 1|

r(Brr) = 5 and hence there is only one measurable dimensionless quantity.
It is convenient to choose as dimensionless quantities

K
=n=—= = — 42
T \/_ where k = o (1.42a)
and )
T = -—————'pd\tu. (1.42b)

Q

Thus dimensional analysis with thermal units reduces (1.36) to

u=

\/p_c_I\— G(n) (1.43)

where G is an unknown function of 7.
Note that equation (1.43) is a special case of equation (1.40) where

€ 1 § )
= —= d F =—G|—==].
n Nz an (E‘, T) \/;G /r
-2
- [In terms of thermal units each of the quantities, &, T, —C\Q_"’—cti is not dimen-

sionless.]
Obviously, if it is correct, equation (1.43) is a great simplification of

equation (1.40). By conducting experiments or associating a properly-posed

boundary value problem to determine u, one can show that thermal units
are justified. In turn thermal units can then be used for other heat (diffu-
sion) problems where the governing equations are not completely known.

-~ Exercises 1.2

1. Use dimensional analysis to prove the Pythagoras theorem. [Hint:
Drop a perpendicular to the hypotenuse of a right-angle triangle and
consider the resulting similar triangles.]
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9. How would you use dimensional analysis and experimental modelling
to find the time of flight of a body dropped vertically from a height

h?

3. Given that in c.g.s. units po = 1.3 X 10-3, and Py = 1.0 x 10%, use
Figure 1.2.4-1 to estimate the domain of my and E.

1.3 Application of Dimensional Analysis to
Partial Differential Equations

Consider the use of dimensional analysis where the quantities (u, Wy, Wa, ...,
W,) arise in a boundary value problem for a partial differential equation
which has a unique solution. Then the unknown u (the dependent vari-
able of the partial differential equation) is the solution of the BVP and
(W1, Wa, ..., Wy,) denote all independent variables and constants appearing
in the BVP. From the Buckingham Pi-theorem it follows that such a BVP
can always be re-expressed in dimensionless form where 7 is a dimension-
less dependent variable and (71, 72, ..., 7r) are dimensionless independent
variables and dimensionless constants.

Say (Wi, Wa, ..., W) are the £ independent variables and (W41, Weta,
..., W,) are the n — £ constants appearing in the BVP. Let

byy bz -o- bue
bar  baa -+ b2
B, = : (1.44a)
bml bm2 e bmt
be the dimension matrix of the independent variables and let
brev1 bierz o bin
baerr  boerz o b2
Bo=| . i (1.44b)
bm,£+1 bm,t+2 et bmn

be the dimension matrix of the constants. The dimension matrix of the
BVP is

B = [Bl : Bg]. (1.45)

A dimensionless m; quantity is called a dimensionless constant if it does
not depend on (Wi, Wa,...,We), ie., in equation (1.26b), zj; = 0, j =
1,2,...,2. A dimensionless m; quantity is a dimensionless variable if £;; # 0
for some j = 1,2,...,¢. An important objective in applying dimensional
analysis to a BVP is to reduce the number of independent variables. The
rank of Bo, i.e. #(B3), represents the reduction in the number of constants

[0 5 2 s W R Y

I

t

O =

S(
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)delling s through dimensional analysis. Consequently the reduction in the number
. height . of independent variables is p = r(B) — r(Bz). In particular the number
of dimensionless measurable quantities is k = n — r(B) = [£ — p] + [(n —
£) — r(B3)] where £ — p of the m; quantities are dimensionless independent

6 :
0%, use ! variables and (n — £) — r(B;) are dimensionless constants.
Lo If »(B) = r(Bj), then dimensional analysis reduces the given BVP to a
; dimensionless BVP with (n — £) — r(B;) dimensionless constants. In this
‘ case the number of independent variables is not reduced. Nonetheless this
is useful as a starting point for perturbation analysis.
If £ > 2, £— p =1, then the resulting solution of the BVP is called a
self-similar solution or automodel solution.
Wa, ...,
uation 431 EXAMPLES
il vars-
/P and i (1) Source Problem for Heal Conduction
P eag;;llg ; ‘ Consider the unknown temperature u of the heat conduction problem of
ab Section 1.2.4 as the solution u(z,t) of the BVP:
iension- -
rendent : Ju d%u
£ — e [ — = -— 1.4
? Ly I\az2 0, oo<z<o;,;t>0, (1.46a)
)W£+2) o Q V; A\
lim u(a:,t) =0. _ C\‘W\ ()3 b& 4 c)" [w
- z—too T —\
(1.44a) -~ Inequation (1.46b) é(2) is the Dirac delta function.”
- The use of dimensional analysis with dynamical units reduces (1.46a—c)
to
OF 0O°F
-é—;—'a?—o, -0 < €<o00, T>0, (147&)
F(§,0) = 6(¢), (1.47b)
(144b) = Jim P ) =0, (1.47¢)
" with u defined in terms of F(f,r) by (1. 40) and £, given by (1.38a,b).
- Consequently there is no essential progress in solving BVP (1.46a—c).
. of the ~ We now justify the use of dimensional analysis with thermal units to
. solve (1.46a—c) as follows:
(1.45) ~ First note that from equations (1.47a,c) we have
itdoes 9 / F(€,7)de = / OF 9L (¢,7)de =o.
Tji #0 . Then from this equation and ( 1.47b) we get the conservation law
:nsional "
es. The ¢ " Fle.r)dE =1, valid for all 7 > 0
nstants : : /_oo (&,7)d¢ =1, valid for all 7 > 0.
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Consequently the substitution F(§,7) = —\}—;G(Vg—;), which results from us-
ing dimensional analysis with thermal units, reduces (1.47a—c) and hence
(1.46a~c) to a BVP for an ordinary differential equation with independent
variable ) = % and dependent variable G(n):

d’G  dG
2W+n—&;+0—0, —00 < 1) < 00, (1.48a)
/ G(n)dn =1, (1.48b)
G(+o0) = 0. (1.48¢)

This reduction of (1.46a—c) to a BVP for an ordinary differential equation
is obtained much more naturally and easily in Section 1.4 from invariance
of (1.46a~c) under a one-parameter group of scalings of its variables.

(2) Prandtl-Blasius Problem for a Flat Plate

Consider the Prandtl boundary layer equations for flow past a semi-infinite

flat plate:
Ou  Ou 0%u

u5;+v-a—§=ll'a—g'j'§, (1.493.)

du  Ov
— 4 — = 1.49b
oz dy 0 (1.49b)

0<z <00, 0<y< oo, with boundary conditions

u(z,0) = 0, (1.49¢)
v(z,0) =0, (1.49d)
u(z,00) = U, (1.49)
u(0,y) = U. (1.49f)

In BVP (1.49a-f), z is the distance along the plate surface from its edge
(tangential coordinate), y is the distance from the plat surface (normal
coordinate), u is the z-component of velocity, v is the y-component of
velocity, v is the kinematic viscosity and U is the velocity of the incident
flow [Figure 1.3.1-1).

Our aim is to calculate the shear at the plate (skin friction) g—;‘(x,O)
which leads to the determination of the viscous drag on the plate.

We look at the problem of determining %Z-(:c, 0) as defined through BVP

(1.49a~f) from three analytical perspectives:
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1.3. Application of Dimensional Analysis
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flow -
U At et p—

\

Flat plate

Figure 1.3.1-1

(i) Dimensional Analysis. From (1.49a—f) it follows that

g—:(z, 0) = f(z,U,v)

17

(1.50)

with the unknown f to be determined as a function of measurable quantities
z, U, v. The fundamental dimensions are L = length and T = time. Then

in terms of these fundamental dimensions:
Ou -1
[63/ (13, 0)] - T )

[z] = L,
U] =117,
V] = L*T"!,
Consequently #(B) = 2. Dimensionless quantities are

Uz
T = y
12

"‘and

v Ou
T = —0755;(:1:,0)

Hence dimensional analysis leads to

where g is an unknown function of %

(1.51a)

(1.51b)
(1.51c)
(1.51d)

(1.52a)

(1.52b)

(1.53)

(ii) Scalings of Quantities Followed by Dimensional Analysis. Consider a
linear transformation of the variables of (1.49a-f) given by z = a X, y = bY,
u="UQ, v = cR where (a,b,c) are undetermined positive constants, U is
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the velocity of the incident flow and (X,Y,Q, R) represent new (dimen-

sional) independent and dependent variables: @ = Q(X, Y), R= R(X ,Y);

U((B y) UQ(X Y) UQ(G) b) (1? y) - CR(X Y) - CR(G’ b
Consequently

U oQ
0y(x,0) b@Y(X 0) (1.54)
and the BVP (1.49a-f) transforms to
U _6Q ¢ ,0Q _1_/__6_29_
29%%x Tifey “wore (1.552)
UdQ  cOR _
a3X+B-5}_;— , (1.55b)
0< X <0,0<Y < oo, with
Q(X,0)=0, (1.55¢)
R(X,0) =0, (1.55d)
Q(X,00) =1, (1.55¢)
Q(0,Y) =1 (1.55f)

From the form of (1.55a,b) it is convenient to choose (a,b,c) so that

v
= = 13-

v
a

S O
<o

Hence weset c=1,b=v,a= Uv. As a result equations (1.55a,b) become
cleared of constants:

0Q _ 9°Q
Q%% 5 9 Rev = Fy2 (1.56a)
9Q OR
o Ty = (1.56b)
0< X <00,0<Y < co. Moreover
Ju U BQ U oQ
6y(m 0) = ——=(X,00= 57 (=0)- (1.57)

But now it follows that since Q(X,Y’) results from the solution of (1.56a,b),
(1.55¢—f), we have

0Q .
5y (00 = h(X), (1.58)

for some unknown function h. We apply dimensional analysis to (1.58):

[6(9] = LT}, (1.59a)
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(1.55¢)
(1.55d)
(1.55e)

(1.55¢)
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become
(1.56a)

(1.56b)

(1.57)

1.56a,b),

| (1.58)
1.58):

(1.59a)
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[X]=L%T2 (1.59b)
Hence (1.58) reduces to
hX)=eX"1/? (1.60)

for some fixed dimensionless constant o to be determined. Thus (1.53)
simplifies further to g(—Ul-,ﬁ) = o(¥2)~1/2 50 that

—(:c 0)=o (Us) 1/2. (1.61)

/g

(ii1) Further Use of Dimensional Analysis on the Full BVP. We now apply
dimensional analysis to the BVP (1.56a,b), (1.55¢~f), to reduce it to a BVP
for an ordinary differential equation. It is convenient (but not necessary) to
introduce a potentzal_istream Junction) Y(X,Y) from the form of (1.56b).
Let Q = —-'Ii R=- gx . Then in terms of the single dependent variable 1,
BVP (1. 56a b) (1.55¢~f), becomes:

a9y oy 8%y 0%

3Y 9X6Y _ 9X 0Y2 _ aY®’ (1.622)
0< X <00,0<Y < o0, with
Q%—(X, 0)=0, (1.62b)
oy _
EE(X) 0) — 0, (1-620)
a—i(X,oo) =1, (1.624d)
%(O,Y) = 1. (1.62¢)
Moreover we get
0%y -1/2
(X 0) = 372 (X 0)=0X" (1.63)

‘We apply dimensional analysis to simplify ¥(X,Y). Since BVP (1.62a-€)

has no constants, we have
Y= F(X,Y), (1.64)
for some unknown function F'. We see that

[¥] = [Y] = L7'T, (1.652)
[X]= L~%12. (1.65b)
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Consequently there is only one measurable dimensionless quantity. It is
convenient to choose as dimensionless quantities

T =n= —-\/Y-’__)?, (166&)
and s
T = \/:X: (166b)
Hence
$(X,Y) = VX G(n) (1.67)

where G(7) solves a BVP for an ordinary differential equation which is
obtained by substituting (1.67) into (1.62a-€). Moreover from (1.67) and
(1.63) it follows that

o = G"(0). (1.68)
[A prime denotes diffcrentiation with respect to n.] Note that

a¢ el 8¢ — 1 /
5y =~ 7% = ——2\/}—([6‘ nG'],

0y _ Lo 8% _ 1o

oyr  Jx eyds X

%y 1
5xay ~ ax 10T

0< X <00,0<Y < ocoleadsto0 < n < o0; Y =0 leads to n = 0;
Y — oo leads to § — 0o0; X = 0 leads to  — oo. Correspondingly BVP
(1.62a—e) reduces to solving the third order ordinary differential equation
known as the Blasius equation for G(n),

d3G d*G

+G—-—— =0, 0<n<oo, (1.69a)

2
dn? dn?

with boundary conditions
G(0)=G'(0) =0, G'(c0)=1. (1.69b)

The aim is to find o = G"(0).
A numerical procedure for solving BVP (1.69a,b) is the shooting method
where one considers the auxiliary initial value problem
PH d*I
ST L HS- =0, 0<2z< oo, (1.70a)

dz3 dz?

H(0) = H'(0) =0, H"(0) = 4, (1.70b)

2

£

1.3

for

ter:
shc

H(
Lie
shc

wit

cor

He

On

Ex



ariaiice

y. It is

(1.66a)

(1.66b)
(1.67)

hich is
i7) and

(1.68)

n=2.
y BVP
juation

(1.69a)

(1.69b)

method

(1.70a)

(1.70b)

«

T P T S I T B O S M R e IR Sy AT e T e g

AU LA/ PIRAVNVITAL WA A AAAANALIIAN ALINA 4 AaaNE g Srans . -

for some initial guess A. One integrates out the IVP (1.70a,b) and de-
termines that H'(co) = B for some number, B = B(A). One continues
shooting with different values of A until B is close enough to 1.

It turns out that the invariance of (1.70a) and the initial conditions
H(0) = H'(0) = 0 under a one-parameter family of scalings (one-parameter
Lie group of scaling transformations) leads to determining o with only one
shooting:

The transformation

-1
r=1, (1.71a)
H(z) = aG(n), (1.71b)
with @ > 0 an arbitrary constant, maps (1.70a,b) to (1.69a) with initial
~ conditions A
G(0)=G'(0)=0, G"(0)= o3 (1.72)
Moreover H'(o0) = B implies that
B
G'(0) = = (1.73)
Hence we pick « so that o? = B, i.e. a = vB. Then
A
o =G"(0) = 577 (1.74)
One can show that
oc=0.332.... (1.75)

Exercises 1.3

1. For the heat conduction problem (1.46a—c), show that r(B;) = 4 for
both dynamical and thermal units.

2. Derive (1.47a-c).
3. Derive (1.48a-c).
4. The BVP (1.46a—c) in effect has only two constants: k = % (diffu-

sivity) and A = % Use dimensional analysis with dynamical units to
reduce (1.46a—) where now Wy =z, Wy =t, Wa =k, Wy = A,

5. Consider the Rayleigh flow problem [see Schlichting (1955)] where an

infinite flat plate is immersed in an incompressible fluid at rest. The

- plate is instantaneously accelerated so that it moves parallel to itself
with constant velocity U.

Let u be the fluid velocity in the direction of U (z-direction). Let
the y-direction be the direction normal to the plate. The situation is
illustrated in Figure 1.3.1.
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Figure 1.3.1

From symmetry considerations the Navier-Stokes equations govern-
ing this problem reduce to the viscous diffusion equation

%:V%’ 0<t<oo, 0<y<oo, (1.76a)
with boundary conditions
u(y,0) =0, (1.76b)
u(0,t) = U, (1.76¢)
u(oo,t) = 0. (1.76d)

(a) Use dimensional analysis to simplify BVP (1.76a-d).

(b) Use scalings of quantities followed by dimensional analysis to
further simplify (1.76a—d). Find the explicit self-similar solution
u(y, t) of (1.76a~d).

1.4 Generalization of Dimensional Analysis—
Invariance of Partial Differential Equations
Under Scalings of Variables

In both examples of Section 1.3.1 the use of dimensional analysis to reduce a
BVP for a partial differential equation to a BVP for an ordinary differential
equation is rather cumbersome and should make the reader feel uneasy. For
the heat conduction problem the use of dimensional analysis depends on
either making the right choice of fundamental dimensions (thermal units)
or combining effectively the constants before using dynamical units [cf.
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Exercise 1.3-4]. For the Prandtl-Blasius problem we used scaled variables
before applying dimensional analysis.

A much easier way to accomplish such a reduction for a BVP is to con-
sider the invariance property of the BVP under a one-parameter family of
scalings (one-parameter Lie group of scaling transformations) when its vari-
ables are scaled but the constants of the BVP are not scaled. If the BVP is
invariant under such a family of scaling transformations, then the number
of independent variables is reduced constructively by one. We show that if,
for some choice of fundamental dimensions, dimensional analysis leads to
a reduction of the number of independent variables of a BVP, then such a
reduction is always possible through invariance of the BVP under scalings
applied strictly to its variables. [Recall that dimensional analysis involves
scalings of both variables and constants.] Moreover there exist BVP’s for
which the number of independent variables is reduced from invariance un-
der a one-parameter family of scalings of its variables but the number of
independent variables is not reduced from the use of dimensional analysis
for any known choice of fundamental dimensions. [One could argue that this
is a way of determining new sets of fundamental dimensions!] Hence, for
the purpose of reducing the number of independent variables of a BVP, in-
variance of a BVP under a one-parameter family of scalings of its variables
is a generalization of dimensional analysis.

Zel’dovich (1956) [see also Barenblatt and Zel’dovich (1972) and Baren-
blatt (1979)] calls a self-similar solution of the first kind a solution of a BVP
obtained by reduction through dimensional analysis and a self-similar solu-
tion of the second kind a solution to a BVP obtained by reduction through
invariance under scalings of the variables when this reduction is not possi-
ble through dimensional analysis. The two examples of Section 1.3.1 show
that these distinctions are somewhat blurred.

Before proving a genecral theorem relating dimensional analysis and in-
variance under scalings of variables, we consider the invariance property of
the heat conduction problem (1.46a—) under scalings of its variables.

Consider the family of scaling transformations

" = az, (1.77a)
t* = ft, (1.77b)
u* = yu, (1.77¢)

where a, 3, 4 are arbitrary positive constants.

Definition 1.4-1. A transformation of the form (1.77a-c) leaves BVP

(1.46a—c) invariant (is admitled by BVP (1.46a—c)) if and only if for any

solution u = ©(z,1) of (1.46a—c) it follows that

v(z*,t*) = u* = yu = v0(z,1) (1.78)
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solves the BVP
v L 9%

pcat* Ko = 0, —oco<z*<oo, t*>0, (1.79a)
v(z*,0) = 9—6(13*) (1.79b)

pc 7
‘lil':rhl v(z*,t*) = 0. (1.79¢)

[Implicitly it is assumed that the domain —oco < z* < oo, t* > 0 corre-
sponds to the domain —oco < z < 00, ¢t > 0; t* = 0 corresponds to t = 0;
z* — 400 corresponds to £ — Foo, i.e. (1.77a—) leaves the boundary of
BVP (1.46a-c) invariant.]

Lemma 1.4-1. If a scaling (1.77a—) leaves BVP (1.46a~) invariant, and
u = O(z,t) solves (1.46a~c), then u =yO(Z, ﬁ) also solves (1.46a—c).

Proof. See Exercise 1.4-1. 0

In order that (1.77a—c) leaves BVP (1.46a~c) invariant, it is sufficient
to leave each of these three equations separately invariant. Invariance of
(1.46a), i.e. u = O(a,t) solves (1.46a) if and only if v = yO(z,t) solves
(1.79a), leads to 8 = a? and invariance of (1.46b,c) leads to v = 1 Hence
the one-parameter (o > 0) family of scaling transformations

" = az, (1.80a)

t* = a’t, (1.80b)
. 1

ut= (1.80c¢)

is admitted by (1.46a~c).
Clearly if u = ©(z,t) solves (1.46a~c) then

v(z*,1*) = O(z*,t") = O(az,a’t) (1.81)

solves (1.79a—c). Hence a transformation (1.80a-c) maps any solution v =
O(z*,t*) of (1.79a~c) to a solution

1 z*
’U—'&'@(l,t) @(a az)

of (1.79a~c) or, equivalently, maps any solution u = ©(z,t) of (1.46a—c) to
a solution u = LO(Z, L) of (1.46a~c).

The solution of (1.46a—) and hence (1.79a—c) is unique. As a result the
solution u = O(z,t) of (1.46a—c) satisfies the functional equation (arising
from the uniqueness of the solution to this BVP)

O@" 1) = %@(r,t). ‘ (1.82)
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Such a solution of a partial differential equation, arising from invariance
under a one-parameter Lie group of transformations, is called a similarity
solution or invariant solution. The functional equation (1.82), satisfied by
the invariant solution, is called the invariant surface condition. An invariant
solution arising from invariance under a one-parameter Lie group of scalings
such as (1.80a—) is also called a self-similar solution or automodel solution.

From (1.80a,b), the invariant surface condition (1.82) satisfied by ©(z, )
is

O(az,0%) = ~0(z, ). (1.83)

In order to solve (1.83), let z = % and O(z,t) = -ﬁcﬁ(z,t). Then in terms
of z, t, ¢(z,t), equation (1.83) becomes

1 a é(z,02t)

\/qu(z,t) = \/-a—2-z¢(2,a2t) = \/{

Hence ¢(z,t) satisfies the functional equation
¢(2,t) = ¢(z,a%) for any a > 0. (1.84)

Thus ¢(z,t) does not depend on t. This leads to the invariant form (simi-
larity form)
1
=0O(z,t) = —=F(z 1.85
u = 6(z,1) i (2) (1.85)
for the solution of BVP (1.46a—); z is called the similarity variable. The
substitution of (1.85) into (1.46a—c) leads to a BVP for an ordinary differ-
ential equation with unknown F(z). The details are left to Exercise 1.4-2.
Now consider the following theorem connecting dimensional analysis and
invariance under scalings of variables.

Theorem 1.4-1. If the number of independent variables appearing in a

BVP for a partial differential equation can be reduced by p through dimen-

sional analysis, then the number of variables can be reduced by p through

invariance of the BVP under a p-parameter family of scaling transforma-
- lions of ils variables. )

" Proof. Consider the dimension matrices B, B; and B; defined by (1.44a,b),

(1.45). Through dimensional analysis the number of independent variables

- of the given BVP is reduced by p = r(B) — r(B5).

An arbitrary scaling of any fundamental dimension is represented by the

. m-parameter family of scaling transformations

L} =e%Lj, j=1,2,..,m (1.86)

‘where (€, €g,...,€n) are arbitrary real numbers. Let the row vector

€ =[e1,€a,...,€6m] (1.87)
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The scaling (1.86) induces a scaling of the value of each measurable quantity
W;:
Wr = e2oim Y, = (BN, i=1,2,...,n, (1.88)

where (eB); is the ith component of the n-component row vector €B; the
value of u scales to -
u* = ezf=* % u, (1.89)

From assumption (iv) of the Buckingham Pi-theorem, the family of scal-
ing transformations (1.88), (1.89), induced by the m-parameter family of
scalings of the fundamental dimensions (1.86), leaves the given BVP invari-
ant. Our aim is to find the number of essential parameters in the subfamily
of transformations of the form (1.88), (1.89) for which the constants are
all invariant, i.e. we aim to find the dimension of the vector space of all
vectors € = [€1, €2, - ., €m] such that

W=W;, i=£+1£+2,...,n, (1.90a)
and
W; £ W; forsome j=1,2,...,¢ (1.90b)
Equation (1.90a) holds if and only if
€Bs = 0. (1.91)

The number of essential parameters is the number of linearly independent
solutions € of (1.91) such that €B; # 0.

It is helpful to introduce a few definitions and some notation:

Let A be a matrix linear transformation acting on vector space V such
that if v € V then vA is the action of A on v. The null space of A is the
vector space Va)y = {e € V : €A = 0}; the range space of A is the vector
space Viayz = {2 : 2 = €A for some € € V}; dim V is the dimension of the
vector space V. It follows that

dimV = dim V), + dim Vay .
’

Consider the matrices B, By, and B, defined by (1.44a,b), (1.45). Let V
be R™, where m is the number of rows of each of these three matrices, so
that dimV = m. Then dim V{p), is the number of linearly independent
solutions € of the set of equations €B = 0, and dim V(g,), is the number
of linearly independent solutions € of €B; = 0. It follows that

dimV(p,), = m —r(Bz); dimV(p), =m—r(B) =m—r(B2) —p.
Since V(,)n(B1)n = V(B)n» it follows that
dim V(B,)y = dim V(p,)(n,)~ + dim V(B,)n(B1)r

= dim V(B)N + dim V(BQ)N(Bx)R'
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1.4. Generalization of Dimensional Analysis 2(

Hence dim V(p,)y(B,)r = p- But dim V(p,)(B,)x 1s the number of linearly
independent solutions € of the system €B, = 0 such that €B; # 0. Hence the
number of essential parameters is p, completing the proof of the theorem.
0

Exercises 1.4

1. Prove Lemma 1.4-1.

2. Set up the BVP for F(z) as defined by equation (1.85). Put this BVP
in dimensionless form using

(a) dynamical units;

(b) thermal units. Explain.

3. Consider diffusion in a half-space with a concentration dependent dif-
fusion coefficient which is directly proportional to the concentration
of a substance C(z,t). Initially and far from the front face = 0 the
concentration is assumed to be zero. The concentration is fixed on
the front face. The aim is to find the concentration flux on the front
face, 22(0,t). In special units C(z,t) satisfies the BVP

9C _ 8 (,.0C |
B{—B;(C‘a—z), 0<z<o0, 0<t< o0, (1.92a)

where ‘
C(z,0) = C(oc0,t) =0; C(0,t) = A. (1.92b)

(a) Exploit similarity to determine %—g (0,1) as effectively as possible.
(b) Use scaling invariance to reduce the BVP (1.92a,b) to a BVP
for an ordinary differential equation.

(¢) Discuss a numerical procedure to determine %%(O,t) based on
the scaling property of the reduced BVP derived in (b).

4. For boundary layer flow over a semi-infinite wedge at zero angle of
attack, the governing partial differential equations are

ou  Ou 62u
u——az +v 8y - U(l) By"”
ou Ov

with boundary condltlons u(z,0) = v(z,0) =0, yl_l*rgo u(z,y) = U(x);

U(z) = Az where A,£ are constants with £ = 5{’—5 corresponding to
the opening angle 73 of the semi-infinite wedge. In this problem z is
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the distance from the leading edge on the wedge surface and y is the
distance from the wedge surface [Figure 1.4.1].

Figure 1.4.1

As for the Prandtl boundary layer equations (1.49a,b) introduce a
stream function ¥ (z,y). Use scaling invariance to reduce the given
problem to a BVP for an ordinary differential equation. Choose co-
ordinates so that the Blasius equation arises if £ = 0.

. The following BVP for a nonlinear diffusion equation arises from a

biphasic continuum model of soft tissue [Holmes (1984)]:

0%u du\ Ou
W_K(B-;)a_o, 0<e<oo, 0<t<oo,

where K is a function of g—;i, with boundary conditions g—%(O,t) = -1,
u(o0,t) = u(z,0) = 0. Reduce this problem to a BVP for an ordinary
differential equation.

. Use invariance under scalings of the variables to solve the Rayleigh

flow problem (1.76a-d).

. Consider again the source problem for heat conduction in terms of

the dimensionless form arising from dynamical units

du O%u
_5{_-5-;:-2—_0, --OO<(B<OO,t>0)

u(z,0) = 6(z),
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1.9. Discussion 2

x-ljl}:loo u(z,t) = 0.
The use of scaling invariance with respect to the variables (1.80a—c)
leads to the similarity form for the solution u = %G(—%)

(a) Show that the problem is invariant under the one-parameter (3)
family of transformations

=0t 1" =t, u = ueéﬁi"‘}ﬁat, (1.93)

for any constant #, —0o < 8 < oco.
(b) Check that ¢ and ue®”/4! are invariants of these transformations.

(c) Show that these transformations lead to the similarity form
u(z,t) = e = 1 H(1). (1.94)

Hence show that invariance under scalings (1.80a—c) and the
transformations (1.93) lead to the well-known fundamental so-
lution

-—-—1—6—:”2/41.

U=
V4t

1.5 Discussion

Dimensional analysis is necessary for ascertaining fundamental dimensions
and consequent essential quantities which arise in a real problem in order
to design proper model experiments. If a given problem can be described in
terms of a boundary value problem (BVP) for a system of partial differential
equations then dimensional analysis may lead to a reduction in the number
of independent variables. Moreover if such a reduction exists, it can always
be accomplished by considering the invariance properties of the BVP under
scaling transformations applied only to its variables.

As will be seen in Chapter 4 the invariance properties of partial differen-
tial equations (or more particularly BVP’s) under scalings of variables can
be generalized to the study of the invariance properties of partial differen-
tial equations under arbitrary one-parameter Lie groups of point transfor-
mations of their variables. Moreover for a given differential equation such
transformations are found algorithmically. [For example one can easily de-
duce transformations (1.93) and (1.94).] This follows from the properties of
such transformations, most importantly their characterization by infinites-
imal generators [see Chapter 2.

References on dimensional analysis specific to various fields include: de
Jong (1967) [economics]; Sedov (1959), Birkhoff (1950) and Barenblatt
(1979) [mechanics, elasticity, and hydrodynamics]; Venikov (1969) [elec-
trical engineering]; Taylor (1974) [mechanical engineering]; Becker (1976)
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[chemical engineering]; Kurth (1972) [astrophysics]; Murota (1985) [systems
analysis].

Examples of dimensional analysis and scaling invariance applied to BVP’s
appear in Sedov (1959), Birkhoff (1950), Barenblatt (1979), Dresner (1983),
Hansen (1964), and Seshadri and Na (1985). Examples which use scalings to
convert BVP’s for ordinary differential equations to initial value problems
appear in Klamkin (1962), Na (1967, 1979), Dresner (1983), and Seshadri
and Na (1985).
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