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Final Exam
Wednesday March 21, 2012

MAT 119A-W12, Temple

Show your work on every problem. Correct answers with no supporting work
will not receive full credit. Be organized and use notation appropriately. No
calculators, notes, books, cellphones, etc. Please write legibly. Please have
your student ID ready to be checked when you turn in your exam.

Problem Your Score Maximum Score
1 25
2 25
3 25
4 25
5 25
6 25
7 25
8 25
Total 200




Problem #1: (i) Draw the phase portrait for the ODE
= f(xr)=2z(z+1)(z— 1)z —2)(x — 3)

on the z-axis along with the graph of f. Which rest points are stable?
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(ii) Use the approximation f(z) ~ f(1)+ f'(1)(z — 1)+ O(|z — 1|?) for = near
z = 1 to deduce the linearized equations valid near rest point z = 1. Solve the
linearized equations and use the solution to deduce the stability /instability

of the rest point z = 1.
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Problem #2: Assume k£ > 1, and recall the non-dimensionalized equation
for the nonlinear pendulum with friction

¢=sing(kcosd — 1) — ue.

(i) Write as a first order system in variables z = ¢, y = ¢, and determine
the rest points of the system.
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(ii)@or Ff 'f all eigenvalues of a linearized equation at a rest point have
negative real part, then all solutions of the nonlinear equations starting suf-
ficiently close to the rest point, will tend to the rest point as t — 0.

T)or F: If all eigenvalues of a linearized equation have negative real part at
a rest point, then all solutions of the linearized equations at the rest point

will tend to the rest point as ¢ — oo.



(iii) For each rest point in the range 0 < z < 7, find the linearized equa-
tions, find the eigenvalues, and determine which rest points are (linearly)
asymptotically stable.
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Problem #3: Find a basis of two real independent solutions x;(t), x5(t) of
the following linear homogeneous first order system, determine whether the
rest point (0,0) is stable or asymptotically stable, classify the rest point, and
graph the phase portrait in the (z, y)-plane:
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Problem #4: Find a basis of two real independent solutions x;(t), x2(t) of
the following linear homogeneous first order system, determine whether the
rest point (0,0) is stable or asymptotically stable, classify the rest point, and

graph the phase portrait in the (x, y)-plane:
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Problem #5: Assume the Lagrangian is given by L( t) = zz% + 2%
(i) Find the second order Euler Lagrange equations £-2 iy 3 5L =0.
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(ii) Find the generalized momentum p = -(%L.
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(iii) Find the generalized energy F(z,&) = 42 L — L.
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(iii) Find the Hamiltonian H(z, p). X = ?—x
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(iv) Find the first order Hamilton’s equations & = H,, p = —H,.
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(v) Prove that H is constant along solutions of Hamilton’s equations.
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Problem #6: A nonlinear pendulum solves the equations
mré = asin ¢ + bt?d,

where m is the mass, r is the length of the pendulum, and ¢ is the angle the
pendulum makes with the downward vertical.

(i) Find [mrd), [a] and [b] where [X] denote the dimensions of X in terms of
the fundamental dimensions L=length, T'=time, M=mass.

i) = 5



(ii) Non-dimensionalize the equation mr¢ = asin ¢ + bt2¢ of Part (i).
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Problem #7: Recall the global existence theorem:

Theorem 1 The ivp for the first order system x = f(x), x(to) = X0, X = (z,y) € R? has a unique solution
x(t) defined for allt so long as f is uniformly Lipschitz continuous.

Definition 1 f is uniformly Lipschitz continuous if there exists constants §, K such that || f(x2) — f(x1)]| <
K|x2 — x1|| for all x1,x2 in R2. (Here, ||x|| = /2% + y? denotes Euclidean norm.)

(1) Use the this theorem to prove that the nonlinear pendulum ¢ = sin ¢ has a global solution
for any initial data (¢(0), $(0))= (zo, yo)-
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(ii) Prove by counterexample that not every nonlinear system has a global solution for all
initial data.
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Problem #8: Assume a scalar function U (x) is given and defined for x =
(z,y) € R?, and consider the gradient system x = — VU (x).

(i) Prove U(x(t)) is strictly decreasing in time on solutions.
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(ii) Prove (by contradiction) the system has no periodic solutions.
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