Section 3.1 Fundamental Subspaces B The Fundament Subspace of a Matrix -Purpose of & is to understand Fig 3.4 Ax = b(mxn/ hx1) (mx1) As a transformation: A: R" -> R" (identify component x with vector Exil; !) Picture (3.4) Pg 147 (Picture enables you to) Visvalliv Matrix Mutt; Vm, but not exact pictur dim r dimr RowSpan Coluspon CIA $Ax_r = b$ $C(A^{T})$ $\chi = \chi_r + \chi_n$ R Left N Alspane Nullipar V(AT dim n-1 dim M-r

• In
$$\mathbb{R}^n$$
: xet $\mathbb{R}^n \Rightarrow x \ge \begin{pmatrix} x_1 \\ x_n \end{pmatrix} = \begin{pmatrix} z_1 \\ z_n \end{pmatrix}$
(vector alway vertical, x horizontal)
• Inner product, $x \cdot z = \sum_{i=1}^n x_i z_i$
 $dit product$
Write as matrix mult:
 $x \cdot z = x^T \cdot z = (x_{13} - y \times u) \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$
 dot matrix
 dot matrix
 $t = (x_{13} - y \times u) \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$
 dot matrix
 $t = (x_{13} - y \times u) \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$
 dot matrix
 $Thm: in \mathbb{R}^n : x_i y = 0$ iff $x \perp y$
 $t = (x - y) \cdot (x - y) = xx - 2x + y + y + y = 0$
 $t = (x - y) \cdot (x - y) = xx - 2x + y + y + y = 0$
 $t = (x - y) \cdot (x - y) = xx - 2x + y + y + y + y = 0$
 $t = (x - y) \cdot (x - y) = xx - 2x + y + y + y + y = 0$

· Defn: Let
$$V \in \mathbb{R}^n$$
 be a subspace. Then
 $V^{\perp} = "orthogonal complement of V in \mathbb{R}^n "
 $= \{ \chi \in \mathbb{R}^n : \chi \cdot v = v \forall v \in V \}$
We write: $\mathbb{R}^n = \nabla \Theta V^{\perp}$ to indicate
thm: For any subspace $V \in \mathbb{R}^n$, dim $V = v$,
we have dim $(V^{\perp}) = n - r$, $\mathcal{B} \forall \chi \in \mathbb{R}^n$
can be uniquely written as
 $\chi = v + v^{\perp}$
for $v \in V$, $v^{\perp} \in V^{\perp}$$

Proof: The proof relies on the Gramm-Schmidt procedure which shows that every subspace of R^n of dimension r has an orthonormal basis of size r. (Topic of Sect 3.4) The ON basis on V together with ON basis on V^{perp} together form a basis for R^n, so dim(v^ {perp}) must be n-r. Rest you get by taking dot products of ON representation of a vector.

 $\nabla^{\perp} = \operatorname{Span}\left\{\left(-s,c\right)\right\}$

 $\chi = Porj_{(c,s)} \times + Proj_{(-s,c)} \times$

In Fact:
$$Proj_{(c,s)} X = \begin{bmatrix} c^{2} & cs \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

 $Proj_{(-s,c)} X = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ c^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ -sc \\ tsy^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$
 $Proj_{(-s,c)} = \begin{bmatrix} tsy^{2} - sc \\ tsy^{2} \end{bmatrix} \begin{bmatrix} tsy^{2} \\ tsy^{2} \\ tsy^{2} \\ tsy^{2} \end{bmatrix} \begin{bmatrix} tsy^{2} \\ tsy^{2} \\ tsy^{2} \\ tsy^{2} \end{bmatrix} \begin{bmatrix} tsy^{2} \\ tsy^{2} \\ tsy^{2} \end{bmatrix} \begin{bmatrix} tsy^{2} \\ tsy^{2} \\ tsy^{2} \\ tsy^{2} \\ tsy^{2} \end{bmatrix} \begin{bmatrix} tsy^{2} \\ tsy^{2} \end{bmatrix} \begin{bmatrix} tsy^{2} \\ t$

4)

Defin: We say V & W are othogonal if V.W:0

$$V \in V$$
 & we W, but V[⊥] is even with w.V:0
 $V = \{t(1,0,0) \ t \in \mathbb{R}\} = \text{Span}\{(1,0,0)\}$
 $\overline{W} = \text{Span}\{(0,1,0)\}$
 $\overline{W} = \text{Span}\{(0,1,0)\}$
 $\overline{W} \perp V$ but $\overline{W} \neq V^{\perp} = \text{Span}\{(0,1,0), (0,0,1)\}$
 $\overline{Claim} : \forall A_{m\times n}$, Matrix Mult has
visualization(1)

•
$$N(A) = Row(A)^{\perp} = C(A^{T})^{\perp}$$

Pf.
 $\begin{bmatrix} -r_{1} - \\ \vdots \\ -r_{m} - \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} r_{1} \cdot x \\ r_{m} \cdot x \end{bmatrix}$
 $\vdots \\ r_{m} \cdot x \end{bmatrix}$
 $\vdots \\ If \quad x \cdot r_{1} = 0 \quad \forall \quad z = 1, \dots, M, \text{ then } Ax = 0$
Let $\nabla = Row(A) = C(A^{T}) = Span \{r_{1}, y - y r_{m}\}$
Then $x \cdot r_{1} = Otiliff \quad x \perp r_{1} \quad \forall i = 1, \dots, M$
 $iff \quad A x = 0$
But $x \cdot r_{1} = Otiliff \quad x \cdot (za_{1}r_{1}) = Za_{1}x \cdot r_{1} = 0$
 $iff \quad x \cdot v = 0 \quad \forall \quad v \in V$

$$\sigma \cdot N(A) = V^{\perp} = Row(A)^{\perp}$$

• Similarly:
$$N(A^{T}) = C_{0}(A)^{T} = C_{0}(A)^{T} = C_{0}(A)^{T}$$

[Pt'' $E_{0,2} \dots E_{0,2} = [D, C_{1,2} \dots E_{0,2}]$
 (xm) $A_{mxn} = b_{1xn}$
 (xm) $A_{mxn} = b_{1xn}$
 \vdots If $B \cdot C_{1} = 0$ $i = 1, \dots, n$, then $y^{T}A = 0$
Let $V = C_{0}(A) = Span \{C_{1,2} \dots C_{n}\}$
Then $B \cdot C_{1} = 0$ $\forall i = 1$ $\forall J \perp C_{1}$ $\forall i$
 $iff \quad yA = 0$
But $y \cdot C_{1} = 0$ $\forall i = 1$ $x \cdot \sum a_{1}C_{1} = \sum a_{1}x \cdot C_{1} = 0$
 $iff \quad x \cdot v = 0 \forall v \in V$
 $iff \quad x \cdot v = 0 \forall v \in V$
 \cdots $N(A^{T}) = V^{T} = C_{0}(B)^{T}$

)

A The picture is now justified:

8

A takes Row(A) (1-18 onto) Col(B).
8 it takes Row(A)¹ = N(A) to zero
This tells how every X cRⁿ gets mapped over to Rⁿ pecase every X can be uniquely written as

 $X = X_r + X_n \longrightarrow b$

• No 2 elements of Row(A) can map to the same b (A is 1-1 on Row(A) \rightarrow (ol(A)) I.e. $Ax_r = b & A\overline{x}_r = b$ $\Rightarrow A(x_r - \overline{x}_r) = 0$ $\Rightarrow x_r - \overline{x}_r \in Row(A)^{\perp} = K(A)$

Note: That z=v+w for v in V and w in V^{perp}, just use the ON basis and dot with e_i to get unique representation in terms of ON basis. That means there is a unique way to write a vector in terms of v and its Orthogonal complement.

