Sect. 2.2: Theory of the inhomogeneou equations Ax=b

The solu space of inhomogeneous equ

$$A_{(m\times n)(n\times i)} = \bigcup_{(m\times i)}^{b}$$

 T_{IMD} : To have any solu, b must lie
in colm space of A, b $\in C(A)$
Pf. $\left[c_{1} - c_{n} \right] \begin{bmatrix} x_{i} \\ x_{n} \end{bmatrix} = x_{1} \left[c_{1} \right] + \cdots + x_{n} \left[c_{n} \right] = b$
 $\Rightarrow b$ is a linear comb of colour of A"
 $\Rightarrow b$ is a linear comb of colour of A"

U

ThmE If the is a particular solut () $Ax_{p} = b0$, then every soln is given by $\chi = \chi_{h} + \chi_{p}$ where $x_n \in K(A) \iff Ax_n = 0$ $K(A) \in Kennel of A \in nullspace of A = \{x : A x = 0\}$ Recall: dim K(A) = n-r r=rank(A) P.f. Assume $Ax_p = b$. Let $\overline{X} = \{x : Ax = b\} = Sola Spare.$ 0 If $X_n \in K(A)$, then $A(x_p + X_n) = Ax_p + Ax_n = b - \sum_{n=1}^{n} \sum_{n=$ (2) If Amao $x \in \mathbb{X}$, $\Rightarrow MA \times_{p} + K(M) \in \mathbb{X}$ then $Ax=b \Rightarrow A(x-x_p) = Ax - Ax_p = b - b = 0$ $J_{X=X-X_p} \in K(\mathcal{H})$ and $X = X_n + X_p = J X \subseteq X_p + K(\mathcal{H})$ $X = X_p + K(A) V$

A How to find
$$x_p \cdot A = [\dot{c}_1 \cdots \dot{c}_n]$$

• Construct augmented matrix
 $[A;b] = [\dot{c}_1 \cdots \dot{c}_n \dot{b}]$
 $m_{x(nn)}$
• Let $E_1 \cdot E_N$ be the elementar matrice
that take A to $rref(A) = R$:

$$E_{i} \cdot E_{N} \left[A_{j} b \right] = E_{i} \cdot E_{N} \left[e_{i} \cdot e_{N} \right] \left[e_{i} \cdot e_{N} \right]$$

$$= \left[E_{e_{i}} \cdot E_{e_{i}} - E_{e_{i}} \cdot e_{i} \cdot e_{i} \right] = \left[R_{j} \cdot e_{i} \right]$$

But
$$A = b \in EA = Eb \in Rx = Eb$$

 $\therefore + ind x_p$ we need only colore
 $Rx_p = Eb$
To see the simplified solution
 $\begin{bmatrix} i & 0 + 4 & 0 + 0 \\ 0 & 1 + 4 & 0 + 0 \\ 0 & 0 & 0 & 1 + 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_1 \\ x_7 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_5 \\ b_5 \end{bmatrix} = Eb$
Set the non-pivot = free variables = $0 = x_3 = x_4 = x_6$
Set the pivot variable $x_1 = b_1$
Set the pivot variable $x_1 = b_1$
Soln: $x_p = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ 0 \\ b_5 \end{bmatrix}$

(4)

• Q: What is the "solvabily condition" forb?
Ans: Since in the pivot variable R is id,
we can find x to st.
$$Rx = b$$
 in the
nontero rows, However, to get equaty
in the zero rows, we need
 $(Eb)_{i} = \overline{b}_{i} = 0$ $\hat{z} = r + i_{s} r + z_{s} \cdots M$.
In general if $E = \begin{bmatrix} -\vec{r}_{i} - \end{bmatrix}$ then
 $\overline{b} = E \cdot b = \begin{bmatrix} \vec{r}_{i} \cdot b \\ F_{m} \cdot b \end{bmatrix}$
So solvabily condt is
 $\vec{r}_{r_{i}} \cdot b = 0$ \cdots $\vec{r}_{m} \cdot b = D$
 $(rank of AS)$

(b)
Note: you can get solvation, condit divectly from

$$\vec{L}A = U = \begin{bmatrix} 3 & 3 & 1 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \vec{L}b$$
Ax=b (=> Ux = $\vec{L}b = C$
Solvable iff $(\vec{L}b)_{r+1} = - = (\vec{L}b)_{r} = 0$
 $C_{r+1} = - = C_m = 0$
Solvable iff the zero rows of U or R give the
solvability condition b'

Ex: Find the solvability condition b st

$$Ax=b$$

has a solvability
 $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 1 \\ -1 & -3 & 3 & 4 \end{bmatrix}$
From before:

 $A = \begin{bmatrix} 1 & 3 & 32 \\ 2 & 6 & 97 \\ -1 & -3 & 34 \end{bmatrix} \xrightarrow{E_{2}(-2)} \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ -1 & -3 & 34 \end{bmatrix} \xrightarrow{(-1-3)} \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 0 & 66 \end{bmatrix}$

$$\begin{array}{c} E_{32}(-2) \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U \quad \text{rank} = 2 = V \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_{x=b}E_{3}(i)E_{21}(-2)A_{x} = U_{x} = E_{32}(-2)E_{31}(i)E_{21}(-2)b$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -21 & 0 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ -21 & 0 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ -21 & 0 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ -21 & 0 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ -21 & 0 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ -21 & 0 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ -21 & 01 \end{bmatrix} \begin{bmatrix} 1 & 00 \\ 0 & -21 \end{bmatrix} \begin{bmatrix} 100 \\ 0 & -21 \end{bmatrix}$$

$$= \frac{1}{2} \operatorname{Solvability} (\operatorname{bndt}) \qquad (8)$$

$$= \frac{1}{2} \operatorname{Solvability} (\operatorname{bndt}) = 0$$

$$= \frac{1}{2} \operatorname{Solv} \operatorname{Solv$$

(٩ Defn: given vector de R breR the man contar matrix 2.7T is called a vant-1 matrix "colm's are mult's of ?" · rous que multi ofr" Preview: SVD A=UZVT=ZOJU,VIT i=1 1 (on rank-1) (matries)

 $\left(1\right)$ Inverce Matries Deta: Bis a left inverse of Air BA=I Bis a vight inverse of A it AB-I Detu: we say A has an inver At it A'A=I=AA' "A'ic both left/right" Thm: If A has a left bright invense, then they are equal PP. BA=I & AC=I => B(AC)=B (BA) C = B => C=B Thm: If A is nxn, then A' exists iff \bigcirc IA $\neq 0$ () In nontero pivots

• What about
$$A_{mxn} = m \neq n$$

" can only have nt or left not both"
" for nt or left to exict, A rank(A) = min (m,n)"

$$\underbrace{E_{X}}_{(2X3)} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

$$(2 \times 1)$$

Look for B st B A
$$x_3 = id_{3x3} = j$$

can solve A $x = b$ by ... $3x_2 A_{2x3} = id_{3x3} = j$
(3 x_2)(2 x_3)(3 x_1) (2 x_1)
 Id_{3x3}

But B cannot exist:

$$\begin{bmatrix} -b_{1} \\ -b_{2} \\ -b_{3} \\ -b_{3$$

The : If
$$A_{mxn} > m > n$$
, then A hose a
left inverse iff A hose maxial vanic n
If $A_{mxn} > m < n$ then A has a vt inv iff A
has maxial vanic $nr_{1/2}$ $\begin{bmatrix} x_1 \\ -r_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
 $2 \times 3 \quad (3 \times 2) \quad (2 \times 1)$
Clearly we can $Solve$
 $\begin{bmatrix} -r_1 - 7 \\ -r_2 - 7 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
if rows of A span $a \geq -d$ space \Rightarrow rank[M]=Res
 $r_1 = [a_1b_1, c_1 \Rightarrow b_1c_2, c_1, c_2]$