Name:

Student ID: Section:

[1	2	3	4	5	6	Total
Î							

MIDTERM EXAM Math 167 Temple-W10

Problem 1. (20pts) True or False:

(Here A is an arbitrary $m \times n$ matrix Col(A) denotes the Column Space of A, Row(A) the Row Space, and Ker(A) the Kernel.)

(a) $\dim \{Row(A)\} = \dim \{Col(A)\}$ except when m < n.

(b) If m = n and $Det(A) \neq 0$, then Ax = b has a unique solution for every $b \in \mathbb{R}^n$.

(c) If m < n, and A has maximal rank, then we must have $\dim \{Ker(A)\} = n - m$.

(d) If $A = LDL^T$ where L is lower triangular with 1's on the diagonal and D is diagonal, then A is symmetric.

(e) Let $E = E_{ij}(a)$ denote the matrix obtained from the $m \times m$ identity matrix by putting a in the (i, j)-entry. Then the matrix multiplication $E \cdot A$ makes sense, and the effect is to add a times the j'th row of A to the i'th row of A.

(f) Let $P = P_{ij}$ denote the matrix obtained from the $m \times m$ identity matrix by interchanging the *i*'th and *j*'th rows. Then the matrix multiplication $P \cdot A$ makes sense, and the effect is to "Put" the *i*'th row of A into the *j*'th column.

(g) In general it takes more operations to do back substitution than it does to do Gaussian elimination.

(h) Let u and v be column vectors in \mathcal{R}^n . Then the rows of the rank-1 matrix $u \cdot v^t$ are all multiples of u.

(i) If m < n, then A cannot have a right inverse.

(j) The solution space of all x such that Ax = b is always a vector space.

Problem 2. (15pts) Use elementary matrices to find matrices L and U^* , (L lower triangular with 1's on the diagonal, U^* upper triangular), such that A = LU, assuming

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 4 & 1 \\ -2 & -6 & 2 \end{bmatrix}$$

Problem 3. (15pts) Let A = LU where

$$L = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

Solve Ax = b for $x = (x_1, x_2, x_3)$ by the most efficient method.

Problem 4. (20pts) Consider the problem Ax = 0 where

$$A = \begin{bmatrix} 2 & 1 & 0 & 2 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

(a) Find the *pivots* of A, and the rank of A.

(b) Determine the *pivot variables* and the *free variables* in x.

(c) Find matrices D and R such that A = DR where D is diagonal and R is the reduced row eschelon form of A.

(d) Find a basis for Row(A).

(e) Find a basis for Ker(A).

Problem 5. (15pts) Find the matrix A that represents a linear transformation $T : \mathcal{R}^3 \to \mathcal{R}^5$ in terms of the standard basis \mathbf{e}_i , (the vector with 1 in the *i*'th position and zeros elsewhere), if

$$\begin{array}{rcl} \mathbf{e}_1 & \rightarrow & \mathbf{e}_2 - \mathbf{e}_1 \\ \\ \mathbf{e}_2 & \rightarrow & \mathbf{e}_4 - 3\mathbf{e}_2 \\ \\ \mathbf{e}_3 & \rightarrow & -\mathbf{e}_5 + 2\mathbf{e}_3. \end{array}$$

Find the dimension of the kernel of T.

Problem 6. (15pts) Let $\{v_1, ..., v_k\}$ be a finite set of vectors in a vector space V.

(a) Complete the definition:

 $Span \{v_1, ..., v_k\} = \{v \in V :$

(b) Define what it means for $\{v_1, ..., v_k\}$ to be *linearly dependent*.

(c) Prove that if $\{v_1, ..., v_k\}$ are linearly dependent, then at least one vector can be removed from the list without changing $Span \{v_1, ..., v_k\}$.