FINAL EXAM
Math 167
Temple-Winter 2010

—Print your name, section number and put your signature on the upper right-hand corner of this exam. Write only on the exam.

—Show all of your work, and justify your answers.

SCORES

#1 #9
#2 #10
#3 #11
#4 #12
#5 #13
#6 #14
#7 #15
#8

TOTAL:
1. (10 pts) Determine the following limits:

(a) (5 pts) \(\lim_{x \to 3} \left(\frac{x^2 - 2x + 3}{x - 3} \right)^2 \)

\[
\lim_{x \to 3} \left(\frac{x^2 - 2x + 3}{x - 3} \right)^2 = \left(\frac{(x - 3)(x + 1)}{x - 3} \right)^2 = (x + 1)^2 \]

= 16

(b) (5 pts) \(\lim_{x \to 0} \frac{\sqrt{3} - \sqrt{x + 3}}{4x} \)

\[
\lim_{x \to 0} \frac{\sqrt{3} - \sqrt{x + 3}}{4x} = \frac{\sqrt{3} - \sqrt{x + 3}}{4x} \left(\frac{\sqrt{3} + \sqrt{x + 3}}{\sqrt{3} + \sqrt{x + 3}} \right) = \frac{3 - x - 3}{4x(\sqrt{3} + \sqrt{x + 3})}
\]

= \(-\frac{1}{4(\sqrt{3} + \sqrt{6})}\)
2. (10 pts) Determine the following limits:

 (a) (5 pts) \(\lim_{x \to -\infty} \frac{x^{11} + 3x - 4}{5x^{11} - 7} \)

 \[\lim_{x \to -\infty} \frac{x^{11} + 3x - 4}{5x^{11} - 7} = \frac{1}{5} \]

 (b) (5 pts) \(\lim_{x \to \frac{\pi}{4}} \cos x \sin x \)

 \[\lim_{x \to \frac{\pi}{4}} \cos x \sin x = \cos \left(\frac{\pi}{4} \right) \sin \left(\frac{\pi}{4} \right) = \frac{1}{2} \]
3. (16 pts) Let \(f(x) = \sqrt{1 - x^2}, \quad g(x) = \frac{1}{2 + \cos x}. \)

(a) (4 pts) Find the Domains of \(f \) and \(g \) and express them in set bracket notation.

The Domain of \(f \) is the set \([-1, 1]\); the Domain of \(g \) is \((\infty, \infty)\).

(b) (4 pts) Find the (precise) Range of \(g \) and express it in set bracket notation.

The Range of \(g \) is the set \([\frac{1}{3}, 1]\).

(c) (4 pts) Find the composition function \((f \circ g)(x)\).

\[
(f \circ g)(x) = f(g(x)) = \sqrt{1 - \left(\frac{1}{2 + \cos x}\right)^2}
\]

(d) (4 pts) Find the Domain of \((f \circ g)(x)\). (Justify)

All real numbers \((-\infty, +\infty)\) because Range of \(g \) is a subset of the Domain of \(f \).
4. (13 pts) Consider the function \(f(x) = \frac{3x+1}{x-2} \) with Domain \(x \neq 2 \).

(a) (7 pts) Find a formula for \(f^{-1}(x) \).

\[
y = \frac{1 + 2x}{x - 3}
\]

(b) (4 pts) Find the Domain of \(f^{-1} \).

\(x \neq 3 \)

(c) (2 pts) Evaluate \(f^{-1}(1) \)

\[
f^{-1}(1) = \frac{1 + 2}{1 - 3} = -\frac{3}{2}.
\]
5. (15 pts) Find the vertical asymptotes (you needn’t graph the functions):

(a) (5 pts) \(y = \sin x \)

None

(b) (5 pts) \(y = \frac{2x^2}{(x^2-4)(x-1)} \)

\(x = \pm 2, 1 \)

(c) (5 pts) \(y = \tan x \)

\(x = \frac{\pi}{2} + n\pi, \quad n = 0, \pm 1, \pm 2, \pm 3... \)
6. (20 pts) Differentiate: (Do not simplify.)

(a) (5 pts) \(y = x^5 + 6x^3 - 144 \)

\[y' = 5x^4 + 18x^2 \]

(b) (5 pts) \(y = (2x^2 - 3)(x^{-2} + 1) \)

\[y' = (2x^2 - 3)(-2x^{-3}) + (4x)(x^{-2} + 1) \]

(c) (5 pts) \(y = \frac{\cos x}{\sin x} \)

\[y' = \frac{\sin x(-\sin x) - \cos x \cos x}{\sin^2 x} \]

(d) (5 pts) \(y = \cos (x^5 + 2x) \)

\[y' = -(5x^4 + 2) \sin (x^5 + 2x) \]
7. (10 pts) Differentiate: \(f(x) = \frac{\sin^2(x + \sqrt{x})}{x \cos x} \) \((\text{Do not simplify.})\)

\[
f'(x) = \frac{x \cos x [2 \sin (x + \sqrt{x})(1 - \frac{1}{2}x^{-1/2})] - \sin^2 (x + \sqrt{x})[\cos x - x \sin x]}{(x \cos x)^2}
\]
8. (12 pts) Let \(f(x) = x^2 + 5x \). Use the mathematical definition of derivative to derive a formula for \(f'(x) \).

(Recall the mathematical definition: \(f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \).)

\[
\begin{align*}
f'(x) &= \lim_{h \to 0} \left\{ \frac{f(x+h) - f(x)}{h} \right\} \\
&= \lim_{h \to 0} \left\{ \frac{(x+h)^2 + 5(x+h) - x^2 - 5x}{h} \right\} \\
&= \lim_{h \to 0} \left\{ \frac{2xh + h^2 + 5x + 5h - 5x}{h} \right\} \\
&= \lim_{h \to 0} \left\{ 2x + h + 5 \right\} = 2x + 5.
\end{align*}
\]
9. (16 pts) Consider the following complicated equation:

\[2xy^3 + 4x^2 - 2y^4 = 0. \]

(a) (8 pts) Use implicit differentiation to obtain a formula for \(y' = \frac{dy}{dx} \) at a point \((x, y)\) on the graph.

\[y' = -\frac{8x + 2y^3}{6xy^2 - 8y^3} \]

(b) (8 pts) Find the slope \(m \) and \(y \)-intercept \(b \) of the line tangent to the graph of \(f \) at the point \((1, -1)\).

\[m = -\frac{3}{7}, \quad b = -\frac{4}{7} \]
10. (20 pts) Let \(y = f(x) = \frac{1}{4}x^4 - 2x^2 - 2 \).

(a) (5 pts) Find the values of \(x \) that are critical points.

\[
y' = x^3 - 4x = x(x^2 - 4) = 0,
\]
Critical points at \(x = 0, \pm 2 \).

(b) (5 pts) Use the second derivative test to determine the values of \(x \) that are relative maxima and relative minima.

\[
f''(x) = 3x^2 - 4,
\]
so

\[
f''(0) = -4 < 0, \quad f''(\pm 2) = (3)(4) - 4 > 0,
\]
implying \(x = 0 \) is a relative max and \(x = \pm 2 \) are relative min’s.

(c) (5 pts) Find the values of \(x \) that are inflection points.

\[
f''(x) = 3x^2 - 4 = 0 \text{ implies } x = \pm \frac{2}{\sqrt{3}} \text{ are the inflection points.}
\]

(d) (5 pts) Use interval notation (brackets) to describe the set of \(x \) where \(f \) is convex up.

\[
f''(x) = 3x^2 - 4 > 0 \text{ implies } x \in (-\infty, -\frac{2}{\sqrt{3}}) \cup (\frac{2}{\sqrt{3}}, +\infty).
\]
11. (12 pts) Two ships pass near a lighthouse. Let $x(t)$ denote the distance (in miles) from the first ship to the lighthouse, and $y(t)$ the distance from the second ship to the lighthouse, and assume you know that at every time, $x^2 + y^3 = 17$. Find the speed $\frac{dy}{dt}$ when the first ship is 3 miles from the lighthouse moving at speed $\frac{dx}{dt} = 1$ mile per hour.

$$x(t)^2 + y(t)^3 = 17$$

holds at every time, so

$$2xx' + 3y^2y' = 0$$

holds at every time. We know $x = 3$, $x' = 1$ and $x^2+y^3 = 17$ gives $y = 2$. Thus

$$y' = \frac{-6}{3 \cdot 4} = -\frac{1}{2}.$$
12. (12 pts) The cost of material to build a rectangular vertical wall L feet long and H feet high is $2H^2 + 3L$ dollars. Find the dimensions of the wall of area 36 square feet that minimizes the cost.

\[C = 2H^2 + 3L, \quad \text{and} \quad L \cdot H = 36. \]

Solving $L = \frac{36}{H}$ and substituting gives

\[C = 2H^2 + \frac{3 \cdot 36}{H}, \]

so

\[\frac{dC}{dH} = 4H - \frac{3 \cdot 36}{H^2} = 0 \]

gives

\[H^3 = 27, \]

or $H = 3$, $L = 12$. Range of variables $(0, \infty)$ with $C = \infty$ at the endpoints confirms this is the minimum.
13. (12 pts) The radius \(r \) of a circle is increasing at a rate of 5 meters per second.

(a) (6 pts) Find a formula for the rate \(\frac{dA}{dt} \) at which the area is increasing.

\[
A = \pi r^2, \quad \frac{dA}{dt} = 2\pi r \frac{dr}{dt} = 10\pi r
\]

(b) (6 pts) Use differentials to give the estimate \(dA \) for the increase in area over time interval \(dt = 2 \) seconds when the radius is 10 meters.

\[
dA = 10\pi r dr = 200\pi.
\]
14. (10 pts) Sketch the graph of a function continuous except at \(x = 2 \), such that
\[
\lim_{x \to 2^-} = -1, \quad \lim_{x \to 2^+} = +\infty, \quad f(2) = 1.
\]

Graph comes in from the left to an open dot at \((2, -1)\); there is a closed dot at \((2, 1)\); and the graph goes off to \(y = +\infty \) as it comes in to \(x = 2 \) from the right.
15. (12 pts) Find the point on the graph of \(y = \sqrt{x}, \ x \geq 0 \), closest to the point \((1,0)\).

\[
D = d^2 = (x - 1)^2 + (y - 0)^2, \quad y = \sqrt{x}
\]
gives

\[D = (x - 1)^2 + x.\]

Differentiating gives

\[
\frac{dD}{dx} = 2(x - 1) + 1 = 0,
\]
giving a unique critical point. Plugging in for \(y \) gives critical point on graph as \(x = \frac{1}{2}, \ y = \frac{1}{\sqrt{2}} \).

Now the distance \(D \to \infty \) as \(x \to +\infty \), and so the minimum distance must be at endpoint \(x = 0 \) or critical point \(x = \frac{1}{2} \). Checking \(D(0) = 1 \) and \(D(\frac{1}{2}) = \frac{1}{4} + \frac{1}{2} < 1, \) it follows that the closest point must is the critical point \(x = \frac{1}{2}, \ y = \frac{1}{\sqrt{2}} \).