MIDTERM EXAM I Math 16A Temple-Winter 2010

-Print your name, section number and put your signature on the upper right-hand corner of this exam. Write only on the exam.

-Show all of your work, and justify your answers for full credit.

SCORES

#1#2#3#4#5#6#7#8

TOTAL:

1. Determine the following limits (simplify answer):

(a) (6 pts)
$$\lim_{x\to 2} \sqrt{\frac{x^2-4}{x-2}}$$
 (Hint: Factor)

$$\lim_{x \to 2} \sqrt{\frac{x^2 - 4}{x - 2}} = \lim_{x \to 2} \sqrt{\frac{(x - 2)(x + 2)}{x - 2}}$$
$$= \lim_{x \to 2} \sqrt{\frac{(x + 2)}{1}} = \sqrt{4} = 2$$

(b) (6 pts)
$$\lim_{x\to 0} \frac{\sqrt{x+2}-\sqrt{2}}{4x}$$
 (Hint: Conjugate)

$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{4x} = \lim_{x \to 0} \left\{ \frac{\sqrt{x+2} - \sqrt{2}}{4x} \cdot \left(\frac{\sqrt{x+2} + \sqrt{2}}{\sqrt{x+2} + \sqrt{2}} \right) \right\}$$
$$= \lim_{x \to 0} \left\{ \frac{x+2-2}{4x(\sqrt{x+2} + \sqrt{2})} \right\}$$
$$= \lim_{x \to 0} \left\{ \frac{1}{4(\sqrt{x+2} + \sqrt{2})} \right\}$$
$$= \frac{1}{8\sqrt{2}} = \frac{\sqrt{2}}{16}$$

(No simplification required past $\frac{1}{8\sqrt{2}}$.)

2. Determine the following limits: (c) (6 pts) $\lim_{x\to\infty} \frac{2x^5+3x-4}{3x^5-7}$ (Hint: Divide by highest power)

$$\lim_{x \to +\infty} \frac{2x^5 + 3x - 4}{3x^5 - 7} = \lim_{x \to +\infty} \left\{ \frac{2x^5 + 3x - 4}{3x^5 - 7} \left(\frac{1/x^5}{1/x^5} \right) \right\}$$
$$= \lim_{x \to +\infty} \left\{ \frac{2 + \frac{3}{x^4} - \frac{4}{x^5}}{3 - \frac{7}{x^5}} \right\}$$
$$= \frac{2}{3}$$

(d) (6 pts)
$$\lim_{x\to 0} \frac{1-\cos^2 x}{\tan^2 x \cos x}$$
 (Hint: Simplify)

$$\lim_{x \to 0} \frac{1 - \cos^2 x}{\tan^2 x \cos x} = \lim_{x \to 0} \left\{ \frac{\sin^2 x}{\frac{\sin^2 x}{\cos^2 x} \cos x} \right\}$$
$$= \lim_{x \to 0} \left\{ \cos x \right\}$$
$$= 1$$

3. Let f(x) = √4 - x², g(x) = 2 sin x.
(a) (5 pts) Find the Domain of f.

$$Domain(f) = \{x : -2 \le x \le 2\}$$

(b) (5 pts) Find the (precise) Range of g.

Range
$$(g) = \{x : -2 \le x \le 2\}.$$

(c) (6 pts) Find
$$(f \circ g)(x)$$
.
 $(f \circ g)(x) = \sqrt{4 - 4 \sin^2 x}$.

(d) (5 pts) Prove that $(f \circ g)(x)$ is defined for every real number x. (I.e, show the Domain of $f \circ g$ is all of \mathcal{R} .)

• Since the domain of g is all real numbers and the range of g lies within the domain of f, it follows that the domain of $f \circ g = f(g(x))$ equals the domain of g equals all of \mathcal{R} .

• Or...Let $x \in \mathcal{R}$. Then $-2 \leq g(x) \leq 2$, so $4 - g(x)^2 \geq 0$, and thus $f(g(x)) = \sqrt{4 - g(x)^2}$ is well defined. 4. Consider the function f(x) = ^{2x+1}/_{x-3} with Domain x ≠ 3.
(a) (7 pts) Find a formula for f⁻¹(x).

Set $y = \frac{2x+1}{x-3}$, solve for x and then switch x and y:

$$xy - 3y = 2x + 1$$
$$x(y - 2) = 3y + 1$$
$$x = \frac{3y + 1}{y - 2}$$

 So

$$f^{-1}(x) = \frac{3x+1}{x-2}$$

(b) (4 pts) Find the Domain of f^{-1} .

Domain
$$(f^{-1}) = \{x \in \mathcal{R} : x \neq 2\}$$

(c) (4 pts) Evaluate $f^{-1}(1)$

$$f^{-1}(1) = \frac{3 \cdot 1 + 1}{1 - 2} = -4$$

- 5. Find all vertical and horizontal asymptotes (you needn't graph the functions):
 - (a) (3 pts) $y = \sin x$

No vertical or horizontal asymptotoes

(b) (6 pts) $y = \frac{2x^2}{(x^2-1)(x+2)}$

Vertical asymptotes at x = -1, 1, -2; Horizontal asymptote y = 0.

(c) (6 pts) $y = \tan x$

Since $y = \tan x = \frac{\sin x}{\cos x}$, vertical asymptotes are the zeros of $\cos x$ which are the lines $x = \frac{\pi}{2} + n\pi$ for $n \in \mathcal{N}$. No limits at $x \to \pm \infty$, so no horizontal asymptotes.

6. Given a function f(x):

(a) (4 pts) State the *definition* of the derivative f'(x).

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(b) (7 pts) Directly from the definition, derive the value of f'(2) if $f(x) = x^3$. (Hint: $(x-a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$).

$$f'(x) = \lim_{h \to 0} \left\{ \frac{(x+h)^3 - x^3}{h} = \frac{x^3 + 3hx^2 + 3h^2x + h^3 - x^3}{h} \\ = \frac{3hx^2 + 3h^2x + h^3}{h} = 3x^2 + 3hx - h^2 \right\} = 3x^2$$

7. (7 pts) Draw the graph of a function continuous except at x = 2, such that f(2) = 1, $\lim_{x\to 2^-} = 0$, and $\lim_{x\to 2^+} = 4$. (Use closed and open dots correctly at x = 2.)

8. (7 pts) Find the equation of the line *perpendicular* to the graph of $y = 2x^2 - 3$ at the point (1, -1).

Calculate f'(x) = 4x, so f'(1) = 4, thus the perpendicular slope is $m = -\frac{1}{4}$, and the line is

$$\frac{y+1}{x-1} = -\frac{1}{4}$$

or

$$y = -\frac{1}{4}x - \frac{3}{4}$$