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We identify the condition for smoothness at the
centre of spherically symmetric solutions of Einstein’s
original equations without the cosmological constant
or dark energy. We use this to derive a universal phase
portrait which describes general, smooth, spherically
symmetric solutions near the centre of symmetry
when the pressure p = 0. In this phase portrait,
the critical k = 0 Friedmann space–time appears as
a saddle rest point which is unstable to spherical
perturbations. This raises the question as to whether
the Friedmann space–time is observable by redshift
versus luminosity measurements looking outwards
from any point. The unstable manifold of the saddle
rest point corresponding to Friedmann describes the
evolution of local uniformly expanding space–times
whose accelerations closely mimic the effects of dark
energy. A unique simple wave perturbation from the
radiation epoch is shown to trigger the instability,
match the accelerations of dark energy up to second
order and distinguish the theory from dark energy at
third order. In this sense, anomalous accelerations are
not only consistent with Einstein’s original theory of
general relativity, but are a prediction of it without the
cosmological constant or dark energy.

1. Introduction
We identify the condition for smoothness at the centre
of spherically symmetric solutions of Einstein’s original
equations of general relativity (without the cosmological
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constant), and use this to derive a universal phase portrait which describes the evolution of
smooth solutions near the centre of symmetry when the pressure p = 0.1 In this phase portrait,
the k = 0, p = 0 Friedmann space–time appears as an unstable saddle rest point. Earlier attempts to
identify an instability in the standard model of cosmology2 (SM) were inconclusive;3 cf. [3,4]. The
condition for smoothness is that all odd-order derivatives with respect to r of metric components
and scalar functions, and all even derivatives of the velocity, should vanish at the centre r = 0
when the space–time metric is expressed in standard Schwarzschild coordinates (SSCs) (cf. (1.1)
below). We prove that this condition is preserved by the evolution of the Einstein equations,
and remark that this smoothness condition appears not to have been identified in previous
studies based on Lemaitre–Tolman–Bondi (LTB) coordinates. Here, we propose that the correct
invariant condition for smoothness of a spherically symmetric space–time metric given in radial
coordinates (r, φ, θ ) is the condition that all odd-order r-derivatives of metric components vanish
at r = 0 in SSC coordinates.

The constraint of smoothness at the centre provides a new ansatz for Taylor expanding smooth
spherically symmetric solutions about the centre of symmetry in SSC, and we show the anstatz
closes in SSC at even orders when p = 0. The effect of imposing smoothness reduces the solution
space and implies that the local phase portrait is valid with errors one order of magnitude larger
than one would obtain if (as in prior LTB studies) non-zero SSC derivatives of odd order were
allowed at the centre. From this we prove that smooth perturbations of the Friedmann space–time
trigger an instability when the pressure drops to zero, and the effect of spherical perturbations,
as described by the unstable manifold, is to create local uniformly expanding space–times with
accelerated expansion rates. These space–times introduce a new global space–time geometry
given in closed form when the higher-order corrections affecting the space–time far from the
centre are neglected. We show that, in the under-dense case, these local space–times mimic almost
exactly the effects of dark energy, producing precisely the same range of quadratic corrections to
redshift versus luminosity during the evolution from the end of radiation to the present time,
as are produced by the cosmological constant in the theory of dark energy. Based on this we
conclude the following. (1) The Friedmann space–time is unstable in Einstein’s original theory of
general relativity (GR) without the cosmological constant, and given this, we should not expect
to observe it by redshift versus luminosity measurements looking outward from any point taken
as the centre, when p = 0. (2) Because under-dense perturbations create space–times that locally
mimic the effects of dark energy, the anomalous acceleration4 observed in the supernova data is
not only consistent with Einstein’s original theory, but one could interpret this as a prediction of it.
Statements (1) and (2) remain valid independently of whether or not the instability of Friedmann
actually is the source of the anomalous acceleration observed in the supernova data.

It is natural, then, to test the consistency of the accelerations which are created by the instability
with the accelerations observed in the supernova data. In fact, all these ideas arose out of the
authors’ earlier attempts to explain the anomalous acceleration of the galaxies within Einstein’s
original theory without dark energy. These ideas followed from a self-contained line of reasoning
stemming from questions that naturally arose from earlier investigations on incorporating a shock
wave into SM, [5–7]. There have been a number of other attempts to model cosmic acceleration
by assuming that we live in an under-dense region of the universe (cf. [8], and references [37–
65] of [9], including [3,10–15] listed below). Such a class of models is called the void models.

1By smooth we mean arbitrary orders of derivatives exist on the scale for which the Friedmann approximation is valid. Making
sure appropriate smoothness conditions are imposed on solutions is of fundamental importance to mathematics and physics.
2Assuming the so-called cosmological principle, that the universe is uniform on the largest scale, the evolution of the universe
on that scale is described by a Friedman space–time, which is determined by the equation of state in each epoch [1]. In this
paper, we let SM denote the approximation to the standard model of cosmology without dark energy given by the critical
k = 0 Friedman universe with equation of state p = (c2/3)ρ during the radiation epoch, and p = 0 thereafter (cf. the ΛCDM
model with Λ = 0 [2]).
3Cf. [3] for inconclusive attempts to identify the instability in SM by taking a long wavelength limit in LTB coordinates.
4In this paper, we use the term anomalous acceleration to refer to the corrections to redshift versus luminosity from the
predictions of the k = 0, p = 0 Friedmann space–time, as observed in the supernova data. We take these to be given exactly
by the corrections obtained by assuming ΩΛ = 0.7
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Prior void models have been based on spherically symmetric p = 0 solutions represented in LTB
coordinates (coordinates which typically take the radial coordinate to be co-moving with the
fluid; cf. [1]) and, until now, a smoothness condition at the centre was never identified for the
purpose of characterizing smooth solutions in LTB. Although the void models are still discussed
and taken seriously, it is generally believed that unless we live in an extreme vicinity of the centre
of a spherically symmetric space, it would be in contradiction with the observation of cosmic
microwave background radiation. Moreover, central weak singularities have been shown to exist
in LTB at the centre in models that appear to account for the anomalous acceleration [3,4,15].
The fine-tuning problem of being near the centre, and the existence of mild singularities at the
centre, have both been put forth as possible reasons to rule out the void model explanation for the
cosmic acceleration. While we do not address these problems here, we point out there are in fact
large-scale angular anomalies in the microwave background radiation, [16], and the fine-tuning
problem persists whether we fine-tune the model to be near a centre, or fine-tune it to make the
cosmological constant on the order of the energy density of the universe (required to correct the
redshift versus luminosity relations by the cosmological constant [7]). The void models in LTB
are essentially based on choosing initial data to match the observations at the present time, and
then proposing the LTB time reversal of such solutions as the cosmological model. Here, we take
a different approach by exploring the consequences of assuming that the instability in SSC created
the under-density. This is fundamentally different because we identify a mechanism, the instability,
by which the redshift versus luminosity data is altered in a specific way from the SM values as
a direct consequence of the Einstein equations.

Based on this, we explore the connection between the local accelerations created by the
instability and the anomalous acceleration observed in the supernova data, making no assumptions
about the space–time far from the centre.5 The universal phase portrait applies up to fourth-order
errors (in distance from the centre) in the density variable and third-order errors in the velocity,
implying that neglecting these errors, the phase portrait only affects the linear and quadratic
terms in the observed redshift versus luminosity relations. We prove that the accelerations created
by the instability are consistent with the supernova observations out to second order in the
redshift factor z. However, to obtain a third-order correction which provides a prediction different
from dark energy, some assumption must be made about the third-order velocity term. For
this prediction, we propose that the under-density is created (at that order) by a distinguished
one-parameter family of smooth perturbations of the Friedmann space–time that exist during
the radiation epoch, when p = (c2/3)ρ [18,19]. In [7], the authors identified these self-similar
perturbations, and proposed them as a possible source of the anomalous acceleration observed
in the supernova data without dark energy. Now it is commonly stated that the radiation epoch
ends, and the pressure drops approximately to zero, about one order of magnitude (1 power of
10) before the uncoupling of radiation and matter, the latter occurring approximately 300 000–
400 000 years after the Big Bang. To make precise the connection between these self-similar
solutions from the radiation epoch and the instability they trigger when the pressure drops to
p = 0, we make the simplifying assumption that the pressure drops discontinuously to zero at
some temperature between 3000 and 9000 K. That is, we model the continuous drop in pressure
from the radiation epoch to the matter-dominated epoch as a discontinuous process, but allow
the temperature at which the drop takes place to be essentially arbitrary. The approximation of a
discontinuous drop in the pressure is commonly made in Cosmology. Indeed, to quote Longair
[2, p. 276], ‘. . .the transition to the radiation-dominated era would take place at redshift z ≈ 6000.
At redshifts less than this value, the Universe was matter-dominated and the dynamics were
described by the standard Friedman models [with scale factor] t2/3 [the case p = 0]. . .’. Thus our
assumption that the pressure drops precipitously to zero at a temperature 3000 K ≤ T∗ ≤ 9000 K
is reasonable. As our numerics show that the results are independent of that temperature, we
are confident that the conclusion would not change significantly if a continuous process were

5Author’s work in [17] shows how solutions with positive velocity can be extended beyond a given radius with arbitrary
initial density and velocity profiles.
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modelled. Thus the conclusions derived from the assumption of a precipitous drop in pressure to
p = 0 are justified. By numerical simulation we identify a unique wave in the family that accounts
for the same values of the Hubble constant and quadratic correction to redshift versus luminosity
as are implied by the theory of dark energy with ΩΛ ≈ 0.7, and the numerical simulation of
the third-order correction associated with that unique wave establishes the testable prediction
that distinguishes this theory from the theory of dark energy. Here, we characterize the sought-
after instability, show it is triggered by a family of simple wave perturbations from the radiation
epoch and, as a bonus, obtain a testable alternative mathematical explanation for the anomalous
acceleration of the galaxies that does not invoke dark energy.

We now discuss the perturbations from the radiation epoch in more detail. Most of the
expansion of the universe before the pressure drops to p ≈ 0 is governed by the radiation
epoch, a period in which the large-scale evolution is approximated by the equations of pure
radiation. These equations take the form of the relativistic p-system [19,20] of shock-wave
theory, and for such highly nonlinear equations one expects complicated solutions to become
simpler. Solutions of the p-system typically decay to a concatenation of self-similar simple
waves, solutions along which the equations reduce to ODEs [7,21,22]. Based on this, together
with the fact that large fluctuations from the radiation epoch (like the baryonic acoustic
oscillations) are typically spherical [2], the authors began the program in [23] by looking for
a family of spherically symmetric solutions that perturb the SM during the radiation epoch
when the equation of state p = (c2/3)ρ holds, and on which the Einstein equations reduce
to ODEs. In [6,7], we identified a unique family of such solutions which we refer to as a-
waves, parametrized by the so-called acceleration parameter a > 0, normalized so that a = 1 is
the SM.6 The a-waves are the only known family of solutions of the Einstein equations which
both perturb Friedman space–times, and reduce the Einstein equations to ODEs, [7,24,25]. As
when p = 0, under-densities relative to the SM are a natural mechanism for creating anomalous
accelerations (less matter present to slow the expansion implies a larger expansion rate [2]),
we restrict to the perturbations a < 1 which induce under-densities relative to the SM [6,7].
Thus our starting hypothesis in [6,7] was that the anomalous acceleration of the galaxies is
due to a local under-density relative to the SM, on the scale of the supernova data, created
by a perturbation that has decayed (locally near the centre) to an a-wave, a < 1, by the
end of the radiation epoch.7 Here, we use the a-waves to obtain a third-order correction to
redshift versus luminosity to be compared with dark energy. We can now state the results
precisely.

In this paper, we prove the following. (i) The k = 0, p = 0 Friedman space–time is unstable,
and smooth spherical perturbations evolve, locally to leading order near the centre, according
to a universal phase portrait in which the SM appears as an unstable saddle rest point SM (cf.
figure 1; italic SM denotes the rest point). (ii) Under-dense perturbations of SM at the end of
radiation trigger evolution along the unstable manifold from SM to M, and this describes the
formation of a local region of accelerated expansion (one order of magnitude larger in extent
than would be expected if the smoothness condition were not imposed), which extends further
and further outwards from the centre, becoming more flat and more uniform, as time evolves.
Comparing these local uniformly expanding solutions generated by the phase portrait to the
critical uniformly expanding Friedmann space–time accelerated by the cosmological constant,
we find that evolution along the unstable manifold produces precisely the same range of quadratic
corrections Q to redshift versus luminosity as dark energy—for apparently a completely different
reason. (iii) A unique a-wave perturbation at the end of radiation which creates the same H0 and
Q at the present time as dark energy provides a predictive third-order correction C that has the
same order, but a different sign, from dark energy.

6This family of waves was first discovered from a different point of view in the fundamental paper [24]; cf. also the self-
similarity hypothesis in [25]. As far as we know, ours is the first attempt to connect this family of waves with the anomalous
acceleration.
7As time asymptotic wave patterns typically involve multiple simple waves, we make no hypothesis regarding the space–time
far from the centre of the a-wave.
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Figure 1. Phase portrait for central region.

Spherically symmetric space–times can generically be transformed near the centre to SSC
where the metric takes the canonical form

ds2 = −B(t, r) dt2 + 1
A(t, r)

dr2 + r2 dΩ2, dΩ2 = dθ2 + sin2 θ dφ2, (1.1)

dΩ giving the standard line element on the unit 2-sphere [18]. Letting

H dℓ = z + Qz2 + Cz3 + O(z4) (1.2)

denote the relation between redshift factor z and luminosity distance dℓ at a given value of the
Hubble constant H as measured at the centre,8 the value of the quadratic correction Q increases
from the value Q = 0.25 at rest point SM at the end of radiation, to the value Q = 0.5 for orbits
evolving along the unstable manifold to M as t → ∞. This is precisely the same range of values
Q takes on in dark energy theory as the fraction ΩΛ of dark energy to classical energy increases
from its value of ΩΛ ≈ 0 at the end of radiation, to ΩΛ = 1 as t → ∞. In particular, this holds for
any a < 1 near a = 1, and for any value of the cosmological constant Λ > 0, assuming only that
a and Λ both induce a negligibly small under-dense correction to the SM value Q = 0.25 at the
end of radiation.9 Indeed, this holds for any under-dense perturbation that follows the unstable
trajectory of rest point SM into the rest point M (cf. figure 1).

These results are recorded in the following theorem. Here, we let the present time in a given
model denote the time at which the Hubble constant H (as defined in (1.2)) reaches its present
measured value H = H0, this time being different in different models. We refer to the model in
which the anomalous acceleration is created by an a-wave from radiation, the wave model [26].

8For FRW, Q is determined by the value of the so-called deceleration parameter q0, and C is determined by the jerk j; cf. [2].
The deceleration parameter gives Q through H0dℓ = z − ((3 + q0)/2)z2 + O(z3), with q0 = − 10

3 < 0 in SM.
9We qualify with this latter assumption only because, in dark energy theory, the value of ΩΛ is small but not exactly equal to
zero at the end of radiation; and in the wave model, the value of Q jumps down slightly below Q = 0.25 at the end of radiation
before it increases to Q = 0.5 from that value as t → ∞.
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Theorem 1.1. Let t = t0 denote the present time in the wave model and t = tDE the present time in the
dark energy10 model. Then there exists a unique value of the acceleration parameter a = 0.999999426 ≈
1 − 5.74 × 10−7 corresponding to an under-density relative to the SM at the end of radiation, such that
the subsequent p = 0 evolution starting from this initial data evolves to time t = t0 with H = H0 and Q =
0.425, in agreement with the values of H and Q at t = tDE in the dark energy model. The cubic correction
at t = t0 in the wave model is then C = 0.359, while dark energy theory gives C = −0.180 at t = tDE. The
times are related by t0 ≈ 0.95tDE.

In principle, adding acceleration to a model increases the expansion rate H and consequently
the age of the universe because it then takes longer for the Hubble constant H to decrease to its
present small value H0. The numerics confirm that the age of the universe well approximates the
age obtained by adding in dark energy.

We emphasize that t0, Q and C in the wave model are determined by a alone. Indeed, the
initial data at the end of radiation, which determine the p = 0 evolution, depend, at the start, on
two parameters: the acceleration parameter a of the self-similar waves and the initial temperature
T∗ at which the pressure is assumed to drop to zero. But our numerics show that the dependence
on the starting temperature is negligible for T∗ in the range 3000 K ≤ T∗ ≤ 9000 K (covering the
range assumed in cosmology [2]). Thus for the temperatures appropriate for cosmology, t0, Q and
C are determined by a alone.

A measure of the severity of the instability created by the a = a perturbation of the SM, is
quantified by the numerical simulation. For example, comparing the initial density ρwave for
a = a at the centre of the wave to the corresponding initial density ρsm in the SM at the end
of radiation t = t∗ gives ρwave/ρsm ≈ 1 − (1.88) × 10−6 ≈ 1. During the p = 0 evolution, this ratio
evolves to a sevenfold under-density in the wave model relative to the SM by the present time,
i.e. ρwave/ρsm = 0.144 at t = t0.

Our wave model is based on the self-similarity variable ξ = r/ct < 1, which we introduce as a
natural measure of the outward distance from the centre of symmetry r = 0 in the inhomogeneous
space–times we describe in SSC. We call ξ the fractional distance to the Hubble radius because 1/ct is
the Hubble radius in the Friedman space–time, and t is chosen to be proper time at r = 0 in our
SSC gauge. Thus it is convenient also to define 1/ct to be the Hubble radius in our inhomogeneous
space–times. Moreover, the SSC radial variable approximately measures arclength distance at
fixed time in our SSC space–times when ξ ≪ 1, and exactly measures arclength at fixed time in
the Friedman space–time in co-moving coordinates. Thus when ξ ≪ 1, ξ tells approximately how
far out relative to the Hubble radius an observer at the centre of our inhomogeneous space–times
would conclude an object observed at ξ were positioned, if he mistakenly thought he were in a
Friedman space–time.11 We show below (cf. §3c) that if we neglect errors O(ξ4), and then further
neglect small errors between the wave metric and the Minkowski metric which tend to zero, at
that order, with approach to the stable rest point M, and also neglect errors due to relativistic
corrections in the velocities of the fluid relative to the centre (where the velocity is zero), the
resulting space–time is, like a Friedman space–time, independent of the choice of centre. Thus the
central region of approximate uniform density at present time t = t0 in the wave model extends
out from the centre r = 0 at t = 0 in SSC to radial values r small enough so that the fractional
distance to the Hubble radius ξ = r/ct0 satisfies ξ4 ≪ 1.

The cubic correction C to redshift versus luminosity is a verifiable prediction of the wave
model which distinguishes it from dark energy theory. In particular, C > 0 in the wave model
and C < 0 in the dark energy model implies that the cubic correction increases the right-hand
side of (1.2) (i.e. increases the discrepancy between the observed redshifts and the predictions
of the SM) far from the centre in the wave model, while it decreases the right-hand side of (1.2)
far from the centre in the dark energy theory. Now the anomalous acceleration was originally
derived from a collection of data points, and the ΩΛ ≈ 0.7 critical FRW space–time is obtained

10By the dark energy model we refer to the critical k = 0 Friedman universe with cosmological constant, taking the present
value ΩΛ = 0.7 as the best fit to the supernova data among the two parameters (k, Λ) [27].
11Here, ξ is just a measure of distance in SSC, and need not have a precise physical interpretation for ξ ≫ 1 [1,7,18].
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as the best fit to Friedman space–times among the parameters (k, Λ). Presently it is not clear
to the authors whether or not there are indications in the data that could distinguish C < 0
from C > 0.

In §2, we give a physical motivation for our smoothness condition imposed at the centre r = 0
of a spherically symmetric space–time in SSC. Our results are presented in §3. In §3a, we derive
an alternative formulation of the p = 0 Einstein equations in spherical symmetry, and in §3b we
prove that the evolution preserves smoothness. In §3c, we introduce our new asymptotic ansatz
for corrections to the SM which are consistent with the condition at r = 0 for smooth solutions
derived in §2. In §3d, we use the exact equations together with our ansatz to derive asymptotic
equations in (t, ξ ) for the corrections, and use these to derive the universal phase portrait. In §3e,
we derive the correct redshift versus luminosity relation for the SM including the corrections. In
§3f, we introduce a gauge transformation that converts the a-waves at the end of radiation into
initial data that are consistent with our ansatz. In §3g, we present our numerics that identifies
the unique a-wave a = a in the family that meets the conditions H = H0 and Q = 0.425 at t = t0,
and explain our predicted cubic correction C = 0.359. In §3h, we discuss the uniform space–time
created at the centre of the perturbation. Concluding remarks are given in §4. Details are omitted
in this announcement. We use the convention c = 1 when convenient.

2. Smoothness at the centre of spherically symmetric space–times
The results of this paper rely on the validity of approximating solutions by finite Taylor
expansions about the centre of symmetry, so the main issue is to guarantee that solutions are
indeed smooth in a neighbourhood of the centre. Of course the universe is not smooth on small
scales, so our assumption is simply that the centre is not special regarding the level of smoothness
assumed in the large-scale approximation of the universe. Smoothness at a point P in a space–
time manifold is determined by the atlas of coordinate charts defined in a neighbourhood of
P, the smoothness of tensors being identified with the smoothness of the tensor components as
expressed in the coordinate systems of the atlas. Now spherically symmetric solutions given in
LTB and SSC in GR employ spherical coordinates (r, φ, θ ) for the spacelike surfaces at constant
time, and the subtlety here is that r = 0 is a coordinate singularity in spherical coordinates,
and functions are defined only for radial coordinate r ≥ 0, but a coordinate system must be
specified in a neighbourhood of r = 0 to impose the conditions for smoothness at the centre. Of
course, once we have the metric represented as smooth in coordinate system x on an initial data
surface in a neighbourhood of r = 0, the local existence theorem giving the smooth evolution of
solutions from smooth initial data for the Einstein equations would not alone suffice to obtain
our smoothness condition, as one would still have to prove that this evolution preserved the
metric ansatz.

We begin by showing that this issue can be resolved relatively easily in SSC because the SSC
coordinates are precisely the spherical coordinates associated with Euclidean coordinate charts
defined in a neighbourhood of r = 0. Based on this, we show below that the condition for
smoothness of metric components and functions in SSC is simply that all odd-order derivatives
should vanish at r = 0.

Consider now in more detail the problem of representing a smooth, spherically symmetric
perturbation of the Friedman space–time in GR. To start, assume the existence of a solution
of Einstein’s equations representing a large, smooth under-dense region of space–time that
expands from the end of radiation out to the present time. For smooth perturbations, there
should exist a coordinate system in a neighbourhood of the centre of symmetry, in which the
solution is represented as smooth. Assume we have such a coordinate system (t, x) ∈R × R3 with
x = 0 at the centre, and use the notation x = (x0, x1, x2, x3) ≡ (t, x), x ≡ (x, y, z) (there should be no
confusion with the ambiguity in x). Spherical symmetry makes it convenient to represent the
spatial Euclidean coordinates x ∈R3 in spherical coordinates (r, θ , φ), with r = |x|. As generically,
any spherically symmetric metric can be transformed locally to SSC form [18], we assume the
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space–time represented in the coordinate system (t, r, θ , φ) takes the SSC form (1.1). This is
equivalent to the metric in Euclidean coordinates x taking the form

ds2 = −B(|x|, t) dt2 + dr2

A(|x|, t)
+ |x|2 dΩ2, (2.1)

with
r2 = x2 + y2 + z2, dr = x dx + y dy + z dz

r
,

dr2 = x2 dx2 + y2 dy2 + z2 dz2 + 2xy dx dy + 2xz dx dz + 2yz dy dz
r2

⎫
⎪⎪⎬

⎪⎪⎭
(2.2)

and
dx2 + dy2 + dz2 = dr2 + r2 dΩ2. (2.3)

To guarantee the smoothness of our perturbations of Friedman at the centre, we assume a gauge
in which

B(t, r) = 1 + O(r2) (2.4)

and
A(t, r) = 1 + O(r2), (2.5)

so also
1

A(t, r)
= 1 + O(r2) ≡ 1 + Â(t, r)r2, (2.6)

where the smoothness of A is equivalent to the smoothness of Â for r > 0. This sets the SSC time
gauge to proper geodesic time at r = 0 and makes the SSC coordinates locally inertial at r = 0 for
each time t > 0, a first step in guaranteeing that the spherical perturbations of Friedman which
we study are smooth at the centre. Keep in mind that the SSC form is invariant under arbitrary
transformation of time, so we are free to choose geodesic time at r = 0; and the locally inertial
condition at r = 0 simply imposes that the corrections to Minkowski at r = 0 are second order
in r. (These assumptions make physical sense, and their consistency is guaranteed by reversing
the steps in the argument to follow). In particular, the SSC metric (1.1) tends to Minkowski at
r = 0. We now ask what conditions on the metric functions A, B are imposed by assuming the
SSC metric be smooth when expressed in our original Euclidean coordinate chart (t, x) defined in
a neighbourhood of a point at r = 0, t > 0.

To transform the SSC metric (1.1) to (t, x) coordinates, use (2.3) to eliminate the r2dΩ2 term and
(2.2) to eliminate the dr2 term to obtain

ds2 = −B(|x|, t) dt2 + dx2 + dy2 + dz2 + Â(|x|, t)){x2 dx2 + y2 dy2 + z2 dz2

+ 2xy dx dy + 2xz dx dz + 2yz dy dz}. (2.7)

The smoothness of Â is equivalent to the smoothness of A, and the smoothness of A and B for
r > 0 guarantees the smoothness of the Euclidean space–time metric (2.7) in (t, x) coordinates
everywhere except at x = 0. For smoothness at x = 0, we impose the condition that the metric
components in (2.7) should be smooth functions of (t, x) at x = 0 as well. (Again, imposing
smoothness in (t, x) = 0 coordinates at x = 0 is correct in the sense that it is preserved by the
Einstein evolution equations; cf. §3b below.) We now show that smoothness at x = 0 in this
sense is equivalent to requiring that the metric functions A and B satisfy the condition that all
odd r-derivatives vanish at r = 0. To see this, observe that a function f (r) represents a smooth
spherically symmetric function of the Euclidean coordinates x at r = |x| = 0 if and only if the
function

g(x) = f (|x|)

is smooth at x = 0. Assuming f is smooth for r ≥ 0 (by which we mean f is smooth for r > 0, and
one-sided derivatives exist at r = 0) and taking the n’th derivative of g from the left and right and
setting them equal gives the smoothness condition f n(0) = (−1)nf n(0). We state this formally as
follows.
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Lemma 2.1. A function f (r) of the radial coordinate r = |x| represents a smooth function of the
underlying Euclidean coordinates x if and only if f is smooth for r ≥ 0, and all odd derivatives vanish
at r = 0. Moreover, if any odd derivative f (n+1)(0) ̸= 0, then f (|x|) has a jump discontinuity in its n + 1
derivative, and hence a kink singularity in its n’th derivative at r = 0.

As an immediate consequence we obtain the condition for smoothness of SSC metrics at r = 0.

Corollary 2.2. The SSC metric (1.1) is smooth at r = 0 in the sense that the metric components in
(2.7) are smooth functions of the Euclidean coordinates (t, x) if and only if the component functions A(r, t),
B(r, t) are smooth in time and smooth for r > 0, all odd one-sided r-derivatives vanish at r = 0, and all even
r-derivatives are bounded at r = 0.

To conclude, solutions of the Einstein equations in SSC have four unknowns, the metric
components A, B, the density ρ and the scalar velocity v. It is easy to show that if the SSC
metric components satisfy the condition that all odd-order r-derivatives vanish at r = 0, then the
components of the unit 4-velocity vector u associated with smooth curves that pass through r = 0
will have the same property,12 and the scalar velocity v = (1/

√
AB)(dr/dt) will have the property

that all even derivatives vanish at r = 0 (because v is an outward velocity which picks up a
change of sign when represented in x). Thus smoothness of SSC solutions at r = 0 at fixed time is
equivalent to requiring that the metric components satisfy the condition that all odd r-derivatives
vanish at r = 0. These then give conditions on SSC solutions equivalent to the condition that
the solutions are smooth in the ambient Euclidean coordinate systems x. Theorem 3.1 of §3b
below proves that smoothness in the coordinate system x at r = 0 at each time in this sense is
preserved by the Einstein evolution equations for SSC metrics when p = 0. In particular, this
demonstrates that our condition for smoothness of SSC metrics at r = 0 is equivalent to the well-
posedness of solutions in the ambient Euclidean coordinates defined in a neighbourhood of r = 0.
Thus we obtain the condition for smoothness of SSC metrics at r = 0 based on the Euclidean
coordinate systems associated with SSC, and show this is preserved by the evolution of the
Einstein equations. As smoothness of the SSC metric components in this sense is equivalent to
smoothness of the x-coordinates with respect to arclength along curves passing through r = 0,
in this sense, our condition for smoothness is geometric.

3. Presentation of results
In §3a–e, we derive equations and formulae for smooth spherically symmetric solutions in SSC in
the case p = 0 sufficient to determine the quadratic correction Q in (1.2) and the phase portrait in
figure 1. Our analysis employs the SSC forms of the SM in which metric components as well as
density and velocity variables depend only on the SSC self-similar variable ξ = r/t. In §3f,g, we
incorporate the inhomogeneous self-similar a-waves that exist for p = (c2/3)ρ and reduce to the
critical Friedman space–time for pure radiation when a = 1, to obtain the third-order prediction C
in (1.2). Recall that when p = 0, no such self-similar perturbations of Friedmann exist [6,7,25,26,28].
The asymptotics employed is based on Taylor expanding the solutions in even powers of ξ about
the centre in SSC.

(a) The p= 0 Einstein equations in coordinates aligned with the physics
In this section, we introduce a new formulation of the p = 0 Einstein equations that describe
outwardly expanding spherically symmetric solutions employing the SSC metric form (1.1). We
start with the SSC equations in [17], introduce new dimensionless density and velocity variables
(z, w) and transform equations over to (t, ξ ) coordinates, where ξ = r/t. Recall that the SSC metric
form is invariant under transformations of t, and there exists a time coordinate in which SM is
self-similar in the sense that the metric components A, B, the velocity v and ρr2 are functions of
ξ alone. This self-similar form exists, but is different for p = (c2/3)ρ and p = 0 [7,25,28]. Taking

12This implies that the coordinates are smooth functions of arclength along curves passing through r = 0.
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p = 0, letting v denote the SSC velocity and ρ the co-moving energy density, and eliminating all
unknowns in terms of v and the Minkowski energy density T00

M = ρ/(1 − (v/c)2) (cf. [17]), the
locally inertial formulation of the Einstein equations G = κT introduced in [17] reduce to

(κT00
M r2)t +

{√
AB

v

r
(κT00

M r2)
}

r
= −2

√
AB

v

r
(κT00

M r2),

(v

r

)

t
+ r

√
AB

(v

r

) (v

r

)

r
= −

√
AB

{(v

r

)2
+ 1 − A

2Ar2

(
1 − r2

(v

r

)2
)}

,

r
A′

A
=
(

1
A

− 1
)

− 1
A

κT00
M r2,

r
B′

B
=
(

1
A

− 1
)

+ 1
A

(v

c

)2
κT00

M r2,

where prime denotes d/dr. Note that the 1/r singularity is present in the equations because
incoming waves can amplify without bound. We resolve this for outgoing expansions by
assuming that w = v/ξ is positive and finite at r = ξ = 0. Making the substitution D =

√
AB, taking

z = κT00
M r2 as the dimensionless density, w = v/ξ as the dimensionless velocity with ξ = r/t and

rewriting the equations in terms of (t, ξ ), we obtain

tzt + ξ{(−1 + Dw)z}ξ = −Dwz, (3.1)

twt + ξ (−1 + Dw)wξ = w − D

{

w2 + 1 − ξ2w2

2A

[
1 − A

ξ2

]}

, (3.2)

ξAξ = (1 − A) − z, (3.3)

and
ξDξ

D
= 1

A

{

(1 − A) − (1 − ξ2w2)
2

z

}

. (3.4)

That is, as the sound speed is zero when p = 0, w(t, 0) > 0 restricts us to expanding solutions in
which all information from the fluid propagates outwards from the centre.

(b) Smoothness of solutions in theambient Euclidean coordinate system inaneighbourhood
of r = 0

In this section, we prove that smoothness in the ambient Euclidean coordinate system x =
(x0, x1, x2, x3) = (t, x, y, z) associated with spherical SSC coordinates is preserved by the evolution
of the Einstein equations. By lemma 2.1, smoothness of SSC solutions at r = 0 is imposed by
the condition that odd-order r-derivatives of the metric components and the density vanish at
r = 0, and even derivatives of the velocity v vanish at r = 0. As ξ = r/t, imposing this condition on
r-derivatives at t > 0 is equivalent to imposing it on ξ -derivatives, and as w = ξv, D =

√
AB, z =

ρr2, smoothness at r = 0 is equivalent to the condition that all odd derivatives of (z, w, A, D) vanish
at ξ = 0, t > 0. The following theorem establishes that smoothness in the ambient coordinate
system x is preserved by the evolution of the Einstein equations in SSC.

Theorem 3.1. Assume z(t, ξ ), w(t, ξ ), A(t, ξ ), D(t, ξ ) are a given smooth solution of our p = 0 equations
(3.1)–(3.4) satisfying

z = O(ξ2), w = w0(t) + O(ξ2) (3.5)

and
A = 1 + O(ξ2) and D = 1 + O(ξ2), (3.6)

for 0 < t0 ≤ t < t1, and assume that at t = t0 the solution agrees with initial data

z(t0, ξ ) = z̄(ξ ) and w(t0, ξ ) = w̄(ξ ) (3.7)

and
A(t0, ξ ) = Ā(ξ ) and D(t0, ξ ) = D̄(ξ ), (3.8)
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such that each initial data function z̄(ξ ), w̄(ξ ), Ā(ξ ), D̄(ξ ) satisfies the condition that all odd ξ -derivatives
vanish at ξ = 0. Then, all odd ξ -derivatives of the solution z(t, ξ ), w(t, ξ ), A(t, ξ ), D(t, ξ ) vanish at ξ = 0
for all t0 < t < t1.

Proof. Start with equations (3.1)–(3.4) in the form

tzt = −ξ{(−1 + Dw)z}ξ − Dwz, (3.9)

twt = −ξ (−1 + Dw)wξ + w − D
{

w2 + 1 − A
2Aξ2 (1 − ξ2w2)

}
, (3.10)

ξAξ = (1 − A) − z (3.11)

and ξDξ = D
2A

{2(1 − A) − z + ξ2w2z}. (3.12)

First note that products and quotients of smooth functions that satisfy the condition that all odd
derivatives vanish at ξ = 0 also have this property. Now for a function F(t, ξ ), let F(n)

ξ (t) denote the
n’th partial derivative of F with respect to ξ at ξ = 0. We prove the theorem by induction on n.
For this, assume n ≥ 1 is odd, and make the induction hypothesis that, for all odd k < n, F(k)

ξ (t) = 0

for all t ≥ t0 and all functions F = z, w, A, D (functions of (t, ξ )). We prove that F(n)
ξ (t) = 0 for t >

t0. For this we employ the following simple observation: if n is odd, and the n’th derivative of
the product of m functions,

∂n

∂ξn (F1 · · · Fm)

is expanded into a sum by the product rule, the only terms that will not have a factor containing
an odd derivative of order less than n are the terms in which all the derivatives fall on the same
factor. This follows from the simple fact that if the sum of k integers is odd, then at least one of
them must be odd. Taking the n’th derivative of (3.9) and setting ξ = 0 gives the ODE at ξ = 0:

t
d
dt

z(n)
ξ = −n

∂n

∂ξn ((−1 + Dw)z) − ∂n

∂ξn (DWz). (3.13)

As all odd derivatives of order less than n are assumed to vanish at ξ = 0, we can apply the
observation and the assumptions (3.5), (3.6) that D = 1, w = w0(t) and z = 0 at ξ = 0, to see that only
the n’th order derivative z(n)

ξ survives on the RHS of (3.13). That is, by the induction hypothesis,
(3.13) reduces to

t
d
dt

z(n)
ξ = [n − (n + 1)w0(t))]z(n)

ξ . (3.14)

As under the change of variable t → ln(t), (3.14) is a linear first-order homogeneous ODE in z(n)
ξ (t)

with z(n)
ξ (t0) = 0, it follows by uniqueness of solutions that z(n)

ξ (t) = 0 for all t ≥ t0. This proves the
theorem for the solution component z(t, ξ ).

Consider next equation (3.11). Differentiating both sides n times with respect to ξ and setting
ξ = 0 gives

(n + 1)A(n)
ξ (t) = −z(n)

ξ (t) = 0, (3.15)

thus

A(n)
ξ (t) = 0 (3.16)

for t ≥ t0, which verifies the theorem for component A.
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Consider equation (3.12). Differentiating both sides n times with respect to ξ , setting ξ = 0 and
applying the observation and the induction hypothesis gives

nD(n)
ξ = ∂n

∂ξn

(
D

1 − A
A

)

= D(n)
ξ

(
1 − A

A

)
+

∑

k<n odd

ckD(k)
ξ + D

(
1 − A

A

)(n)

ξ

= 0 (3.17)

for t ≥ t0 because A = 1 at ξ = 0, all lower-order odd derivatives are assumed to vanish at ξ = 0
and we have already verified the theorem for the component A. This proves

D(n)
ξ (t) = 0 (3.18)

for t ≥ t0, verifying the theorem for component D.
Consider lastly the equation (3.10). Differentiating both sides n times with respect to ξ , setting

ξ = 0 and applying our observation gives

t
d
dt

w(n)
ξ = −n(−1 + w0(t))w(n)

ξ + w(n)
ξ − ∂n

∂ξn (w2)

= −n(−1 + w0(t))w(n)
ξ + w(n)

ξ − 2ww(n)
ξ

= [−n(−1 + w0(t)) + 1 − 2w]w(n)
ξ (3.19)

for t ≥ t0 because A = 1 and ξ = 0, all lower-order odd derivatives are assumed to vanish at ξ = 0,
and we have established the theorem for the component A. Thus w(n)

ξ (t) solves the first-order
homogeneous ODE

t
d
dt

w(n)
ξ = [−n(−1 + w0(t)) + 1 − 2w]w(n)

ξ , (3.20)

starting from zero initial data at t = t0, and hence again we conclude

w(n)
ξ (t) = 0 (3.21)

for t ≥ t0. This verifies the theorem for the final component w, thereby completing the proof of
theorem 3.1. !

(c) A new Ansatz for corrections to standard model of cosmology
In this section, we derive the phase portrait which describes any spherical perturbation of the
k = 0, p = 0 Friedman space–time which is smooth in SSC coordinates. Our condition for smooth
solutions is that (z, w, A, B) are smooth functions away from ξ = 0, all time derivatives are smooth
and all odd ξ -derivatives vanish at ξ = 0. As solutions are assumed smooth at ξ = 0, t > 0, Taylor’s
theorem is valid at ξ = 0, so the following ansatz for corrections to SM near ξ = 0 is valid in a
neighbourhood of ξ = 0, t > 0, with errors bounded by derivatives of the corresponding functions
at the corresponding orders.

z(t, ξ ) = zsm(ξ ) + *z(t, ξ ) *z = z2(t)ξ2 + z4(t)ξ4, (3.22)

w(t, ξ ) = wsm(ξ ) + *w(t, ξ ) *w = w0(t) + w2(t)ξ2, (3.23)

A(t, ξ ) = Asm(ξ ) + *A(t, ξ ) *A = A2(t)ξ2 + A4(t)ξ4 (3.24)

and D(t, ξ ) = Dsm(ξ ) + *D(t, ξ ) *D = D2(t)ξ2, (3.25)

where zsm, wsm, Asm, Dsm are the expressions for the unique self-similar representation of the SM
when p = 0, given by [28],

zsm(ξ ) = 4
3 ξ2 + 40

27 ξ4 + O(ξ6) and wsm(ξ ) = 2
3 + 2

9 ξ2 + O(ξ4) (3.26)
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and
Asm(ξ ) = 1 − 4

9 ξ2 − 8
27 ξ4 + O(ξ6) and Dsm(ξ ) = 1 − 1

9 ξ2 + O(ξ4). (3.27)

This gives

z(t, ξ ) =
(

4
3 + z2(t)

)
ξ2 +

{
40
27 + z4(t)

}
ξ4 + O(ξ6) (3.28)

and
w(t, ξ ) =

(
2
3 + w0(t)

)
+
{

2
9 + w2(t)

}
ξ2 + O(ξ4). (3.29)

Consistent with theorem 3.1, we verify the equations close within this ansatz, at order ξ4 in z and
order ξ2 in w with errors O(ξ6) in z and O(ξ4) in w. Corrections expressed in this ansatz create a
uniform space–time of density ρ(t), constant at each fixed t, out to errors of order O(ξ4). That is,
as the ansatz,

z(ξ , t) = κρ(t, ξ )r2 + O(ξ4) =
(

4
3 + z2(t)

)
ξ2 + O(ξ4), (3.30)

neglecting the O(ξ4) error gives κρ =
(

4
3 + z2(t)

)
/t2, a function of time alone. For the SM , z2 ≡ 0

and this gives κρ(t) = ( 4
3 )t−2, which is the exact evolution of the density for the SM Friedman

space–time with p = 0 in co-moving coordinates [18]. For the evolution of our specific under-
densities in the wave model, we show z2(t) → − 4

3 as the solution tends to the stable rest point,
implying that the instability creates an accelerated drop in the density in a large uniform space–
time expanding outwards from the centre. (Cf. §3h below.)

(d) Asymptotic equations for corrections to standard model of cosmology
Substituting the ansatz (3.22)–(3.25) for the corrections into the Einstein equations G = κT, and
neglecting terms O(ξ4) in w and O(ξ6) in z, we obtain the following closed system of ODEs for
the corrections z2(τ ), z4(τ ), w0(τ ), w2(τ ), where τ = ln t, 0 < τ ≤ 11. (Introducing τ renders the
equations autonomous, and solves the long time simulation problem.) Letting prime denote d/dτ ,
the equations for the corrections reduce to the autonomous system

z′
2 = −3w0

(
4
3 + z2

)
, (3.31)

w′
0 = − 1

6 z2 − 1
3 w0 − w2

0, (3.32)

z′
4 = 5

{
2
27 z2 + 4

3 w2 − 1
18 z2

2 + z2w2

}
+ 5w0

{
4
3 − 2

9 z2 + z4 − 1
12 z2

2

}
(3.33)

and w′
2 = − 1

10 z4 − 4
9 w0 + 1

3 w2 − 1
24 z2

2 + 1
3 z2w0 + 1

3 w2
0 − 4w0w2 + 1

4 w2
0z2. (3.34)

We prove that for the equations to close within the ansatz (3.22)–(3.25), it is necessary and
sufficient to assume that the initial data satisfies the gauge conditions

A2 = − 1
3 z2, A4 = − 1

5 z4 and D2 = − 1
12 z2. (3.35)

We prove that if these constraints hold initially, then they are maintained by the equations for all
time. Conditions (3.35) are not invariant under time transformations, even though the SSC metric
form is invariant under arbitrary time transformations, so we can interpret (3.35), and hence the
ansatz (3.22)–(3.25), as fixing the time coordinate gauge of our SSC metric.

The autonomous 4 × 4 system (3.31)–(3.34) contains within it the closed, autonomous 2 × 2
subsystem (3.31), (3.32). This subsystem describes the evolution of the corrections (z2, w0), which
we show in §3e determines the quadratic correction Qz2 in (1.2). Thus the subsystem (3.31), (3.32)
gives the corrections to SM at the order of the observed anomalous acceleration, accurate within
the central region where errors O(ξ4) in z and orders O(ξ3) in v = w/ξ can be neglected. The phase
portrait for subsystem (3.31), (3.32) exhibits an unstable saddle rest point at SM = (z2, w0) = (0, 0)
corresponding to the SM, and a stable rest point at (z2, w0) = (− 4

3 , 1
3 ). These are the rest points

referred to in the introduction. From the phase portrait (figure 1), we see that perturbations of SM
corresponding to small under-densities will evolve away from the SM near the unstable manifold
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of (0, 0), and towards the stable rest point M. By (3.35), A2 = 4
9 , D2 = 1

9 at (z2, w0) = (− 4
3 , 1

3 ), hence
by (3.24) and (3.25) the metric components A and B are equal to 1 + O(ξ4), implying that the metric
at the stable rest point M is Minkowski up to O(ξ4). Thus during evolution towards the stable rest
point, the metric tends to flat Minkowski space–time with O(ξ4) errors.

Note that we have only assumed a smooth SSC solution and expanded in finite Taylor series
about the centre, so our only asymptotic assumption has been that ξ is small, not that the
perturbation from the k = 0, p = 0 Friedman space–time is small. Thus the phase portrait in figure 1
is universal in that it describes the evolution of every SSC smooth solution in a neighbourhood of
ξ = 0, t > 0. We state this as a theorem.

Theorem 3.2. Let (z, w, A, B) be an SSC solution which is smooth in the ambient Euclidean coordinate
system x associated with the spherical SSC coordinates, and meeting condition (2.6). Then there exists an
SSC time gauge in which the solution satisfies equations (3.31)–(3.34) and (3.35) up to the appropriate
orders. Thus the phase portrait of figure 1 is valid in a neighbourhood of ξ = 0 with errors O(1)ξ6 in z and
O(1)ξ4 in w, where by Taylor’s theorem, the O(1) errors are bounded by the maximum of the sixth and
fourth derivatives of the solution components z and w, respectively.

(e) Redshift versus luminosity relations for the ansatz
In this section, we obtain formulae for Q and C in (1.2) as a function of the corrections z2, w0, z4, w2
to the SM; we compare this to the values of Q and C as a function of ΩΛ in DE theory, and we
show that, remarkably, Q passes through the same range of values in both theories.

Recall that Q and C are the quadratic and cubic corrections to redshift versus luminosity
as measured by an observer at the centre of the spherically symmetric perturbation of the SM
determined by these corrections.13 The calculation requires taking account of all of the terms
that affect the redshift versus luminosity relation when the space–time is not uniform, and the
coordinates are not co-moving.

The redshift versus luminosity relation for the k = 0, p = σρ, FRW space–time, at any time
during the evolution, is given by

Hdℓ = 2
1 + 3σ

{(1 + z) − (1 + z)(1−3σ )/2}, (3.36)

where only H evolves in time [29]. For pure radiation σ = 1
3 , which gives Hdℓ = z, and when

p = σ = 0, we get (cf. [7])
Hdℓ = z + 1

4 z2 − 1
8 z3 + O(z4). (3.37)

The redshift versus luminosity relation in the case of dark energy theory, assuming a critical
Friedman space–time with the fraction of dark energy ΩΛ, is

Hdℓ = (1 + z)
∫ z

0

dy
√
E(y)

, (3.38)

where
E(z) = ΩΛ(1 + z)2 + ΩM(1 + z)3 (3.39)

and ΩM = 1 − ΩΛ, the fraction of the energy density due to matter (cf. (11.129), (11.124) of [29]).
Taylor expanding gives

Hdℓ = z + 1
2

(
−ΩM

2
+ 1

)
z2 + 1

6

(

−1 − ΩM

2
+

3Ω2
M

4

)

z3 + O(z4), (3.40)

where ΩM evolves in time, ranging from ΩM = 1 (valid with small errors at the end of radiation)
to ΩM = 0 (the limit as t → ∞). From (3.40) we see that, in dark energy theory, the quadratic term

13The uniformity of the centre out to errors O(ξ 4) implies that these should be good approximations for observers somewhat
off-centre with the coordinate system of symmetry for the waves.

 on November 22, 2017http://rspa.royalsocietypublishing.org/Downloaded from 



15
rspa.royalsocietypublishing.org

Proc.R.Soc.A473:20160887
...................................................

Q increases exactly through the range

0.25 ≤ Q ≤ 0.5 (3.41)

and the cubic term decreases from − 1
8 to − 1

6 , during the evolution from the end of radiation to
t → ∞, thereby verifying the claim in theorem 1.1. In the case ΩM = 0.3, ΩΛ = 0.7, representing
present time t = tDE in dark energy theory, this gives the exact expression

H0dℓ = z + 17
40 z2 − 433

2400 z3 + O(z4), (3.42)

verifying that Q = 0.425 and C = −0.180, as recorded in theorem 1.1.
In the case of a general non-uniform space–time in SSC, the formula for redshift versus

luminosity as measured by an observer at the centre is given by (see [29])

dℓ = (1 + z)2re = t0(1 + z)2ξe

(
te

t0

)
, (3.43)

where (te, re) are the SSC coordinates of the emitter and (0, t0) are the coordinates of the observer.
A calculation based on using the metric corrections to obtain ξe and te/t0 as functions of z, and
substituting this into (3.43), gives the following formula for the quadratic correction Q = Q(z2, w0)
and cubic correction C = C(z2, w0, z4, w2) to redshift versus luminosity in terms of arbitrary
corrections w0, w2, z2, z4 to SM. We record the formulae in the following theorem.

Theorem 3.3. Assume a GR space–time in the form of our ansatz (3.22)–(3.25), with arbitrary given
corrections w0(t), w2(t), z2(t), z4(t) to SM. Then the quadratic and cubic corrections Q and C to redshift
versus luminosity in (1.2), as measured by an observer at the centre ξ = r = 0 at time t, is given explicitly
by

Hdℓ = z
{

1 +
[

1
4 + E2

]
z +

[
− 1

8 + E3

]
z2
}

+ O(z4), (3.44)

where

H =
(

2
3

+ w0(t)
)

1
t

,

so that

Q(z2, w0) = 1
4 + E2 and C(w0, w2, z2, z4) = − 1

8 + E3, (3.45)

where E2 = E2(z2, w0), E3 = E3(z2, w0, z4, w2) are the corrections to the p = 0 standard model values in
(3.37). The function E2 is given explicitly by

E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2 . (3.46)

The function E3 is defined by the following chain of variables:

E3 = 2I2 + I3, (3.47)

I2,3 = J2 + 9w0

2(2 + 3w0)
, J3 + 3

[
−1 +

(
8 − 8J2 + 3w0 − 12J2w0

2(2 + 3w0)2

)]
,

J2 = 1
4

{
1 − 1 + 9K2

(1 + (3/2)w0)2

}
,

J3 = 5
8

{

1 −
1 − (18/5)K2 − (81/5)K2

2 + (9/5)w0 + (27/5)K3 + (81/10)Q3w0

(1 + (3/2)w0)4

}

,

K2,3 = 2
3

w0 + 1
2

w2
0 − 1

12
z2,

2
9

w0 + w2
0 + 1

2
w3

0 + w2 − 1
18

z2 − 1
3

z2w0.

From (3.46) one sees that Q depends only on (z2, w0), Q(0, 0) = 0.25 (the exact value for the SM),
Q(− 4

3 , 1
3 ) = 0.5 (the exact value for the stable rest point), and from this it follows that Q increases
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through precisely the same range (3.41) of DE, from Q ≈ 0.25 to Q = 0.5, along the orbit of (3.31),
(3.32) that takes the unstable rest point SM = (z2, w0) = (0, 0) to the stable rest point M = (z2, w0) =
(− 4

3 , 1
3 ) (cf. figure 1).

(f) Initial data from the radiation epoch
In this section, we compute the initial data for the p = 0 evolution from the restriction of the one-
parameter family of self-similar a-waves to a constant temperature surface T = T∗ at the end of
radiation, and convert this to initial data on a constant time surface t = t∗, these two surfaces
being different when a ̸= 1. We then define a gauge transformation that converts the resulting
initial data to equivalent initial data that meets the gauge conditions (3.35). (Recall that condition
(3.35) fixes a time coordinate, or gauge, for the underlying SSC metric associated with our ansatz,
and the initial data for the a-waves is given in a different gauge because time since the big bang
depends on the parameter a, as well as on the pressure, so it changes when p drops to zero.)
The equation of state of pure radiation is derived from the Stefan–Boltzmann Law, which relates
the initial density ρ∗ to the initial temperature T∗ in degrees Kelvin by

ρ∗ = asc
4

T4
∗, (3.48)

where as is the Stefan–Boltzmann constant [30]. According to current theories in cosmology
(see [30]), the pressure drops precipitously to zero at a temperature T = T∗ somewhere between
3000 K ≤ T∗ ≤ 9000 K, corresponding to starting times t∗ roughly in the range 10 000 yr ≤ t∗ ≤
30 000 yr after the Big Bang. We make the assumption that the pressure drops discontinuously
to zero at some temperature T∗ within this range. That our resulting simulations are numerically
independent of the starting temperature (cf. §3g), justifies the validity of this assumption. Using
this assumption, we can take the values of the a-waves on the surface T = T∗ as the initial data for
the subsequent p = 0 evolution. Using the equations we convert this to initial data on a constant
time surface t̄ = t̄∗, where t̄ is the time coordinate used in the self-similar expression of the a-
waves which assumes p = (c2/3)ρ. Our first theorem proves that there is a gauge transformation
t̄ → t which converts the initial data for a-waves at the end of radiation at t̄ = t̄∗, to initial data that
meet both the assumptions of our ansatz (3.22)–(3.25), and the gauge conditions (3.35).

Theorem 3.4. Let t̄ be the time coordinate for the self-similar waves during the radiation epoch, and
define the transformation t̄ → t by

t = t̄ + 1
2 µ(t̄ − t̄∗)2 − tB, (3.49)

where µ and tB are given by

µ = a2

2(2 − a2)
(3.50)

and

tB = t̄∗(1 − α), (3.51)

where

α = 4
2 − a2

7 − 4a2 . (3.52)

Then, upon performing the gauge transformation (3.49), the initial data from the a-waves at the end of
radiation t̄ = t̄∗ meets the conditions for the ansatz (3.22)–(3.25), as well as the gauge conditions (3.35).

Our conclusions are summarized in the following theorem.
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Theorem 3.5. The initial data for the p = 0 evolution determined by the self-similar a-wave on a
constant time surface t = t∗ with temperature T = T∗ at r = 0, is given as a function of the acceleration
parameter a and the temperature T∗, by

z2(t∗) = ẑ2, z4(t∗) = ẑ4 + 3ŵ0

(
4
3 + ẑ2

)
γ ,

w0(t∗) = ŵ0, w2(t∗) = ŵ2 +
(

1
6 ẑ2 + 1

3 ŵ0 + ŵ2
0

)
γ ,

where ẑ2, ẑ4, ŵ0, ŵ2 and γ are functions of acceleration parameter a given by

ẑ2 = 3a2α2

4
− 4

3
, ẑ4 = 2α3(1 − α)γ̄ Z2 + α4Z4 − 40

27
,

Z2 = 3a2

4
, Z4 =

[
9a2

16
+ 15a2(1 − a2)

40

]

,

ŵ0 = α

2
− 2

3
, ŵ2 = α2(1 − α)γ̄ W0 + α3W2 − 2

9
,

W0 = 1
2

, W2 =
[

1
8

+ (1 − a2)
20

]

,

where

γ = αγ̄ = α

(
2 − a2

4

)

, (3.53)

and α is given in (3.52).
The time t∗ is then given in terms of the initial temperature T∗ by

t∗ = aα
2

√
3

κρ∗
, ρ∗ = as

4c
T4

∗. (3.54)

Taking the leading-order part of the initial data gives a curve parametrized by a in the (z2, w0)-
plane that cuts through the saddle point SM in system (3.31), (3.32), between the stable and
unstable manifold (the lighter dashed line in figure 1). This implies that a small under-density
corresponding to a < 1 will evolve to the stable rest point M = (z2, w0) =

(
− 4

3 , 1
3

)
(cf. figure 1).

(g) The numerics
In this section, we present the results of our numerical simulations. We simulate solutions of
(3.31)–(3.34) for each value of the acceleration parameter a < 1 in a small neighbourhood of
a = 1 (corresponding to small under-densities relative to the SM), and for each temperature T∗
in the range 3000 K ≤ T∗ ≤ 9000 K. We simulate up to the time ta, the time depending on the
acceleration parameter a at which the Hubble constant is equal to its present measured value
H = H0 = 100h0(km/s mpc), with h0 = 0.68. From this we conclude that the dependence on T∗ is
negligible. We then asked for the value of a that gives Q(z2(ta), w0(ta)) = 0.425, the value of Q
in dark energy theory with ΩΛ = 0.7. This determines the unique value a = a = 0.999999426 and
the unique time t0 = ta. These results are recorded in the following theorem.

Theorem 3.6. At present time t0 along the solution trajectory of (3.31)–(3.34) corresponding to a = a,
our numerical simulations give H = H0, Q = 0.425, together with the following:

z(t0, ξ ) = (−1.142)ξ2 + (1.385)ξ4 + O(ξ6),

w(t0, ξ ) = 0.247 − (0.348)ξ2 + O(ξ4)

A(t0, ξ ) = 1 + (0.381)ξ2 − (0.277)ξ4, (3.55)

and
D(t0, ξ ) = 1 + (0.095)ξ2 + O(ξ4). (3.56)
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The cubic correction to redshift versus luminosity as predicted by the wave model at a = a is

C = 0.359. (3.57)

Note that (3.55) and (3.56) imply that the space–time is very close to Minkowski at the present
time up to errors O(ξ4), so the trajectory in the (z2, w0)-plane is much closer to the stable rest
point M than to the SM at the present time (cf. figure 1). The cubic correction associated with
dark energy theory with k = 0 and ΩΛ = 0.7 is C = −0.180, so (3.57) is a theoretically verifiable
prediction which distinguishes the wave model from dark energy theory. A precise value for the
actual cubic correction corresponding to C in the relation between redshift versus luminosity for
the galaxies appears to be beyond current observational data.

(h) The uniform space–time at the centre
In this section, we describe more precisely the central region of accelerated uniform expansion
triggered by the instability due to perturbations that meet the ansatz (3.22)–(3.25). By (3.30) we
have seen that neglecting terms of order ξ4 in z, the density ρ(t) depends only on the time. Further
neglecting the small errors between (z2, w0) and the stable rest point

(
− 4

3 , 1
3

)
at present time t0

when a = a, we prove that the space–time is Minkowski with a density ρ(t) that drops like O(t−3),
so the instability creates a central region that appears to be a flat version of a uniform Friedman
universe with a larger Hubble constant, in which the density drops at a faster rate than the O(t−2)
rate of the SM.

Specifically, as t → ∞, our orbit converges to
(
− 4

3 , 1
3

)
, the stable rest point for the (z2, w0)

system (
z2
w0

)′

=
(

−3w0

(
4
3 + z2

)

− 1
6 z2 − 1

3 w0 − w2
0

)

. (3.58)

Setting z2 = − 4
3 + z̄(t), w0 = 1

3 + w̄(t) and discarding higher-order terms, we obtain the linearized

system at rest point
(
− 4

3 , 1
3

)
:

(
z̄
w̄

)′

=
(

−1 0
− 1

6 −1

)(
z̄
w̄

)

. (3.59)

The matrix in (3.59) has the single eigenvalue λ = −1 with single eigenvector R = (0, 1). From this
we conclude that all orbits come into the rest point

(
− 4

3 , 1
3

)
from below along the vertical line

z2 = − 4
3 . This means that z2(t) and ρ(t) = z2(t)/t2 can tend to zero at algebraic rates as the orbit

enters the rest point, but w0(t) must come into the rest point exponentially slowly, at rate O(e−t).
Thus our argument that w̄ = w0 − 1

3 is constant on the scale where ρ(t) = k0/tα gives the precise
decay rate,

ρ(t) = k0

t3(1+w̄) . (3.60)

That is, w̄ ≡ w̄(t) → 0 and k0 ≡ k0(t) are changing exponentially slowly, but the density is dropping
at an inverse cube rate, O(1/t3(1+w̄)), which is faster than the O(1/t2) rate of the standard model.

Therefore, neglecting terms of order ξ4 together with the small errors between the metric
at present time t0 and the stable rest point, the space–time is Minkowski with a density ρ(t)
that drops like O(t−3), a faster rate than the O(t−2) of the SM. Furthermore, we show that
neglecting relativistic corrections to the velocity of the fluid near the centre where the velocity is
zero, evolution towards the stable rest point creates a flat, centre-independent space–time which
evolves outward from the origin, and whose size is proportional to the Hubble radius.

We conclude that the effect of the instability triggered by a perturbation of the SM consistent
with ansatz (3.22)–(3.25) near the stable rest point

(
− 4

3 , 1
3

)
is to create an acceleration consistent

with the anomalous acceleration of the galaxies in a large, flat, uniform, centre-independent
space–time, expanding outwards from the centre of the perturbation.
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4. Conclusion
This is a culmination in the authors’ ongoing research programme to identify a possible
mechanism that might account for the anomalous acceleration of the galaxies within Einstein’s
original theory, without the cosmological constant or dark energy. We have found such a
mechanism, namely, our discovery of an instability in the Friedmann space–time characterized
by a universal phase portrait (figure 1) which describes smooth spherical perturbations about
any point. It is universal in the sense that it describes the evolution near the centre of any p = 0
spherically symmetric space–time that solves the Einstein equations in SSC and is smooth at
r = 0 in the ambient Euclidean coordinate system that corresponds to SSC. The phase portrait
places SM at an unstable saddle rest point SM, and the unstable manifold of SM provides a
specific mechanism which induces anomalous accelerations into the SM without the cosmological
constant. This mechanism induces precisely the same range of quadratic corrections to redshift
versus luminosity as does the cosmological constant, without assuming it. The phase portrait of
the instability shows that only under-dense and over-dense perturbations of SM are observable
(not SM itself), and the under-dense case would imply that we live within a large (order |ξ |4 ≪ 1)
region of approximate uniform density that is expanding outwards from us at an accelerated
rate relative to the SM. The central region created by the instability is different from, but looks
a lot like, a speeded-up Friedman universe tending more rapidly to flat Minkowski space than
the SM. Finally, we prove that a one-parameter family of exact perturbations from the radiation
epoch trigger the instability, and provide a third-order correction to redshift versus luminosity
that makes a prediction which can be compared to the predictions of dark energy.

Given that SM is unstable, the paper raises the fundamental question as to whether it is
reasonable to expect to observe an unperturbed Friedman space–time, with or without dark
energy, on the scale of the supernova data. But the paper does not purport to solve all the problems
of Cosmology. We have made no assumptions regarding the space–time far from the centre of
the perturbations that trigger the instabilities in the SM. The consistency of this model with other
observations in astrophysics would require additional assumptions that apply far from the centre.
Naively, one might wonder whether a local perturbation, neglecting higher-order terms, perhaps
only lies at a scale below the large scale on which the Friedmann metric is assumed to apply
(like voids or galaxies). But of course, our theory then implies that the Friedmann space–time
is also unstable on that larger scale where it is also assumed to apply. The instability raises the
question as to the observability of the Friedmann space–time, with or without dark energy, on
any scale. Regarding the higher-order terms, we note that when p = 0, the fluid velocity is the
only sound speed, so solutions far from the centre should not constrain solutions near the centre
so long as the velocity remains positive. In the light of [17], solutions near the centre should be
extendable on an initial data surface by arbitrary density and velocity profiles, and this reflects
the freedom to impose coefficients of higher-order powers of ξ on an initial data surface. So there
is a great deal of freedom to extend beyond these local space–times, and the extensions would
ultimately determine the size of the central region. But to explore further assumptions concerning
the space–time far from the centre in this paper would obscure the clarity of the theory presented.
Applications of this theory are topics of the authors’ future research.
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