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Problem #1 (20pts): Recall that cos z = eiz+e−iz

2 , for z = x+ iy ∈ C.
(a) Show that cos z reduces to cosx when z = x ∈ R.

Solution: eix = cosx+ i sinx, so

eix + e−ix

2
=

cosx+ i sinx+ cos (−x) + i sin (−x)

2
=

2 cosx

2
= cosx

(b) Find u(x, y) and v(x, y) real so that cos(z) = u(x, y) + iv(x, y).

Solution:

cos(x+ iy) =
eix−y + e−ix+y

2
=
e−y(cosx+ i sinx) + ey(cos (−x) + i sin (−x))

2

=
ey + e−y

2
cosx− ie

y − e−y

2
sinx

so
u = cosh(y) cos(x), v = − sinh(y) sin(x)

(c) Prove f(z) = sin z satisfies the Cauchy-Riemann equations ux = vy,
uy = −vx.

Solution:

ux = − cosh(y) sin(x) = vy = − cosh(y) sin(x)

uy = sinh(y) cos(x) = −vx = sinh(y) cos(x)
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Problem #2 (20pts): Let z = 3i. Find z1/13. (That is, find all complex
numbers w such that w13 = z.)

Solution: Let z = reiθ with r = 3, and let n = 13.

z1/n = e
1
n log(z) = e

1
n log(r)+iπ/2+2kπ

n = r1/nei
π/2+2kπ

13

for k = 0, ..., 12. The n angles are

θk =
π/2 + 2kπ

13
=

1 + 4k

13

π

2
.
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Problem #3 (20pts):

(a) Assume that f−1 and f are inverses of each other, and w = f−1(z). Prove
that

d

dz
f−1(z) =

1
d
dwf(w)

.

Solution: Since f(f−1(z)) = z, differentiating both sides and using the
Chain Rule gives

f ′(f−1(z))
d

dz
f−1(z) = 1.

Thus d
dzf
−1(z) = 1/f ′(f−1(z)) = 1/f ′(w).

(b) The logarithm is defined as the inverse of the exponential, so w = log(z)
if and only if z = ew. Use part (a) together with properties of the exponential
to derive d

dz log z.

Solution: d
dz log z = 1

d
dwe

w = 1
ew = 1/z.
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Problem #4 (20pts): Assume f(z) = u + iv is analytic in an open set
containing the closure of the ball BR(z0), and let CR denote the positively
oriented closed curve which is its boundary.

(a) Prove that u at the center is given by its average value, i.e., prove

u(z0) =
1

2π

∫ 2π

0

u(z0 +Reit)dt.

Solution: By the Cauchy integral formula,

f(z0) =
1

2πi

∫
CR

f(w)

w − z0
dw.

Using z(t) = z0 +Ret, 0 ≤ t ≤ 2π, dz = iReitdt we have

f(z0) =
1

2πi

∫
CR

f(z0 +Reit)

w − z0
dw =

1

2π

∫ 2π

0

f(z0 +Reit)dt.

Taking the real part gives the desired answer.
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Problem #5 (20pts): Assume only that f is continuous, but that for any
points A,B in the complex plane,

∫
C f(z)dz is independent of path C taking

A to B. Let point A be fixed. Prove: F (z) =
∫ z
A f(z)dz is an anti-derivative

of f . (Here
∫ z
A denotes the integral along any path from A to z.)

Solution: Since integration can be along any path,

∣∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ =

∣∣∣∣ 1

∆z

(∫ z+∆z

z

f(w)dw

)
− f(z)frac1∆z

∫ z+∆z

z

dw

∣∣∣∣
=

∣∣∣∣ 1

∆z

(∫ z+∆z

z

f(w)− f(z)dw

)∣∣∣∣
≤ 1

|∆z|

∫ z+∆z

z

|f(w)− f(z)||dw|

≤ 1

|∆z|
|∆z|Max|w−z|≤|∆z|f(w)− f(z)| → 0 as ∆z → 0

because f is continuous at z. Thus F ′(z) = f(z) by definition.
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Problem #6 (20pts): Recall that Cauchy’s Inequality states that if f is
analytic in a neighborhood of BR(z0), then |f (k)(z0)| ≤ k!

Rk
M , where M is

the maximum value of f in BR(z0). (Here BR(z0) denotes the open ball with
center z0 and radius R, and the bar on top denotes its closure.)

(a) Use Cauchy’s Inequality to prove Liouville’s Theorem, that every bounded
entire function is constant.

Solution: Assume f(z) is bounded and entire. Bounded means there exists
M > 0 such that f(z) ≤ M for all z ∈ C. Entire means we can apply
Cauchy’s Inequality to BR(z) for any R > 0, any z. In the case k = 1 this is

|f ′(z)| ≤ 1

Rk
M → 0 as R→∞.

Thus f ′(z) = 0 for all z, implying f(z) = const.
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(b) Use Liouville’s Theorem to prove that every polynomial P (z) of order
n ≥ 1 has a complex root. (You may assume that every polynomial P (z) is
non-constant and limz→∞P (z) =∞ when n ≥ 1.)

Solution: Assume P (z) is a polynomial and P (z) 6= 0 for all z ∈ C. Then
1/P (z) is analytic. Since limz→∞P (z) =∞, there exists an R > 0 such that
P (z) ≥ 1 for |z| > R. Thus |1/P (z)| ≤ 1 for all |z| ≥ R But 1/P (z) is
continuous and hence bounded on the closed ball |z| ≤ R, so there exists
M ′ such that |P (z)| ≤ M ′ for |z| ≤ R. It follows that |1/P (z)| ≤ 1 + M ′,
so 1/P (z) is a bounded entire function, and hence constant by Liouville’s
Theorem. Conclude that if P (z) is not constant, then P (z) must have a root.
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Problem #7 (20pts): Assume f is analytic everywhere except for a singu-
larities at z = ±2i.

(a) Recall the Taylor series f(z) =
∑∞

k=0 ck(z − z0)
k. Assuming you can

differentiate the series term by term, derive a formula for the ck in terms of
the value of f and its derivatives at z = z0 6= ±2i.

Solution:
dk

dzk
f(z0) =

∞∑
k=0

dk

dzk
ck(z − z0)

k|z=z0 = k!ck.

so

ck =
fk(z0)

k!
.

(b) Give the radius of convergence of the Taylor series at z0 6= ±2i, [Correc-
tion add ±] and state for what radii the Taylor series converges, converges
uniformly, diverges, and for which radii it may or may not converge. (No
proofs required.)

Solution: Radius of convergence R=distance to the nearest singularity of f
so R = Min{|z − 2i|, |z + 2i|}. Convergence for |z = z0| < R, divergence
for |z − z0| > R, and uniform convergence for |z − z0| < r < R. Conditional
convergence at |z − z0| = R.
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(c) Recall the Laruent series f(z) =
∑∞

k=1
c−k

(z−z0)k
+
∑∞

0 ck(z−z0)
k. Determine

the annulus of convergence of the Laurent series at z0 = 2i. State for which
annuli the Laurent series converges, and state for which annuli it converges
uniformly. (No proofs required.)

Solution: Solution: Convergence in the largest annulus centered at z0 = 2i
which is singularity free. Thus convergence is in 0 < |z − 2i| < 4, divergence
for |z − 2i| > 4 and z = 2i. Uniform convergence on compact subsets of
0 < |z − 2i| < 4.
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Problem #8 (20pts):(a) Find the residues of the function f(z) = 1
(z−2i)(z+i)2

at z = 2i and z = −i.

Solution: z = 2i is a simple pole, z = −i is a double pole.

R(f ; 2i) = lim
z→2i

f(z)(z − 2i) =
1

(2i+ i)2
= −1

9
.

R(f ;−i) = lim
z→−i

d

dz

{
f(z)(z + i)2

}
= − 1

(−i− 2i)2
=

1

9
.

(b) Find the
∫
C f(z)dz where C is the positively oriented circle of radius

r = 3/2 centered at the origin.

Solution:
∫
C f(z)dz = 2πiR(f ;−i) = 2πi

9 .
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Problem #9 (20pts): Evaluate
∫ +∞
−∞

1
2+z2 dz by the method in class.

Solution: f(z) = 1
2+z2 = 1

(z−
√

2i)(z+
√

2i)
. Let C = CR +C[−R,R] where CR is the

half circle of radius R center zero above the x-axis, and C[−R,R] is on the real
axis. Then ∫

C
f(z)dz = 2πiR(f ;

√
2i) = 2πi

1√
2i+

√
2i

=
π√
2
.

But ∣∣∣∣∫
CR
f(z)dz

∥∥∥∥ ≤ |CR‖Maxz∈CR|f(z)| ≤ πR

R2 − 2
→ 0 as R→∞.

Thus

lim
R→∞

∫
C
f(z)dz = lim

R→∞

∫
C[−R,R]

f(z)dz =

∫ +∞

−∞
f(x)dx =

π√
2
.
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Problem #10 (20pts): Evaluate
∫ 2π

0
1

2+sin t dt by the method in class.

Solution: Let I =
∫ 2π

0
1

2+sin t dt. View this as a parameterization of a complex
integral around the unit circle, so

z(t) = eit, dz = ieitdt = izdt, sin t =
eit − e−it

2i
=
z − 1/z

2i
.

Substituting gives

I =

∫
C0

1

2 +
(
z−1/z

2i

) dz
iz

=

∫
C0

2dz

z2 + 4iz − 1
.

By quadratic formula, the roots of the denominator are

z± =
−4i±

√
−16 + 4

2
=
−4i± 2

√
3i

2
= (−2±

√
3)i.

Thus z+ lies inside the unit circle, so the residue theorem gives

I = 2πiRes(f ; (−2 +
√

3)i) = 2πi
2

z+ − z−
=

4πi

2
√

3i
=

2π√
3
.
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