
Name:

Student ID#:

Section:

Midterm Exam 1
Wednesday, October 25

MAT 185A, Temple, Fall 2023

Print names and ID’s clearly, and have your student ID ready to be checked

when you turn in your exam. Write the solutions clearly and legibly. Do not
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Problem #1 (20pts):

(a) Find the real and imaginary parts u and v, respectively, of f(z) = z2.

(b) Prove that
d
dzz

2
= 2z, independent of how �z ! 0.

(c) Evaluate
R
C z

2dz where C is a curve in the plane taking A = �2 to B = 3i.
Simplify.
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Problem #2 (20pts): Let w = f(z) where z = x+iy, w = u(x, y)+iv(x, y).

State the Cauchy-Riemann equations, and prove that if f 0
(z) = g0(z), (so

f and g satisfy the Cauchy-Riemann equations), then f(z) = g(z) + const.
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M
nu is must

carchy-Riemann : Ux=Vy , Uy =-Vx

Assume f(z) = 0 .

Then f(z) = /im
f(z+0z)-f(z)
-

↳z-30 Iz

exists indept of how wzto . Taking 0z
= 0X

,

f(z) = Ux+ iVx = 0
.

So Ux
= 0 = Vx ·

But CR = Uy
= -x = 0 and Vy

= Ux
= 0

,
SO

-n
= 0 = Yv

.

Thus u= const ,
v=coust =>

f(z) = n + iv = const.



Problem #3 (20pts):. Assume f(u) = u+iv satisfies the Cauchy-Riemann

equations.

(a) Find vector fields G1 and G2 such that

Z

C
f(z) dz =

Z

C
G1 ·T ds+ i

Z

C
G2 ·T ds.

(b) Use Cauchy-Riemann to prove Curl G1 = 0 = Curl G2.
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Problem #4 (20pts): Recall Log(z) = ln r+ i✓(z), z 2 C\{neg real axis},
where r = |z| =

p
x2 + y2, and ✓(z) is the angle

���!
(x, y) makes with the x-axis.

(a) Find
@
@x ln r and

@
@x✓ =

@
@xArctan(y/x), and show that they agree with

the real and imaginary parts of f(z) = 1/z. Explain why.

(b) Evaluate
R
C

dz
z�1 by direct parameterization, where C is the unit circle

centered at z = 1.
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True because logz = 4x+iVx = E

2π
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e z(t) = 1 + re

O = A
= 2π

dz = cr e"A



Problem #5 (20pts): Recall that eia = cos a+ i sin a.

(a) Prove that ei(a+b)
= eiaeib, and use this to prove (by induction) that

einz =
�
eia

�n
for n = 1, 2, 3, ....

(b) Show that if f 0
(z) = z and its inverse f�1

(z) exists and is analytic, then�
f�1

�0
(z) = 1/z.
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jaib=(cusa+isina)(cosb+isinb)
= cusacosb-sinasinb+i(sinasib+sinb sina)= e"(a+b)
e men

cos(a+b) sin(a+b)
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= 2
= 2

assume e = e
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n= 1 case Le
n= 2

n-1

f"(f(z)) = z diff both sides

- f"(f(t)) == (f) (w)* =
W = f(z)

chain rule

=(f) (w) = art disease D- EW


