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Problem #1 (20pts): Recall that eiθ = cos θ + i sin θ. Prove that

ei(θ1+θ2) = eiθ1eiθ2

.

Solution:

ei(θ1+θ2) = cos (θ1 + θ2) + i sin (θ1 + θ2))

= cos θ1 cos θ2 − sin θ1 sin θ2 + i sin θ2 cos θ1 + i sin θ1 cos θ2

On the other hand

eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= cos θ1 cos θ2 − sin θ1 sin θ2 + i sin θ2 cos θ1 + i sin θ1 cos θ2.

SO the two are equal.
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Problem #2 (20pts): Let ~G =
−−−−→
(M,N) be a vector field in the plane, where

M = M(x, y), N = N(x, y) are real valued functions of (x, y). Let C be a
smooth curve in the plane taking point A to point B. Use Leibniz’s sub-
stitution principle to show the following are equal: (Here r(t) =

−−−−−−−→
(x(t), y(t))

denotes any smooth parameterization of curve C .)∫
C

−→
G · −→T ds =

∫
C

Mdx+Ndy =

∫
C

−→
G · d−→r =

∫
C

−→
G · −→v dt.

Solution: Given r(t) we have

dr

dt
= v =

ds

dt
T.

Thus
Tds = vdt = dr =

−−−−−→
(dx, dy)

So ∫
C

−→
G · −→T ds =

∫
C

−→
G · −→v dt =

∫
C

−→
G · d−→r =

∫
C

Mdx+Ndy.
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Problem #3 (20pts): Prove that f(z) = 1/z is analytic (its complex
derivative exists) for all z = x+ iy 6= 0 two ways:

(1) By showing directly lim∆z→0
f(z+∆z)−f(z)

∆z exists.

(2) By proving 1/z = u(x, y)+iv(x, y) satisfies the Cauchy-Riemann equation
ux = vy, uy = −vx.

Solution: For (1):

lim
∆z→0

{
1

∆z

(
1

z + ∆z
− 1

z

)}
= lim

∆z→0

{
1

∆z

z − z −∆z

(z + ∆z)z

}
= lim

∆z→0

{
−1

(z + ∆z)z

}
= − 1

z2
,

proving that the limit exists independent of ∆z → 0.

For (2):

1

z
=

1

z

z̄

z̄
=

x− iy
x2 + y2

=
x

r2
− i y

r2
,

so u = x
r2 and v = − y

r2 . Thus

ux =
1

r2
− 2x

r3

x

r
=

1

r2
− 2x2

r4
; uy = −2xy

r4

vx =
2xy

r4
; uy = − 1

r2
+

2y2

r4

Now clearly uy = −vx, and ux = vy because

ux − vy =
1

r2
− 2x2

r4
+

1

r2
− 2y2

r4
=

2

r2
− 2(x2 + y2)

r4
=

2

r2
− 2

r2
= 0,

so the Cauchy-Riemann equations hold.
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Problem #4 (20pts): Let f(z) = u(x, y) + iv(x, y) be a complex differen-
tiable for all z ∈ C, (so the Cauchy-Riemann equations hold), and let C be a
curve that takes A to B.
(a) Derive, in terms of u and v, formulas for the real valued vector fields
−→
G1 =

−−−−−→
(M1, N1) and

−→
G2 =

−−−−−→
(M2, N2) such that∫

C

f(z)dz =

∫
C

−→
G1 ·
−→
T ds+ i

∫
C

−→
G2 ·
−→
T ds,

where
∫
C

−→
Gi ·
−→
T ds are real line integrals on R2.

Solution:∫
C

f(z)dz =

∫
C

(u+ iv)(dx+ idy) =

∫
C

udx− vdy + i

∫
C

vdx+ udy,

so
−→
G1 =

−−−−→
(u,−v) and

−→
G2 =

−−−→
(v, u).

(b) Use the Cauchy-Riemann equations to prove that
−→
G1 and

−→
G2 are curl

free, and state a theorem which implies that there exist U(x, y) and V (x, y)
such that −→

G1 = ∇U, −→
G2 = ∇V.

Solution: Curl(
−→
G) = k(Nx −My), so

−→
G is curl-free if Nx −My = 0. Now

by C-R Eqns,

(N1)x − (M1)y = −vx − uy = 0; (N2)x − (M2)y = ux − vy = 0,

so both
−→
G1 and

−→
G2 are curl-free.

Theorem (21D): If a vector field is curl-free in a simply connected domain,
then the vector field is conservative. Thus we conclude that

−→
G1 = ∇U and−→

G2 = ∇V for some scalar functions U, V .
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(c) Letting F (z) = U + iV , prove∫
C

f(z)dz = F (B)− F (A).

(You may use any theorem from Mat21D which you can state correctly.)

Solution: Theorem (21D): If
−→
G is conservative with

−→
G = ∇g, then

∫
C

−→
G ·

−→
T ds = g(B)− g(A). Thus∫

C

f(z)dz = U(B)− U(A) + i(V (B)− V (A)).

Solution:
(d) Prove that F (z) satisfies the Cauchy-Riemann equations, and F ′(z) =
f(z).

Solution: We know
∇U =

−−−−−→
(Ux, Uy) =

−−−−→
(u,−v)

and
∇V =

−−−−→
(Vx, Vy) =

−−−→
(v, u),

so
Ux = u; Uy = −v; Vx = v; Vy = u

so Ux = Vy and Uy = −Vx, implying that F = U + iV satisfies the C-R
equations. Finally, we know by the derivative being defined independent of
∆z → 0, taking ∆z = ∆x gives F ′(z) = Ux + iVx = u+ iv = f(z) as claimed.
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Problem #5 (20pts): Let C denote the simple closed curve given by the
unit circle centered at z = 0, going counterclockwise around z = 0. Evaluate∫
C
dz
z directly by parameterization.

Solution: Let x(t) = cos t and y(t) = sin t so z(t) = x(t) + iy(t) = cos t +
i sin t, 0 ≤ t ≤ 2π is a parameterization of C. Then...∫

C

dz

z
=

∫
C

(x− iy)(dx+ idy)

x2 + y2

=

∫
C

xdx+ ydy

x2 + y2
+

∫
C

−ydx+ xdy

x2 + y2
.

On the unit circle, x2 + y2 = 1, dx = − sin tdt, dy = cos tdt, so∫
C

dz

z
=

∫
C

− cos t sin tdt+ sin t cos tdt+ i

∫
C

sin2 tdt+ cos2 tdt

= 0 + i2π = 2πi.
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