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Print names and ID’s clearly, and have your student ID ready to be checked
when you turn in your exam. Write the solutions clearly and legibly. Do not
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books, cellphones, etc. may be used on this exam.
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Problem #1 (20pts): Recall that cos z = eiz+e−iz

2 , for z = x+ iy ∈ C.
(a) Show that cos z reduces to cosx when z = x ∈ R.

(b) Find u(x, y) and v(x, y) real so that cos(z) = u(x, y) + iv(x, y).

(c) Prove f(z) = cos z satisfies the Cauchy-Riemann equations ux = vy,
uy = −vx.
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Problem #2 (20pts): Find all of the values of (i)
1
π . How many are there?

Justify.
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Problem #3 (20pts): Let CR denote the positively oriented circle of radius
R center z, and let BR(z) denote the closed ball of radius R and center
z. Recall the Cauchy Integral Formula tells us that if f is analytic in a
neighborhood of BR(z), then

f(z) =
1

2πi

∫
CR

f(w)

w − z
dw.

(a) Prove that if f is analytic in a neighborhood of BR(z), then |f ′(z)| ≤ M
R ,

where M is the maximum value of f in BR(z).

(b) Prove Liouville’s Theorem, that every bounded entire function is con-
stant.
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Problem #4 (20pts): Assume that f(z) = u+ iv is analytic everywhere.

(a) Prove that ∆u = 0 and ∆v = 0 where ∆u = uxx + vyy.

(b) Prove u(0) = 1
2π

∫ 2π

0 u(eit)dt. (Hint: Integrate Cauchy Integral Formula
on the unit circle.)
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Problem #5 (20pts): Let P (z) = anz
n + · · · + a1z + a0 be a complex

polynomial, where an 6= 0 and n ≥ 1
(a) Prove that there exists R > 0 such that P (z) ≥ 2 for |z| > R.
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(b) Prove that P (z) has at least one root z0 such that P (z0) = 0.
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