* The Cauchy - Goursat Theorem
(VI) So far we have:
- Defn: f is analytic if $f^{\prime}(z)=\lim _{\Delta t \rightarrow 0} \frac{f(z+\Delta t)-f(z)}{\Delta z}$ exists.
Usually we speak of f being analytic in an open set or domain $D \leq \mathbb{C}$
Here: $f: D \rightarrow \mathbb{C} \quad w=f(z)$

$$
z \mapsto w \quad u+i v=f(x+i y)
$$

Our starting point:

- Theorem (Cauchy-Ruemain) f is analytic at $z_{0} \in \mathbb{C}$ iff u and v are differentiable and satisfy the Cavchy-Riemann Equations

$$
\begin{aligned}
& U_{x}=V_{y} \\
& U_{y}=-V_{x}
\end{aligned}
$$

(At this stage, the derivatives need not be continuous!)

- Recall: that it was not enough for C-R alone to hold in order to conclude $f^{\prime}\left(z_{0}\right)$ exists - we needed u, v be differentiable at z_{0} as well - C-R is a pointwise condition
- Recall: $u_{x} b u_{y}$ could exist at z_{0} w/o u being differentiable - for differentiable we need that all directional derivatives exist ie, $\nabla u \cdot \vec{v}=\left.\frac{d}{d t} u\left({\underset{\sim}{x}}_{0}+t \vec{v}\right)\right|_{t=0}$, which is equiv to an approximating tangent plane at z_{0}.
- The most important theorem from Advanced Calculus used to establish at $u(x, y)$ is continuously differentiable D is Theorem (MAT 127) If u_{x} o u_{y} exist and are cont in D, then 4 is continuously in D.
(Hence $f^{\prime}(z)$ is continuous.)
- Our extension of the Fundamental Thm of Calculus (FTC) based on Green's Thm required not only that f be anally tic, but also required the assumption that $f^{\prime}(z)$ be continuous. This is because we use the theorem that the Riemann Integral exists (the Riemann sums defining it converge) if the function is continuous We proved:
Theorem (weak form of Cauchy's Theorem) If f is analytic (ie. $f^{\prime}(z)$ exists) in an open set $D \subseteq \mathbb{Q}$ sit. D is simply connected and $f^{\prime}(z)$ is continuous, then
(1) f has an anti-derwative $F, F^{\prime}(z)=f(z)$
(2) The FTC holds $f f(z) d z=F(B)-F(A)$
(3) $\oiint_{e} f(z) d z=0$
- our question: do there exist "low regularity" analytic functions, by which we mean $f^{\prime}(z)$ exists at every point in l, but f^{\prime} is not a continuous function?
The answer is NU D And the proof requires the Caucly-Goursat Theorem.
The Cauchy-Goursat Theorem is a new starting point for Complex Variables, everything follows from this. Ie., for the logical development of the subject, everything we did based on Green's Thy to prove $0,(2),(3)$ can be thrown away. A graduate class on complex variables can start with Cauchy-Gourset, and develop every thing from there. The problem is - Who (1), (2), (3) its not clear how anyone could discover this?
- Background: (Math 127A) A function can have a derivative at every point without that derivative being cont. $H W \#$, Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable in D (so $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ exists) then f is intinvous.
HW \# 2 The following counter example shows that $f^{\prime}(x)$ can exist w/o f^{\prime} being continuous. Prove $f(x)=x \sin \frac{1}{x}$ has a derivative at $x=0$, but $f^{\prime}(x)$ is not continuous@ $x=0$.
(Its a subtle issue because f^{\prime} won' have simple jump discontinuities when f' not cont)
- Recall where in the proof of (1), (2), (3) we required that $u_{x}, u_{y}, v_{x}, v_{y}$ be continuous (is, f^{\prime} is continuous).
Recall the Proof:

$$
\begin{array}{rl}
\oint_{e} f(z) d z & =\oint_{e}(u+i v)(d x+i d y) \\
& =\oint_{e} u d x-v d y+i \oint v d x+u d y \\
& =\int_{e} \vec{G}_{1} \vec{T} d s+i \vec{G}_{2} \vec{T} d s \\
e & e \\
\vec{G}_{1}=(\vec{u},-v) & \vec{G}_{2}=(v, u)
\end{array}
$$

Now. $C R \Leftrightarrow \operatorname{Cur}\left|\vec{G}_{1}=0=C_{v v}\right| \vec{G}_{2}$ Greens The:

$$
\begin{aligned}
& \iint_{A} \operatorname{Gurl} G_{i} d A=\oint_{e} \vec{G}_{i} \cdot \vec{T} d s \\
& \operatorname{Curl}^{2} \vec{G}_{i}=0 \Rightarrow \int_{e} \vec{G}_{i} \cdot \vec{T} d s=0
\end{aligned}
$$

But: Pf ot Gr's The Requires that all derivatur of \vec{G}_{i} be continuous.
Eg $\vec{G}=M d x+N d y$

$$
\iint_{A} N_{x}-M y d A=\iint_{A} N_{x} d x d y-\iint_{A} M_{y} d y d x
$$

- The FTC then follows from Carcly's Thu that

$$
\int_{e} f(z) d t=0
$$

Ir., $\vec{G}_{1}=\nabla V$ by $U=\int_{A}^{(x, y))} \vec{G}_{1} \cdot \vec{\cdot} d s$

$$
\begin{aligned}
& \vec{G}_{2}=\nabla V \text { by } V=\int_{A}^{A}, \vec{G}_{2} \cdot \vec{f} \cdot \vec{T} d t h d s \\
& F(z)=U+i V, F^{\prime}(z)=f(z) \text { and } \\
& \int f(z) d z=F(B)-F(A) \\
& e
\end{aligned}
$$

The point: We only know functions f which solve the C-R equations and have continuous partial derint of u, r, satisfy the Fundamental Tim of Talc.
(a) The Cauchy-Goursat Theorem:

Theorem (Cauch-Gouvset) If f is differentiable in a soc. domain $D_{\text {open }} \subseteq \mathbb{Q}$, then

$$
\int_{e} f(z) d z=0
$$

for every closed curve E in D.
Corollary (Cauchy Integral Formula) Assume f is analytic in S.C. $D_{\text {open }} \subseteq \mathbb{C}$. Then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{e} \frac{f(w)}{w-z} d w \tag{CIF}
\end{equation*}
$$

(Holds for any positively oriented simple closed curve in D.) Note that neither requires the assumption that f^{\prime} is continuous. Differentiating (CJF) thru f-sigm wot z (OK since $\frac{\partial}{\partial z}\left(\frac{f(w)}{w-z}\right)$ is lout) we see that f has continuous deriv's of all order

Proof of (CIF)
Assuming the Carchy-Gourset Thy f analytic $\Rightarrow \frac{f(w)}{w-z}$ is an analytic function of w for every fixed $z, S_{n}(c-b)$

$$
\int_{e} \frac{f(w)}{w-z} d w=0
$$

\forall closed curve which does not contain z. Let C_{ε} be the boundary of the ball of radius ε center z. Then

$$
o=\int^{\int-\Gamma-e_{\varepsilon}+\Gamma} e^{\frac{f(w)}{w-z}} d z=\int_{\Gamma} \frac{f(w)}{w-z}-\delta_{\Gamma}+\int_{\Gamma}-\int_{e_{\varepsilon}}
$$

closed curve which does not contain z

$$
\int_{e^{w-z}} \frac{f(w)}{w} d w=\int_{e_{\varepsilon}} \frac{f(w)}{w-z} d w
$$

Now since f is cont, as $\varepsilon \rightarrow 0, f(w)$ tends to its value $f(z)$ for $w \in C_{E}$ Thus by continuity and properties of integrals we have .o.

$$
\left.\begin{array}{l}
\int_{e_{\varepsilon}} \frac{f(w)}{w-z} d w=f(z) \int_{e_{\varepsilon}} \frac{1}{w-z} d w+0(\varepsilon) \\
\\
e^{=2 \pi i}
\end{array}\right\} \begin{aligned}
& \text { little "oh } \\
& \text { of } \varepsilon \text { tends } \\
& \text { to zero as }
\end{aligned}
$$

Thus

$$
\int_{e^{w-z}} \frac{f(w)}{w} d w=2 \pi i f(z)+0(\varepsilon)
$$

Taking $\varepsilon \rightarrow 0$ so $O(\varepsilon) \rightarrow 0$ f solving for $f(t)$ gives

$$
f(z)=\frac{1}{2 \pi i} \int_{e} \frac{f(w)}{w-z} d w
$$

Proof of Cauchy Goursat Theorem: We do the case $D=B_{r}\left(z_{0}\right) \subseteq \mathbb{C}$ this contains all the ideas, and extension to any simply connected domain is intuitive. There are two parts
(I) Main Lemma: If C is a rectangle $R \subseteq D$, then $\$ f(z) d z=0$
(II) Using (1) we construct an antiderio $F(z)=\int_{e} f(z) d z$ where e is a curve which follows the sides of rectangles in D. Once we get $F^{\prime}(z)=f(z)$, we have FTC so

$$
\begin{aligned}
& \text { If(z)dz=F(B)-F(A)}=0 \\
& e \\
& A=B
\end{aligned}
$$

Proof Part (I) for the case $D=B_{r}\left(z_{0}\right) \subseteq \mathbb{C}$
This extends by same idea to see. regions.
[This is a famous proof]
Assume: f is
analytic in $B_{r}\left(z_{0}\right)$. Our aim is
prove $\int_{e}^{\int f(z) d z}=0 \quad \forall$ closed $e \subseteq B_{(}\left(z_{0}\right)$
Main Lemma: Assume $C_{R_{0}}$ is a rectangle.
in $B_{r}\left(z_{0}\right)$. Then $\int f(z) d z=0$.

$$
\begin{aligned}
& e_{R_{D}} \\
& \int f=\int f+\int f+\int_{R_{0}} f+\int f f \\
& e_{R_{0}} f_{R_{D}} f_{R_{D}}^{3}
\end{aligned}
$$

Then $\left|\int_{e_{R_{D}}}\right| \leqslant 2^{2}\left|\int_{e_{R_{1}}}\right| \begin{aligned} & \text { for some } R_{2} \text { chosen } \\ & \text { to be the biggest }\end{aligned}$ ot $\left.\mid \int_{P_{0}} f(t)\right)\left.^{\prime}\right|^{\prime \prime}$

Now partition $C_{R_{1}}$ into 4 equal rectangles

$$
e_{R_{1}^{1}} e_{R_{1}^{2}} e_{R_{1}^{3}} e_{R_{1}^{4}}
$$

Then $\left|\int_{e_{R_{1}}} f(z) d z\right| \leqslant z^{2}\left|\int_{e_{R_{2}}}^{1} f(z) d z\right|$
for R_{2} chosen so $\left|\int_{C_{R_{1}}} f(t) d t\right|$ is max.
Then
Then

$$
\left|\int_{e_{R_{D}}} f\right| \leqslant\left(2^{2}\right)^{2}\left|\int_{e_{R_{2}}} f\right|
$$

\ldots construct a nested sequ of rectangles $R_{1} \supset R_{2} \supset \ldots$ st.

$$
\left|\int_{e_{R_{B}}} f(z) d t\right| \leq(4)^{n}\left|\int_{e_{R_{n}}} f(t) d t\right|
$$

But the perimitu of $C_{R_{n}}=\frac{1}{2^{n}}$ Perimeter $\left(R_{0}\right)=\frac{P}{2^{n}}$
Now $\bigcap_{n=0}^{\infty} R_{n}=$ a single point z_{0} (Nested
Intervals Theorem. $f^{\prime}\left(z_{0}\right)$ exists, so

$$
f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)=0(1)\left|z-z_{0}\right|
$$

lithe o(1) tend to zero as $z \rightarrow z_{0}$

$$
\therefore \quad \int f(z) d z=0
$$

$$
\begin{aligned}
& \therefore\left|\int_{e_{R_{n}}} f(z) d z\right|=\left|\int_{e_{R_{n}}}^{f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}+0(1)\right| z-z_{0}|d z| \\
& \begin{aligned}
\therefore \mid & \int_{R_{n}} f(z) d z \mid
\end{aligned} \frac{\frac{p}{2^{n}} \cdot \frac{p}{2^{n}} \circ(1)=0(1) \frac{p^{2}}{4^{n}}}{} \begin{aligned}
& \uparrow \\
& \left|e_{R_{n}}\right|\left|z-z_{1}\right|
\end{aligned} \\
& \left|\int_{C_{R_{b}}} f(z) d z\right| \leqslant 4^{n}\left|\int_{C_{R_{n}}} f(z) d z\right| \leqslant 0(1) 4^{n} \frac{p^{2}}{\text { q}^{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

Proof: Part (II) Cavcly-Gourset The for $B_{r}\left(z_{0}\right)$. First note $\int_{e_{z}} f(z) d z$ is the same for even curve ez taking
 $z_{0} \rightarrow z$ along st lines that move along sides of rectangle inside $B_{r}\left(z_{0}\right)$. Thus define -

$$
F(z)=\int_{e_{z}} f(z) d t
$$

where C consists of PW smooth curve each piece being the side of a rectangb in $B\left(z_{0}\right)$.

Now consider

$$
\begin{aligned}
& \frac{F(z+\Delta z)-F(z)}{\Delta z}=\left[\int_{e_{z+\Delta t}} f(\xi) d \xi-\int_{e_{z}} f(\xi) d \xi\right] \frac{1}{\Delta z} \\
& =\frac{1}{\Delta z} \int^{z+\Delta z} f(\xi) d \xi \\
& \begin{array}{l}
\text { But } z \\
\left|\frac{F(z+\Delta t)-F(z)}{\Delta z}-f(z)\right|
\end{array} \\
& \left\{\begin{array}{l}
\text { Curve along } \\
\text { sides of rettandy } \\
\text { having } z 8 z t \Delta t \\
\text { on opposite } \\
\text { corners }
\end{array}\right] z z \\
& =\left|\frac{1}{\Delta z} \int_{z}^{z+\Delta t} f(\xi) d \xi-\frac{1}{\Delta z} \int_{z}^{z+\Delta t} f(z) d \xi\right| \\
& z_{0} \\
& =\left|\frac{1}{\Delta z} \int_{z}^{z+\Delta t} f(\xi)-f(z) d z\right| \quad\left(\begin{array}{c}
\text { it is contr at }
\end{array}\right. \\
& \leqslant \frac{1}{|\Delta z|} \int_{z}^{z+\Delta t}|f(\xi)-f(z)| d t \leqslant \frac{1}{|\Delta z|} \cdot|\Delta z| \operatorname{Max}_{\underset{Z \mid \Delta z}{ } \mid(z)}^{\operatorname{Max}^{2}(\xi)-f(z) \mid} \\
& f \text { continvovs } \Rightarrow \operatorname{Max}_{\beta_{1|z|}(z)}|f(\xi)-f(z)| \rightarrow 0 \text { as } \Delta z \rightarrow W
\end{aligned}
$$

Conclude: $F(z)$ is an anti-deviv of $f(z)$.
Let

$$
F(z)=U(x, y)+i \nabla(x, y)
$$

then $\vec{G}_{1}=\nabla U$ \& $\vec{G}_{2}=\nabla V \quad($ by $C R F I P)$

$$
\begin{aligned}
\therefore \int_{e} f(t) d z & =\int_{e} \nabla \cdot \cdot T d s+i \int_{e} \nabla V \cdot \vec{T} d s \\
& =V(B)-\bar{V}(A)+i(\nabla(B)-V(A)) \\
& =F(B)-F(A)
\end{aligned}
$$

for smooth any curve $e \subseteq B_{n}\left(z_{0}\right)$.
Thus: $f f(t) d z=0 \quad \forall$ lased curve e in $B_{r}\left(z_{0}\right)$ as claimed,

园 Cauchy Integral Formula:
We have:

$$
f(t)=\frac{1}{2 \pi i} \oint_{e} \frac{f(w)}{w-z} d z
$$

Since $g(w, z)=\frac{f(w)}{w-z}$ satisfies $\frac{\partial g}{\partial z}$ is cont along C, we can diff thru \int-sign wot z (by methods of advanced Cake) to obtain

$$
\begin{aligned}
& f^{\prime}(z)=\frac{1}{2 \pi i} \oint \frac{f(w)}{e^{(w-z)^{2}}} d w \\
& f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{e^{(w-z)^{n+1}}} d w
\end{aligned}
$$

so: f analytic $\Rightarrow f^{(n)}(t)$ exists and is cont $\forall n \in \mathbb{N}$.

