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Problem #1 (20pts): Assume f(x) is a continuous function for a < x < b,

and assume F'(z) = f(z).
(a) Define the Riemann sum for f over [a,b] determined by Azi, ..., ATN

assuming
Az +---+Azy =b—a.

(Draw the correct picture, and define and label grid points correctly.)
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(b) Use (a) to define the Riemann Integral fab f(z)dx.
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(c) State the Fundamental Theorem of Calculus, and explain in your own
words why it is so important.
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Problem #2 (20pts) Evaluate the following mtl derivatives:
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Problem #3 (20pts): Evaluate the following indefinite integrals:
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Problem #4 (20pts): E\dludte the following definite integrals:
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(b) Find the area between the graphs of f(z) = 23 and f () = z between
z =0 and z = 1
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Problem #5 (20pts): A rod placed on the y-axis between y = Oandy=3
has a density of §(y) = y* %’li
(a) Find the total mass of the rod. (Include units.) 2 3

cihg

(b) Find the distance from the z-axis to the center of mass of the rod.
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Problem #6 (20pts): Assume that we started with the definition of f(z) =

e’ as the unique function satisfying 11 f(z) = f(z), and assume we showed
that f(z) increases from zero to infinity as z increases from zero to infinity.

Then we could define Inz as the inverse Inz = f~!(z), so In f(z) = = for
z € R, and f(Inz) = z for z > 0. Assuming only this

@sion i gna—3 Lo} %= $0. Then
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(b) What further information do we need to know
: about
that Inz = [ %? Explain. out f(z) to conclude
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Problem #7 (20pts):
(a) Use the method of partial fractions to ev: aluate th
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(b) Write the partial fractions expansion for the following integral. (Do not
solve for the constants.)
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Problem #8 (20pts): (a) Recall that F(z) = = [ f(t)dt denotes the area

under the graph of f between a and x. »\ssumlng, f is a continuous function,
draw this area in a diagram, and prove that F'(z) = f(2).

A<FO < \xw\o\dc ; |
\i:(wr AR\~ F(jk\ ////\ |

FIO)= b R;\t\a\: \// i

AXx=3\ AR >
e
N
<l (A (w\ +o) m& W\ ;o)
me 59 SR
(b) Find F'(z) if F(z) = [7™" cost dt.
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Problem #9 (20pts): Let a >0, and let f(z) denote the parabola defined
for —a < 0 < a, such that f(—a) =, £(0) = y2 and f(a) = ys.
(a) Determine the area associated with the Riemann Sum when Az = a.
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(b) Determine the area associated with the Trapezoidal Rule when Az = a.
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(c) Derive a formula for _['_”” f(x)dz. (Hint: Think the derivation of Cramer’s

Rule.)
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Problem #10 (20pts): Consider the curve defined parametrically by the
graphof z =cos2t+1,y=sin2t—-1,0<t < 7.
(a) Find the arclength of the curve. VX
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(b) Find the surface area of the region obtained by rotating the curve about
the y-axis.
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