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Print names and ID’s clearly. Write the solutions clearly and legibly. Do not
write near the edge of the paper. Show your work on every problem. Be

organized and use notation appropriately.

You are NOT allowed to consult the internet, Piazza, your classmates, friends or family members, tutors,
or any other outside sources, etc. during the exam. You may NOT provide or receive any assistance from
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Solutions


Problem #1 (20pts): Let y = f(z) be a continuous function for a < x < b.
(a) State the Area Problem and define the Riemann integral over [a, b] pre-

cisely as the limit of a Riemann Sum. (Draw the correct picture, and define
and label grid points correctly.) W
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(b) State the Fundamental Theorem of Calculus, and explain in your own
words why it is so important.
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Problem #2 (20pts): Recall that F'(z) = [ f(t)dt denotes the area under
the graph of f between a and z. Assuming f is a continuous function, draw
this area in a diagram, and prove that F'(z) = f(x).
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Problem #3 (20pts): Use the substitution method to evaluate the follow-

ing anti-derivatives: (Show every step.)
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Ill-composed problem-
Everyone gets full credit!


Problem #4 (20pts): Let A denote the region between the graphs of y = 22
andy=z'for0<z <1.
(a) Draw the region A and evaluate its area. /\u“
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(b) Find the volume of the region obtained by rotating A about the x-axis,
based on an integral with respect to z. (State which method you use, disk,
washer or shell, and argue starting with a Riemann sum.)
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(c) Find the volume of the region obtained by rotating A about the y-axis,
based on an integral with respect to z. (State which method you use, disk,
washer or shell, and argue starting with a Riemann sum.)
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Problem #5 (20pts): Consider the curve defined by the graph of the
function y = f(z) = sin (z?) between z = 1 and z = 2.

(a) Derive an integral formula for the arclength of the curve, starting with a
Riemann sum. You need not evaluate the integral. (Draw a picture.)
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(b) Derive an integral formula for the area of the region obtained by rotating
the curve about the z-axis, starting with a Riemann sum. You need not
evaluate the resulting integral. (Draw a picture.)
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