

HOMEWORK QUIZ #4
Math 21B, Temple, Spring–05

Print your name, section number and put your signature on the upper right-hand corner . Write only on the exam.

(1) Let \mathbf{R} be the region between the curves $y = x^2$ and $y = x^3$, and assume that \mathbf{R} is a metal plate of constant density $\sigma = 1$.

(a) Find the x -component of the center of mass, $\bar{x} = \frac{\int x c(x) dx}{\text{Area}}$. (b) Find the y -component of the center of mass, $\bar{y} = \frac{\int y c(y) dy}{\text{Area}}$. (You may use the formula $\int_c^d y c(y) dy = \int_a^b \frac{1}{2} \{f(x)^2 - g(x)^2\} dx$ when \mathcal{R} is the region between the graphs of $y = f(x)$ and $y = g(x)$.)

Solution (a): The area $A = \int_0^1 x^2 - x^3 dx = \frac{x^3}{3} - \frac{x^4}{4} \Big|_0^1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$. Also, $\int x c(x) dx = \int_0^1 x(x^3 - x^4) dx = \frac{x^4}{4} - \frac{x^5}{5} \Big|_0^1 = \frac{1}{4} - \frac{1}{5} = \frac{1}{20}$. Thus, $\bar{x} = \frac{12}{20} = \frac{3}{5}$.

Solution (b): Use $\int y c(y) dy = \int_0^1 \frac{1}{2} \{(x^2)^2 - (x^3)^2\} dx = \frac{1}{2} \left[\frac{x^5}{5} - \frac{x^7}{7} \right]_0^1 = \frac{1}{2} \left[\frac{1}{5} - \frac{1}{7} \right] = \frac{1}{35}$. Thus, $\bar{y} = \frac{12}{35}$.

(2) Determine whether $I = \int_0^\infty \frac{e^{-x} \sin x}{1+x^2} dx$ converges or diverges. (Use theorems to justify each step.)

Solution: First by Theorem 3, the integral converges if it converges absolutely, that is, so long as $I = \int_0^\infty \left| \frac{e^{-x} \sin x}{1+x^2} \right| dx$ converges. But, $\left| \frac{e^{-x} \sin x}{1+x^2} \right| \leq e^{-x}$ because $\sin x \leq 1$ and $1+x^2 \geq 1$ on the interval of integration $0 \leq x < \infty$. Since e^{-x} is integrable, it follows that I is integrable by the comparison test.