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Problem #1 (20pts): (a) Sketch the region of integration Rxy and evaluate
the iterated integral

∫ 1

0

∫ ex

1+(e−1)x

dydx. (1)

Solution:∫ 0

−1

∫ ex

1+(e−1)x

dydx =

∫ 1

0

ex − 1− (e− 1)x dx = e− 1− 1− e

2
+

1

2
=
e− 3

2
.

(b) Rewrite (1) with order of integration reversed. (Do not re-evaluate).

Solution: ∫ e

1

∫ ln(y)

y−1
e−1

dxdy.
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Problem #2 (20pts): (a) Use polar coordinates to evaluate the integral

∫ ∞
0

∫ ∞
0

e−x
2−y2 dxdy.

Solution: ∫ ∞
0

∫ ∞
0

= e−r
2

dxdy =

∫ π/2

0

∫ ∞
0

= e−r
2

rdrdθ

where we use x = r cos θ, y = r sin θ. Then using u = −r2, du = −2rdr we
get

= −1

2

∫ π/2

0

e−r
2|∞0 dθ = π/4.

(b) Use part (a) to evaluate the Gaussian integral
∫ +∞
−∞ e−x

2

dx.

Solution:∫ ∞
−∞

e−x
2

dx = 2

∫ ∞
0

e−x
2

dx =

(
4

∫ ∞
0

e−x
2

dx

∫ ∞
0

e−y
2

dy

)1/2

=

(
4

∫ ∞
0

∫ ∞
0

e−x
2−y2dxdy

)1/2

=
√
π

3



Problem #3 (20pts): Assume

~F(x, y, z) = (2xyz)i + (x2z + z2)j + (x2y + 2yz − 2)k.

(a) Find Div ~F.

Solution:

Div(~F) =
−−−−−−−→
(2yz, 0, 2y)

(b) Find Curl ~F.

Solution:

Curl(~F) =

 i j k
∂x ∂y ∂z

2xyz x2z + z2 x2y + 2yz − 2


= i(x2 + 2z − x2 − 2z)− j(2xy − 2xy) + k(2xz − 2xz) = 0.
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(c) Use the method of partial integration to find an f such that F = ∇f.
Solution:

∂f

∂x
= 2xyz, f = x2yz + g(y, z)

∂f

∂y
= x2z +

∂g

∂y
= x2z + z2,

∂g

∂y
= z2, g = z2y + h(z)

∂f

∂z
= x2y + 2zy + h′(z) = x2y + 2yz − 2, h′(z) = −2 h = −2z

thus

f(x, y, z) = x2yz + z2y − 2z.

(d) Evaluate
∫
C
~F · ~T ds along any smooth curve C taking A = (1,−1, 2) to

B = (−1, 1, 1).

Solution:∫
C
~F · ~Tds = f(1,−1, 1)− f(1,−2, 2) = (1 + 1− 2)− (−4− 8− 4) = 16.
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Problem #4 (20pts): Let ~v ≡ ~F = x2i + xyj + zk be the velocity field of
a moving fluid.

(a) Find the unit vector in the direction of the axis of maximal circulation
per area at point P = (1, 2, 0).

Solution:

Curl(~v) =

 i j k
∂x ∂y ∂z
x2 xy z

 = i(0− 0)− j(0− 0) + k(y) =
−−−−→
(0, 0, y).

Ans: ~n =
−−−−→
(0, 0, 1) = k.

(b) Find the maximal circulation per area at point P = (1, 2, 0).

Solution:

Ans: ‖Curl(~v)(1, 2, 0)‖ = 2.

6



(c) Find the circulation per area around axis ~w =
−−−−→
(1, 1, 1) at point P =

(1, 2, 0).

Solution:

Ans: Curl(~v) · ~w
‖~w‖ |(1,2,0) = 2√

3
.

(d) Describe all axes ~n around which there is zero circulation per area at
point P = (1, 2, 0).

Solution:

Ans: Curl(~v) · ~n = 0 so ~n in the xy-plane.
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Problem #5 (20pts): (a) Let F = M i+N j+Pk, let C be a smooth curve
that takes A to B, and let ~r(t) be a parameterization of C . Use Leibniz’s
substitution principle to show the following are equal:∫

C

~F · ~T ds =

∫
C

~F · d~r =

∫
C

~F · ~v dt =

∫
C

Mdx+Ndy + Pdz.

Solution: Let ~r(t), tA ≤ t ≤ tB be a parameterization of C. Then

~r′(t) =
d~r(t)

dt
= ~v =

ds

dt
~T,

so
d~r = ~vdt = ~Tds.

Also
d~r =

−−−−−−−→
(dx, dy, dz), ~F · d~r = Mdx+Ndy + Pdz.

Substituting these Leibniz differential relations into the above integrals takes
the first to the last.
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Problem #6 (20pts): Recall the Divergence Theorem:∫ ∫
S
F · n dσ =

∫ ∫ ∫
V
Div(~F)dV.

(a) Let a ∈ R. Find a vector field ~F = M~i + N~j + P~k such that the flux of
~F through the boundary of any volume V is always equal to the a times the
volume itself.

Solution: We need Div(~F) = Mx +Ny + Pz = a. So eg choose

M =
ax

3
, N =

ay

3
, P =

az

3
.

Thus the Divergence Theorem gives∫ ∫
S
F · n dσ =

∫ ∫ ∫
V
Div(~F)dV = aV ol(V).

(b) Assume ~F = Curl(~G) for some vector field ~G. Find all possible values
of a in this case.

Solution: Since Div(Curl(~G)) = 0,
∫ ∫ ∫

V Div(~F)dV = 0, so a = 0.
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(c) Now assume ~F = xi + yj + zk is the mass flux vector δ~v associated with
a density δ being transported by a velocity v. Find the rate at which mass is
passing outward through the surface of the volume obtained by removing the
cone φ ≤ π/4 from the sphere x2+y2+z2 = 9. (Hint: Spherical Coordinates.)

Solution: The mass per time passing outward through S is the flux∫ ∫
S
F · n dσ =

∫ ∫ ∫
V
Div(~F)dV =

∫ ∫ ∫
V

3 dV.

But ∫ ∫ ∫
V
dV =

∫ 2π

0

∫ π/2

π/4

∫ 3

0

ρ2 sin(φ)dρdφdθ

=

∫ 2π

0

∫ π/2

π/4

ρ3

3
|30 sin(φ)dφdθ

= 9 · 2π
∫ π/2

π/4

sin(φ)dφ = 18π(cos(φ)) |π/4π/2

= 18π[− cos(π/2) + cos(π/4)] = 9
√

2π.
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Problem #7 (20pts): Recall that the volume of a sphere of radius R is
V = 4

3πR
3. Use this, together with the change of variables x = au, y = bv,

z = cw to derive the volume inside the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= R2.

Solution: Let u = x
a , v = y

a , w = z
a . The the ellipsoid Exyz in xyz − space

goes over to the sphere u2 + v2 + w2 = R2 of radius R in uvw-space, call it
Euvw. Thus ∫ ∫ ∫

Exyz
dxdydz =

∫ ∫ ∫
Euvw

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ dudvdw,
where

|J | ≡
∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ = |diag(a, b, c)| = abc.

Thus ∫ ∫ ∫
Exyz

dxdydz = abc

∫ ∫ ∫
Euvw

dudvdw = abc · 4
3
πR3.
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Problem #8 (20pts): Recall the chain rule for functions of three variables:

d

dt
f(x(t), y(t)) = fxẋ+ fyẏ + fzż.

(a) Use the chain rule to prove that if a vector field ~F = ~(M,N,P ) is conser-
vative, (i.e. ~F(x, y, z) = ∇f(x, y, z) for some scalar function f), then∫

C

~F · ~Tds = f(B)− f(A),

for any smooth curve C in R3 taking A to B.

Solution: Let ~r(t) be a parameterization of C, tA ≤ t ≤ tB, ~r(tA) = A,
~r(tB) = B. ∫

C

~F · ~Tds =

∫ tB

tA

~∇f · ~vdt

=

∫ tB

tA

d

dt
f(~r(t))dt

= f(~r(tB))− f(~r(tA)) = f(B)− f(A).
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(b) Use the product rule for the dot product to prove that if ~F = m~a, where
~a = r′′(t) when r(t) is the parametrization with respect to time, then∫

C

~F · ~Tds =
1

2
mv2

B −
1

2
mv2

A.

Solution: ∫
C

~F · ~Tds =

∫ tB

tA

~F · ~vdt

=

∫ tB

tA

~a · ~vdt

=

∫ tB

tA

d

dt

1

2
~v · ~vdt

=
1

2
‖ ~vB‖2 − 1

2
‖ ~vA‖2

(c) Assume further that F = ma, and ~F is conservative, so ~F = −∇P .
Derive the principle of conservation of energy{

1

2
mv2

B −
1

2
mv2

A

}
+ {P (B)− P (A)} = 0. (2)

(Hint: Integrate
∫
C
~F · ~T ds two different ways.)

Solution: By part (b)
∫
C
~F · ~T ds =

{
1
2mv

2
B − 1

2mv
2
A

}
. By part (a)

∫
C
~F ·

~T ds = f(B)− f(A). Thus putting these together and using f = −P gives{
1

2
mv2

B −
1

2
mv2

A

}
+ {P (B)− P (A)} = 0.
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Problem #9 (20pts): Let ~F = −y
r2 i + x

r2 j where r2 = x2 + y2.

(a) Find Curl(~F).

Solution:

Curl(~F) =

 i j k
∂x ∂y ∂z
− y
r2

x
r2 0

 = i(0)− j(0) + k

(( x
r2

)
x

+
( y
r2

)
y

)
.

But ( x
r2

)
x

=
1

r2
− 2

x

r3

x

r
=

1

r2
− 2

x2

r4( y
r2

)
y

=
1

r2
− 2

y

r3

y

r
=

1

r2
− 2

y2

r4

Curl(~F) = k

(
1

r2
− 2

x2

r4
+

1

r2
− 2

y2

r4

)
= 0.

(b) Define what a simply connected region is, and use this to explain why
the following integral is the same for every positively oriented simple closed
curve C surrounding the origin (x, y) = (0, 0).∫

C
F ·Tds =? (3)

Solution: A set D is simply connected if all loop can be contracted to a
point without passing out of D. [Draw two s.c.c’s C1 and C2 around origin
with connection curves ±Γ, and argue that C1 + Γ−C2−Γ is a simple closed
curve around a simply connected domain where Curl(~F) = 0, so]∫

C1+Γ−C2−Γ

~F · ~Tds = 0 =

∫
C1

~F · ~Tds−
∫
C2

~F · ~Tds.
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(c) Evaluate (3) by direct parameterization taking C to be the unit circle.

Solution: Let ~r(t) =
−−−−−−−→
(cos t, sin t) parameterize the unit circle C0, so

~r′(t) =
−−−−−−−−−→
(− sin t, cos t).

Then ∫
C0

~F · ~Tds =

∫ 2π

0

−−−−−−−−−→
(− sin t, cos t) · −−−−−−−−−→(− sin t, cos t)dt = 2π

(d) Green’s Theorem says
∫
C
~F · ~T ds =

∫ ∫
ACurl(

~F) · k dA. Explain why
Green’s Theorem fails in the case of (3).

Solution: Curl(~F) 6= 0 in a simply connecte region due to singularity in ~F
at r = 0. In other words, ~F itself cannot be extended to the singularity r = 0
even though Curl(~F) can.
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Problem #10 (20pts): (a) Consider the vector field ~F = − ~r
r3 where r =√

x2 + y2 + z2. (This is Newton’s inverse square force field with all constants

set equal to one.) We know ∇1
r = ~F, so Curl(~F) = 0.

(a) Use ∂
∂xr = x

r , etc, to calculate Div(~F).

Solution: ~F = −
−−−−−−−→
(
x

r3
,
y

r3
,
z

r3
). Thus

Div(~F) = −
(x
r

)
x
−
(y
r

)
y
−
(z
r

)
z
,

(x
r

)
x

=
∂

∂x

(x
r

)
=

1

r3
− 3

x

r4

x

r
,

and similarly for y and z, so

−Div(~F) =
3

r3
− 3

x2 + y2 + z2

r5
= 0.

(b) Calculate the flux
∫ ∫
SR
~F · n dσ where SR is a sphere of radius R, (i.e.,

the surface of a ball of radius R.) You may use that the area of a sphere is
4πR2.

Solution:∫ ∫
SR

~F · ~ndσ =

∫ ∫
SR
−
~r

R3
·
~r

R
dσ

= − 1

R2

∫ ∫
SR
dσ = − 1

R2
· 4πR2 = −4π.

(c) Write the Divergence Theorem for ~F and SR and explain why it fails for
~F = − ~r

r3 .

Solution:
∫ ∫
SR
~F · ~ndσ =

∫ ∫ ∫
V Div(F)dV and the LHS equals −4π while

the RHS appears to equal zero because Div(F) = 0.
The problem is that Div(~F) 6= 0 at the singularity r = 0, so the RHS 3-d
Riemann integral is not known to exist, and therefore cannot correctly be set
equal zero.
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