FINAL EXAM Math 21D Temple-F06

-Print your name, section number and put your signature on the upper right-hand corner of this exam. Write only on the exam.

-Show all of your work, and justify your answers for full credit.

$\underline{\mathbf{SCORES}}$

#1 #2 #3 #4 #5 #6 #7 #8 #9 **TOTAL:** **Problem 1.** (22pts) Evaluate $\int \int_R x^2 y \, dA$ where *R* is the region in the *xy*-plane bounded between the curves $y = \sqrt{x}$ and y = x.

Problem 2. (22pts) Recall that $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{v} \, dt = \int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{dr} = \int_{\mathcal{C}} M dx + N dy + P dz$ gives the line integral of a vector field $\mathbf{F} = M \mathbf{i} + N \mathbf{j} + P \mathbf{k}$ along curve \mathcal{C} . Evaluate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds$ by parameterization, where \mathcal{C} is the straight line from P = (1, -1, 0) to Q = (2, 0, 1), and $\mathbf{F} = y\mathbf{i} + 2x\mathbf{j} - z\mathbf{k}$.

Problem 3. (22pts) A parabolic mirror for a telescope occupies the surface S given by $z = x^2 + y^2$ for $-1 \le x \le 1$, $-1 \le y \le 1$, where x and y are in meters. The density of the mirror is $\delta(x, y, z) = \sqrt{1 + 4x^2 + 4y^2} kg/m^3$. Find the mass of the mirror.

Problem 4. (22pts) Let \mathcal{R} be the area in the *xy*-plane bounded by a simple closed curve \mathcal{C} . Green's theorem states that $\int_{\mathcal{C}} M dx + N dy = \int \int_{\mathcal{R}} N_x - M_y dx dy$. Use Green's theorem to derive *two* different line integrals over \mathcal{C} that give the area of \mathcal{R} .

Problem 5. (22pts) Let $\mathbf{r} = (u+v)\mathbf{i} + (v^2 - u^2)\mathbf{j} + 3\mathbf{k}$ be the *uv*-parameterization of a surface \mathcal{S} , $0 \le u \le 1$, $0 \le v \le 1$, and let $\mathbf{F} = x\mathbf{k}$. Evaluate the flux $\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \, d\sigma$, where \mathbf{n} is the upward pointing normal to \mathbf{S} . (Hint: $\mathbf{r}_u \times \mathbf{r}_v$ is perpendicular to \mathcal{S} .)

Problem 6. (22pts) Let $\int \int \int dV$ be given as an interated integral in the order dxdzdy as

$$\int_0^2 \int_0^{6-3y} \int_0^{3-\frac{1}{2}z-\frac{3}{2}y} dx dz dy$$

Sketch the region D in xyz-space, and set up the interated integral in the oder $\int \int \int dz dy dx$. [DO NOT SOLVE]

Problem 7. (22pts) Let $\mathbf{x}_0 = (x_0, y_0, z_0)$ be a point in 3-space, and let D_{ϵ} denote the disk with center \mathbf{x}_0 and radius ϵ , and let C_{ϵ} denote the circle of radius ϵ around the boundary of the disk D_{ϵ} . Recall that Stokes Theorem says

$$\int_{\mathcal{C}_{\epsilon}} \mathbf{F} \cdot \mathbf{T} \ ds = \int \int_{D_{\epsilon}} \mathbf{Curl} \ \mathbf{F} \cdot \mathbf{n} \ d\sigma,$$

where \mathbf{T} and \mathbf{n} are oriented by the right hand rule.

(a) In plain English say why $\int_{\mathcal{C}_{\epsilon}} \mathbf{F} \cdot \mathbf{T} \, ds$ is interpreted as the circulation of \mathbf{F} around the axis \mathbf{n} .

(b) Use Stokes Theorem together with (a) to derive the physical interpretation of Curl $\mathbf{F} \cdot \mathbf{n}$ evaluated at the point \mathbf{x}_0 .

(c) Use (a) and (b) to show that Curl F evaluated at the point \mathbf{x}_0 points in the direction of the axis around which there is maximal circulation per area.

(d) Use (c) to show that the length of the Curl F is the magnitude of the circulation per area around the axis where it is maximal. **Problem 8.** (24pts) Let **F** denote the vector field given by $\mathbf{F} = y \mathbf{i} + (x + 2z) \mathbf{j} + (2y - 1) \mathbf{k}$.

(a) Show that $Curl \mathbf{F} = \nabla \times \mathbf{F} = 0$, (implying that \mathbf{F} is conservative).

(b) Find f(x, y, z) such that $\nabla f = \mathbf{F}$.

(c) Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds$ where \mathcal{C} is line from P = (1, 0, 2) to Q = (0, 1, 0).

Problem 9. (22pts) Let $\delta = \delta(x, y, z, t)$ denote the density and $\mathbf{v} = \mathbf{v}(x, y, z, t)$ denote the velocity of a fluid moving through Euclidean three space, so that $\mathbf{F} = \delta \mathbf{v}$ is the mass flux vector. Recall the Divergence Theorem

$$\int \int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int \int \int_{D} Div \mathbf{F} \, dV,$$

which applies to any volume D with bounding surface S, and \mathbf{n} denotes the outward normal to S.

(a) Give the physical meaning of both sides of the equation $\frac{d}{dt} \int \int_D \delta(x, y, z, t) dx dy dz = - \int \int_S \mathbf{F} \cdot \mathbf{n} d\sigma$, and explain in words why this expresses the condition that mass is conserved in the volume D.

(b) Use (a) to derive the continuity equation $\delta_t + Div \ \delta \mathbf{v} = 0$, which expresses that mass is conserved everywhere in the flow.