
Name:

Student ID#:

Section:

Final Exam
Monday March 19, 3:30-5:30pm

MAT 21D, Temple, Winter 2018

Show your work on every problem. Correct answers with no supporting work
will not receive full credit. Be organized and use notation appropriately. No
calculators, notes, books, cellphones, etc. Please write legibly. Please have
your student ID ready to be checked when you turn in your exam.

Problem Your Score Maximum Score

1 25

2 25

3 25

4 25

5 25

6 25

7 25

8 25

Total 200

1



Problem #1 (25pts): (a) Sketch the region of integration Rxy and evaluate
the iterated integral

∫ 0

−1

∫ −x
x2

x2y dydx. (1)

Solution:∫ 0

−1

∫ −x
x2

x2y dydx =

∫ 0

−1
x2
(
y2

2

)y=−x
y=x2

dx =
1

2

∫ 0

−1

(
x4 − x6

)
dx

=
1

2

(
x5

5
− x7

7

)x=0

x=−1
= −1

2

(
(−1)5

5
− (−1)7

7

)
=

1

2

(
1

5
− 1

7

)
=

1

35
.

(b) Rewrite (1) with order of integration reversed. (Do not re-evaluate).

Solution: ∫ 0

−1

∫ −x
x2

x2y dydx =

∫ −y
−√y

∫ 0

−1
x2y dxdy.
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Problem #2 (25pts): Use spherical coordinates (ρ, φ, θ) to find the volume
of the region obtained by removing the cone φ ≤ π/4 from the sphere x2 +
y2 + z2 = 9.

Solution:∫ π

π/4

∫ 2π

0

∫ 3

0

ρ2 sinφ dφdθdρ = 2π

∫ π

π/4

sinφ dφ

∫ 3

0

ρ2 dρ = 2π (− cosφ)ππ/4

(
ρ3

3

)3

0

= 2π

(
1 +

√
2

2

)(
27

3

)
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Problem #3 (25pts): A cannonball is shot out of a canon at angle α to
the ground. Assuming the acceleration of gravity is exactly g = 10m/s2, and
the muzzle velocity of the cannonball is 100m/s, find the angle α such that
the cannonball will hit the ground at a distance of exactly 500 meters.

Solution: The equations are ÿ(t) = −g, ẍ = 0, so integrating twice, and
assuming the initial position is x0 = 0, y0 = 0 at t = 0, gives

y(t) = −1

2
gt2 + vyt, x(t) = vxt,

where vx = v cosα and vy = v sinα, with v = 100 and g = 10. Now the time
t∗ at which x = 500 solves 500 = vxt∗, so

t∗ =
500

vx
.

Asking that y = 0 at t = t∗ gives 0 = −1
2gt

2
∗ + vyt∗, so dividing by t∗ gives

0 = −1

2
g

(
500

vx

)
+ vy.

multiplying by 2vx and moving vxvy to the other side gives

2vxvy = v22 cosα sinα = 500g.

Thus by the double angle formula, using v2 = 10, 000, g = 10, we obtain

sin 2α =
500g

v2
=

5000

10, 000
=

1

2
.

Conclude: 2α = 30o, and so α = 15o = π/12.
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Problem #4 (20pts): (a) Let F = M i+N j+Pk, let C be a smooth curve
that takes A to B, and let ~r(t) be a parameterization of C . Use Leibniz’s
substitution principle to show the following are equal:∫

C

~F · ~T ds =

∫
C

~F · d~r =

∫
C

~F · ~v dt =

∫
C

Mdx+Ndy + Pdz.

Solution: Since ~v = ds
dt
~T, formally substituting ~vdt for ~Tds into the first

integral gives the second. Since ~v = d~r/dt, formally substituting d~r for ~vdt
into the second integral gives the third. Finally, since

d~r

dt
=
dx

dt
i +

dy

dt
j +

dz

dt
k

substituting ~F =
−−−−−−→
(M,N,P ) and d~r =

−−−−−−−→
(dx, dy, dz) into the third integral gives

the fourth.
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(b) Assume further that F = ma, and ~F is conservative, so ~F = −∇P .
Derive the principle of conservation of energy{

1

2
mv2B −

1

2
mv2A

}
+ {P (B)− P (A)} = 0. (2)

(Hint: Integrate
∫
C
~F · ~T ds two different ways.)

Solution: Given r(t) with mr′′(t) = F, we have∫
C

F ·T ds =

∫
C

mv′(t) · v(t) dt =

∫
C

m
1

2

d

dt
(v(t) · v(t)) dt

=
1

2
mv2|tBtA =

1

2
mv2B −

1

2
mv2B.

Integrating another way,

∫
C

F ·T ds =

∫ tB

tA

−∇P · v dt = −
∫ tB

tA

d

dt
P (r(t) dt = − (P (B)− P (A)) .

Setting these two expressions for
∫
C F ·T ds, and putting everything on the

left hand side of the equation, gives (2).
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Problem #5 (25pts): Recall Stokes Theorem:∫
C
F ·T ds =

∫ ∫
S
Curl(F) · n dσ

and Green’s Theorem∫
C
Mdx+Ndy =

∫ ∫
Rxy

Nx −My dA.

(a) Use the definition of the Curl to derive Green’s Theorem from Stokes
Theorem.

Solution:

Curl~F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

M N 0

∣∣∣∣∣∣ = (Nx −My)k, (3)

so putting Curl~F ·n = (Nx−My) into the right hand side of Stokes Theorem,
and assuming the surface S lies in the (x, y) plane, (so S = Rxy), gives the
RHS of Green’s theorem.

For the left hand side, use the fourth equivalence in part (a).
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(b) Let a be any given real number. Use Green’s Theorem to construct a
vector field F(x, y) = M(x, y)i +N(x, y)j such that∫

C
~F · ~Tds = aA,

where A > 0 is the area enclosed by the simple closed curve C.

Solution: We need M and N so that Nx −My = a. So choose N = ax
2 ,

M = ay
2 .

(c) What are the possible values for a if ~F is a conservative vector field?
Explain.

Solution: If ~F is conservative, then Curl~F = 0, so the right hand side of
Stokes Theorem is zero. Therefore the only possible value is a = 0.
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Problem #6 (20pts): (a) Use Stokes Theorem to derive the meaning of
Curl ~F(x0) · n at a point x0 = (x0, y0, z0) as the circulation per area around
axis n at x0.

Solution: Let Dε ≡ Dε(x0) be the disc of radius ε, normal n, and center
x0, and let Cε denote the circular boundary of Dε. Applying Stokes Theorem
gives: ∫

Cε

~F · ~T ds =

∫ ∫
Dε

Curl~F · n dσ. (4)

Now for ε small, the Curl~F ·n on the RHS tends to Curl~F(x0) ·n. Neglecting
the errors which will tend to zero as ε → 0, we can pull the constant out of
the RHS, and solve for Curl~F(x0) · n, to obtain

Curl~F(x0) · n =

∫
Cε
~F · ~Tds

Area (Dε)
+ error,

where the error tends to zero as ε→ 0. Conclude:

Curl~F(x0) · n = lim
ε→0

∫
Cε
~F · ~Tds

Area (Dε)
, (5)

which shows that Curl~F(x0) · n is the circulation per area around axis n at
x0.
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(b) Use the Divergence Theorem to derive the meaning of the Div~F(x0) at
a point x0 = (x0, y0, z0) as the Flux per volume at x0.

Solution: Let Bε ≡ Bε(x0) be the ball of radius ε center x0, and let Sε denote
the spherical boundary of Bε. Applying Divergence Theorem gives:∫ ∫

Sε

~F · ~n dσ =

∫ ∫ ∫
Bε

Div~F dV. (6)

Now for ε small, the Div~F on the RHS tends to Div~F(x0). Neglecting the
errors which will tend to zero as ε → 0, we can pull the constant out of the
RHS, and solve for Div~F(x0), to obtain

Div~F(x0) =

∫ ∫
Sε
~F · ~ndσ

V ol (Bε)
+ error,

where the error tends to zero as ε→ 0. Conclude:

Div~F(x0) = lim
ε→0

∫ ∫
Sε
~F · ~ndσ

V ol (Bε)
, (7)

which shows that Div~F(x0) is the flux per volume at x0.
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Problem #7 (25pts): Let δ ≡ δ(x, y, z, t) denote the density of a gas in
motion, (you can think of air flowing around an airplane), and assume it is
being transported by velocity

v = v(x, y, z, t) = M(x, y, z, t)i +N(x, y, z, t)j + P (x, y, z, t)k.

Let ~F = δv denote the mass flux vector. Now not every density and velocity
field can be a real flow, and the condition it must satisfy in order that mass
be conserved, is the continuity equation

δt +Div(δv) = 0. (8)

Use the Divergence Theorem, and the physical interpretation of Flux, to show
that if (8) holds, then mass is conserved in every volume V ⊂ R2. (Hint,
show the rate at which mass changes in V equals the rate at which mass is
flowing out through the boundary, at each fixed time. Use enough English
words to give an argument that makes sense.)

Solution: Fix an arbitrary volume V ⊂ R3. We show that (8) implies that
mass is conserved in V . For this, integrate (8) over V to get

0 =

∫ ∫ ∫
V

δt +Div(δ~v) dV

=

∫ ∫ ∫
V

δt dV +

∫ ∫ ∫
V

Div(δ~v) dV

=
d

dt

∫ ∫ ∫
V

δ dV +

∫ ∫ ∫
V

Div(δ~v) dV

=
d

dt

∫ ∫ ∫
V

δ dV +

∫ ∫
∂V

δ~v · n dσ

so

d

dt

∫ ∫ ∫
V

δ dV = −
∫ ∫

∂V

δ~v · n dσ.

This last equation expresses that the time rate of change of the mass in V
is equal to the rate at which mass is flowing outward through the boundary,
meaning that mass is conserved in V . Since (8) implies mass is conserved in
every volume, we conclude that (8) implies conservation of mass.
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Problem #8 (25pts): Let S denote the two dimensional surface in the
(x, y)-plane bounded by the ellipse a2 x2 + b2 y2 = 1. Verify Stokes Theorem∫
C
~F · ~Tds =

∫ ∫
S Curl

~F · ~ndσ for ~F = yi − xj by directly evaluating both
sides by explicit parametrization, and showing they are equal.

(a)
∫
C
~F · ~Tds =?

Solution: For a parameterization, use x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.
Then

∫
C

~F · ~Tds =

∫ 2π

0

~F ·~vdt =

∫ 2π

0

(b sin t,−a cos t) ·(−a sin t, b cos t)dt = −2πab.
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(b)
∫ ∫

S Curl
~F · ~ndσ =

Solution: Let u = ax, v = by. Then dσ = dxdy = ∂(u,v)
∂(x,y)dudv = ab dudv,

~n = k, and Curl~F = (Nx −My)k = −2k. Therefore,∫ ∫
S

Curl~F · ~ndσ =

∫ ∫
u2+v2≤1

−2k · k ab dudv = −2πab.

13


