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1. Introduction

In the next four sections we present applications of Stokes
Theorem and the Divergence Theorem. In the first applica-
tion, presented here, we use them to give a physical inter-
pretation of Maxwell’s equation of electromagnetism, and
then reproduce Maxwell’s demonstration that his equations
imply that in empty space, all components of the electric
and magnetic field evolve according to the wave equation,
with a speed c that can be derived by combining the elec-
tric constant and the magnetic constant in the equations.
The value of c was very close to the speed of light, lead-
ing Maxwell to a rigorous proposal for Faraday’s original
conjecture that light actually consisted of oscillations in
electromagnetic fields. This remained controversial until
Heinrich Hertz generated radio waves from spinning mag-
nets some quarter century after Maxwell’s proposal. In
the second application in the next section, we derive the
Rankine-Hugoniot jump conditions from the weak formu-
lation of the equations. In the third application we derive
the compressible Euler equations from the physical princi-
ples of conservation of mass and momentum. And finally,
in the fourth application, we introduce the heat equation
and derive the maximum principle for solutions of Laplace’s
equation, motivating this by the condition that solutions of
the heat equation decay in time to solutions of Laplace’s
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equation, and hence the limit of the heat equation cannot
support a local maximum.

2. Maxwell’s Equation, the Wave Equation, and
the Speed of Light

Maxwell’s equations are a precise formulation Faradays laws
for electromagnetism in the language of PDE’s. The for-
mulation of Maxwell’s equations in the language of modern
vector calculus, as first given by Gibbs, is as follows:

∇ · E =
ρ

ε0
, (1)

∇ ·B = 0, (2)

∇× E = −∂B
∂t
, (3)

∇×B = µ0J + µ0ε0
∂E

∂t
. (4)

The first equation is Gauss’s Law, the second Gauss’s Law
for Magnetism, the third is Faraday’s Law of Induction,
and the fourth equation is Ampere’s Law with Maxwell’s
Correction. I.e., the last term on the RHS of (4) is the so
called magnetic induction term, added in by Maxwell as a
highly educated guess based on symmetry between E and
B in (3) and (4), dimensional analysis to get the constant
µ0ε0 in front of it correct, and his final justification that the
resulting theory produced electromagnetic waves of speed
(
√
µ0ε0)

−1, in close agreement with the speed of light.

We comment here that Maxwell’s original formulation en-
tailed 20 complicated equations. Fortunately for us, late
in the 19th century, Willard Gibbs of Yale University for-
mulated the Stokes Theorem and Divergence Theorems in
terms of the Div and Curl and used this to give the first
incredibly elegant formulation (23)-(8) of Maxwell’s equa-
tions. Here E = (E1, E2, E3) is the electric field, B =
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(B1, B2, B3) is the magnetic field, ρ is the charge density

ρ =
charge

volume
,

and J is the charge flux vector, J = ρu. The two physical
constants in Maxwell’s equations are ε0, µ0,

ε0 = permittivity of free space,

and

µ0 = permeability of free space.

Here ε0 is an electrical constant and µ0 a magnetic constant
that can be determined by experiments involving charges,
currents and magnets alone, and reasonably good approxi-
mations for these constants were known in Maxwell’s time.

To “solve” Maxwell’s equations, one must find functions
E(x, t), B(x, t), ρ(x, t) and u = u(x, t), for each x =
(x, y, z) ∈ R3 and t ≥ 0 that satisfy (1)-(4). In fact,
the equations specify the time derivatives of E and B, but
to close the equations (1)-(4) one would need to augment
(1)-(4) with equations for the evolution of ρ and u, the
fluid of charges in motion. For example, one could couple
Maxwell’e equation to the compressible Euler equations for
ρ and u. But now we are interested in the evolution of
the pure E and B fields in empty space, our goal being
to understand electromagnetic waves that propagate self-
consistently, un-influenced by sources of charges ρ or cur-
rents J. For this case, set ρ = 0, making J = ρu = 0 as
well, so that (1)-(4) close up to form a self-consistent set of
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equations for E and B, namely,

∇ · E = 0, (5)

∇ ·B = 0, (6)

∇× E = −∂B
∂t
, (7)

∇×B = µ0ε0
∂E

∂t
. (8)

Again, the magnetic induction term on the right hand side
of (8) was added onto Ampere’s Law by Maxwell to make
the equations more symmetric in E and B. Essentially,
Maxwell guessed this term, and we’ll see how it is required
for the equations to give the wave equation in each com-
ponent of the E and B fields, with speed c = (ε0µ0)

−1/2.
Since c is very large, the term on the right hand side is very
small, too small to make Faraday aware of it.

For example, once Maxwell had formulated (23)-(8) without
the magnetic induction term, the desire for symmetry be-
tween E in (23) and B in (8) cries out for a term on the RHS
of (8) proportional to ∂E

∂t . But the question then is, what
constant should be taken to sit in front of this term? That
is, how should Maxwell guess this constant when he didn’t
know it ahead of time? Well, equations (1)-(4) contain two
fundamental constants of electricity and magnetism iden-
tified by Faraday, namely, µ0 and ε0. So the simplest cor-
rection would be with a constant determined by ε0 and µ0.
But it has to have the right dimensions. Now since µ0 sits
in front of the first term on the RHS of (4), it’s reason-
able to write the constant in front of the missing term ∂E

∂t
as µ0 times some other constant α0 to be determined, but
given this, how does one “guess” the value of α0? The an-
swer is by dimensional analysis. Namely, it has to have the
right dimensions, and turns out, (we’ll show this below!),
ε0 has exactly the right dimensions to do the trick. That’s
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it then...the first guess for the constant in front of ∂E
∂t on

the right hand side of (8) has to be µ0α0 = µ0ε0 because
this choice introduces no new physical constants, and the
dimensions of α0 are the same as ε0. All of this cries out
for the choice

α0 = ε0.

With this highly educated guess, Maxwell showed that a
consequence of (23)-(8) is that each component of E and B
solves the wave equation with speed c = (

√
µ0ε0)

−1/2, (we
show this below), and using the best experimental values
for µ0 and ε0 known in his time, Maxwell found that c was
very nearly the speed of light. Boing! Maxwell proposed
his equations, and conjectured that light was actually elec-
tromagnetic radiation. But the “proof” came twenty five
years later, when Hertz generated those radio waves from
spinning magnets. This was one of the rare times in history
when a revolutionary new technology, the radio, was insti-
gated by a theoretical prediction that came first, and the
experiments to verify it came second. We now reproduce
Maxwell’s argument.

• So lets first show that the dimensions of α0 are the same as
ε0. First, E is the force experienced by a unit unit charge
in an electric field, so the dimensions of E are force per
charge,

[E] =
[Force]

[Charge]
=
ML

QT 2 .

(Here we let [·] denote the dimensional units of what is in-
side, using L=length, T=time, M=mass, Q=charge, etc.)
We can get the dimensions for the magnetic field from the
Lorentz force law,

F = qE + qv ×B. (9)
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That is, once the fields E(x, t) and B(x, t) are determined
by (1)-(4), the resulting fields will accelerate a (small) charge
q according to (9), where v is the velocity of the charge.
The first term accounts for E being force per charge, but
the additional acceleration due to B comes from the second
term, expressing that the magnetic force is in direction per-
pendicular to both v and B, with magnitude proportional
to the charge q, and also proportional to the magnitude of
v and B as well. Since every term in a physical equation
has the same dimensions, we see from (9) that

[qv ×B] = [qE],

from which it follows that

[B] = [E][v] =
[E]L

T
.

Now if, like Maxwell, we were trying to guess the constant
in front of ∂E

∂t ≡ Et in (4), starting with the assumption
that it equals µ0α0 for some constant α0, then equating
dimensions on both terms on the RHS of (4) gives

[µ0α0Et] = [µ0J],

which yields

[α0] =
[J]

[Et]
=

[ρ][v]T

[E]
=

[ρ]L

[E]
.

But from equation (1) where ε0 first appears,

[ε0] =
[ρ]

[∇× E]
=

[ρ]L

[E]
= [α0],

as claimed.

Conclude: Our proposed α0 must have the same dimen-
sional units as ε0, namely,

[α0] = [ε0] =
L[ρ]

[E]
=
Q2T 2

ML2 ,
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and therefore α0 = ε0 is the simplest and most natural
choice for Maxwell’s guess as to the constant in front of the
proposed ∂E

∂t term on the RHS of (8). By this we under-
stand how Maxwell might have guessed and proposed the
magnetic induction term on the RHS of (8) as µ0ε0

∂E
∂t .

3. The physical interpretation of Maxwell’s
equations by use of Stokes Theorem and the

Divergence Theorem

We next use Stokes Theorem and the Divergence Theorem
to give the physical interpretation of (1)-(4). This phys-
ical interpretation, credited to Faraday, was actually the
starting point of Maxwell’s theory, and from this he set to
put these laws into the language of PDE’s, and in so doing
he discovered the missing magnetic induction term in (4).
In particular, he anchored Faraday’s concept of the electric
and magnetic fields by representing their components as
functions and finding the PDE equations they satisfy. We
now reverse the path that Maxwell took and show how one
can use Stokes Theorem and the Divergence Theorem to
derive the physical interpretation of (1)-(4). The argument
now goes equally well both ways because of Gibb’s nota-
tion for the vector calculus of Div and Curl. We begin by
reviewing Stokes Theorem and the Divergence Theorem.

We first review the fundamental first and second order op-
erators of classical physics. The three linear partial differ-
ential operators of classical physics are the Gradient=∇,
the Curl=∇× and the Divergence=∇·. That is, formally
defining

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
≡ (∂x, ∂y, ∂z) ,
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the Gradient of a scalar function f(x, y, z) ≡ f(x) becomes

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

and for a vector field

F(x) = (M(x), N(x), P (x)),

the Curl and Divergence are defined by

Curl(F) = ∇× F = Det

∣∣∣∣∣∣
i j ,k
∂x ∂y ∂z

M N P

∣∣∣∣∣∣ (10)

= i(Py −Nz)− j(Py −Mz) + k(Nx −My),

Div(F) = ∇ · F = Mx +Ny + Pz. (11)

Note that the Curl(F) is a vector field and the Div(F) is
a scalar function.

The three first order differential operators ∇, Curl, Div
of classical physics are related in a remarkable way as di-
agrammed in Figure A. This is a snapshot way of seeing
that ∇ takes scalar functions with values in R to vector
valued functions with values in R3; Curl takes vector val-
ued functions with values in R3 to vector valued functions
with values in R3; and Div takes vector valued functions
with values in R3 to scalar valued functions with values in
R. The diagram indicates that when written in this order,
taking any two in a row makes zero. This is really two
identities:

Curl(∇f) = 0 (12)

Div(CurlF) = 0. (13)
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Figure A

Three first order linear differential operators of Classical Physics:

(1) Two in a row make zero.

(2) Only Curls solve Div=0, and only Gradients solve Curl=0.

Curl Div∇
RR3R3R

Moreover, an important theorem of vector calculus states a
converse of this. Namely, if a vector field “has no singular-
ites” (i.e., is defined and smooth everywhere in a domain
with no holes), then: (1) If CurlF = 0 then F = ∇f for
some scalar f ; and (2) If DivF = 0, then F = CurlG for
some vector valued function G.

The most important second order operator of classical physics
is the Laplacian ∆, which can be defined in terms of these
by

∆f ≡ ∇2f ≡ Div(∇f) =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 .

In terms of the Lapacian we can write the three funda-
mental second order linear PDE’s of classical physics, the
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Laplace Equation, the Heat Equation and the Wave Equa-
tion,

∆u = 0,

ut − k∆u = 0,

utt − c2∆u = 0,

respectively. We already know that the wave equation is
the equation that propagates information in all directions
at speed c, in the rest frame of the observer.

• Stokes Theorem and the Divergence Theorem are stated
and described in the Figures 1-4 below. By these theo-
rems we obtain a physical interpretation of the three linear
first order operators of classical physics. I.e., we already
know that the gradient of a function ∇f gives the magni-
tude and direction of steepest increase of a function f , and
points perpendicular to the level surface of f through a
given point. Stokes Theorem and the Divergence Theorem
tell us that, at any given point, CurlF ·n is the circulation
per area around axis n in the vector field F, and DivF is
the flux per volume.
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=

Stokes Theorem:

Circulation around the
boundary curve C

Flux of the Curl though
the enclosed surface S

�
C
F · n dA =

� �
S

Curl F · n dA

Figure 1

n

Curl F · n

Curl F

S

T

Closed curve C is the
boundary of surface S

C
dA

Figure 2
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Divergence Theorem:

Integral of Divergence of F
over the enclosed volume Ω=Flux of F through

closed surface S = ∂Ω

� �
S
F · n dA =

� � �
Ω

Div F dV

Figure 3

F · n

Fn

Ω
dA

Closed surface S
enclosing volume Ω

Figure 4
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4. The Charge Flux Vector and the meaning of
Flux

• Before applying Stokes Theorem and Divergence Theo-
rem to Maxwell’s equations, note that both the Divergence
Theorem and Stokes Theorem involve the flux of a vector
field through a surface. So let us recall in a paragraph the
meaning of flux. The flux of a vector field F through a
surface S is defined by

Flux =

∫ ∫
S
F · n dA. (14)

To obtain a physical interpretation of flux, consider a den-
sity ρ ≡ ρ(x, t) that is flowing according to a velocity u.
For example, the compressible Euler equations give the con-
straints on a mass density ρ moving with velocity u when
the momentum changes are driven by the gradient of the
pressure. The vector that describes the local transport of
mass is then the mass flux vector ρu. In Maxwell’s equa-
tions we have a charge density ρ moving with velocity u,
and the charge flux vector J = ρu also appears in the equa-
tions. Whenever you have a density ρ of “stuff per volume”
being transported by velocity u, the vector ρu is the “stuff”
flux vector. Assume for specificity that ρ is charge per
volume. Then F = ρu is the charge flux vector, and its
dimensions are

[ρu] =
Q

L3

L

T
=

M

L2T
.

That is, it measures charge per area time, and when dotted
with the normal to a surface area dA, it gives the mass per
area time passing through dA. Thus on a small area ∆A
on the surface S oriented with normal n,

ρu · n∆A =
Charge

Area · Time∆A =
Charge

T ime
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moving through ∆A. Thus if the surface is discretized into
a grid of N small areas of size ∆Ai as in Figure 5, the
integral for the flux is approximated by the Riemann Sum∫ ∫

S
ρu · n dA = lim

|∆Ai|→0

∑
i

ρiui · ni ∆Ai

= lim
|∆Ai|→0

∑
i

{
charge through ∆Ai

time

}
=

charge through S
time

, (15)

because the sum, in the limit, is the total charge passing
through S per time.

Conclude: The flux (14) of ρu=the charge flux vector
through the surface S is equal to the rate at which charge
is passing through S.

ρiui · ni

ρiui

∆Ai

ni

S

Figure 5

•We now apply Stoke’s Theorem and the Divergence The-
orem to Maxwell’s equations (1)-(4). That is, since (1) and
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(2) involve Divergence we can apply the divergence the-
orem over an arbitrary volume Ω, and since (1) and (2)
involve Curl, we can apply Stokes Theorem over an arbi-
trary surface S with boundary C, and then interpret the
physical principles that result. Starting with (1), integrate
both sides over a three dimensional surface Ω bounded by
surface S = ∂Ω to obtain∫ ∫ ∫

Ω
DivE dV =

∫ ∫
S
E · n dA

on the left hand side of (1), and∫ ∫ ∫
Ω

ρ

ε0
dV =

1

ε0
{total charge in Ω} .

Equating the two we obtain Gauss Law: The total charge
within a closed surface S = ∂Ω is equal to the total flux
of electric field lines passing through S, [times the constant
ε0.]

Applying the same argument to equation (2) yields:∫ ∫ ∫
Ω
DivB dV =

∫ ∫
S
B · n dA = 0.

In words we have Gauss Law for B: The total flux of mag-
netic field lines through any closed surface S = ∂Ω is zero.
This is diagrammed in Figure 6. The point is that the
field lines enter with a B vector pointing inward through
S and the field lines exiting point outward, so dotting with
the outward normal, on average, cancels out the total flux.
Note that E and B are not mass or charge or any other
kind of “stuff” flux vector formed by ρu, so the flux of E or
B is not a charge per time or mass per time flowing through
S. Moreover, the vector fields E and B do not come to us
as tangent vectors to particle trajectories like the velocity
u of a fluid of mass or charge. But we can still talk about
the “field lines” as the integral curves of the electric and
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magnetic fields as solutions of first the order ODE’s

ẋ = E(x, t),

and

ẋ = B(x, t),

respectively. It is very useful to have the analogy of mass
and charge flux vectors in mind when we say the total flux
of B through S is zero.

The left hand side of (3) is Curl e, so to apply Stokes the-
orem, dot both sides of (3) by n and integrate over any
surface S with normal n and boundary curve C to obtain∫ ∫

S
CurlE · n dA =

∫
C
E ·Tds, (16)

from the left hand side, and

− d

dt

∫ ∫
S

B dA. (17)

from the right hand side of (3). Together they give∫
C
E ·Tds = − d

dt

∫ ∫
S

B dA. (18)

Here T is the unit tangent vector to the curve C, related
to n by the right hand rule, (see Figure 7). Now the line
integral of E on the left in (18) is the circulation in E
around the closed curve C because it is the sum of the
components of E tangent to the curve weighted with respect
to arclenth ds. Thus in words, Faraday’s Law in the form
(18) says: The circulation in E around the boundary curve
C is equal to minus the time rate of change of the flux of
magnetic field lines through any surface S it bounds.

Now the line integral for the circulation in E around C is
also the integral of force times distance, which is work done
by the force field E—except E is really force per charge
according to the Lorentz Force Law (9). So the circulation
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in E around C gives the work done, or energy added, to
a unit charge as it moves around the loop. This is then
the potential difference around a circuit C. Conclude that
Faraday’s Law implies that changing magnetic field lines
can create currents just like a battery can. It also tells us
how currents create magnetic fields.
Finally, consider Ampere’s Law (4) with Maxwell’s correc-
tion term. Dotting both sides of (4) with respect to n and
integrating over a surface S with normal n and applying
Stokes Theorem as in (3) we obtain∫ ∫

S
CurlB · n dA =

∫
C
B ·Tds, (19)

from the left hand side, and

µ0

∫ ∫
S
Curl J · n dA+ µ0ε0

d

dt

∫ ∫
S

B dA (20)

from the right hand side of (4). Together they give∫
C
B ·Tds = µ0

∫ ∫
S
Curl J · n dA+ µ0ε0

d

dt

∫ ∫
S

E dA.(21)

Now since J = ρu is the charge flux vector, we have shown
above that the first flux integral on the right hand side
of (21) is the charge per time passing through S. Thus in
words, Ampere’s Law in the form (21) says: The circulation
in B around the boundary curve C equal µ0 times the rate at
which charge is passing through S plus the rate of change of
the flux of electric field lines through S. Maxwell’s proposal
was that not just moving charges could produce magnetic
fields, but changing electric fields could do it as well. In the
case of (23)-(8) when there are no charges or currents, this
establishes a symmetry between electric and magnetic field
such that changing fluxes of either one generated circulation
in the other. It is natural then to wonder whether electric
and magnetic fields could be self-generating. We conclude
by showing that as a consequence of Maxwell’s equations



18

(23)-(8), each component of E and B satisfy the wave equa-
tion with speed c = (µ0ε0)

1/2, the speed of light. Maxwell’s
extra term established that electromagnetic waves propa-
gate at the speed of light, an idea that changed the course
of science.

Figure 6

∆Ai

S
B

n

B

n

The flux of B going in
plus the flux out is zero
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n

S

T

CdA

Figure 7

The potential difference ≡ the circulation in E around C
equals

The time rate of change in the flux of B=through S.

“Changing magnetic field lines can create electrical currents.”

B

E

Summary: Maxwell actually reversed the steps above and
derived the equations (1) − (4) from Faraday’s exposition
of the principles we uncovered by Stokes Theorem and the
Divergence Theorem. The notation of Div and Curl came
from Gibbs who reformulated Maxwell’s original twenty
equations into the four equations (1)− (4). We next show
how the judicious choice of the constant µ0ε0 in front of the
Et term on the right hand side of (4) has the implication
that (23)-(8) imply self-sustaining electromagnetic waves
that propagate at the speed of light.

5. Connecting Maxwell’s equations to light by
means of the wave equation

We now demonstrate that solutions E(x, t),B(x, t) of (23)-
(8) have the property that each component of E and Bsatisfy
the wave equation with speed c = (µ0ε0)

−1/2. The only fact
we need from vector calculus is the following identity:

∇× (∇× F) = ∇(∇ · F)−∆F. (22)
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Essentially, since CurlF is a vector field, and it makes sense
to take the curl of it again, and the result is some expression
in second order derivatives of F, and a calculation (omitted
here) yields (22).

Armed with (12)-(22) we proceed as follows: First taking
the curl of both sides of (25) yields:

∇× (∇× E) = −∇× ∂

∂t
B = − ∂

∂t
∇×B,

where we used the fact that partial derivatives commute.
Using the identity (22) on the left hand side and (25) on
the right hand side yields

∇(∇ · E)−∆E = − ∂
∂t
µ0ε0

∂E

∂t
.

Since ∇ · E = 0 by (23), we obtain

∂2E

∂t2
− 1

µ0ε0
∆E = 0,

where the second time derivative on the left hand side and
the Laplacian on the right hand side are taken on each
component of the vector E. This then achieves half of our
result: each component of E solves the wave equation with
speed c = (µ0ε0)

−1/2.

Similarly for the B field, take the curl of both sides of (25)
to obtain

∇× (∇×B) = −µ0ε0
∂

∂t
∇× E,

so again by (22) and (25) we obtain

∇(∇ ·B)−∆B = − ∂
∂t
µ0ε0

∂B

∂t
.

Since ∇ ·B = 0 by (23), we obtain

∂2B

∂t2
− 1

µ0ε0
∆B = 0,
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thereby showing that the components of B also solve the
wave equation with speed c = (µ0ε0)

−1/2. Note that from
the point of view of the wave equation, the speed comes
from the coefficient µ0ε0, so in principle by replacing ε0 by
α0 we could achieve the wave equation for any speed c,
making the dimensional analysis and the simplest choice
arguments for ε0 = α0 very important for the discovery of
electromagnetic waves.

6. Maxwells equations as evolution by the wave
equation with constraints on the initial data

Now that we have shown that each component of the
electric and magnetic fields E and B propagate accord-
ing to the wave equation, it makes sense to ask in what
sense are Maxwell’s equations (23)-(8) any more than just
a complicated reformulation of the wave equation. The
answer provides a powerful new way to understand how
Maxwell’s equations propagate the electric and magnetic
fields in time. That is, we have shown that the components
of E and B solve the wave equation, a second order PDE.
Thus starting from the initial fields at an initial time t = 0,
the wave equation, being second order, requires the values
of the solution and its first time derivative as initial condi-
tions: the values of E, B as well as Et, Bt are the initial
conditions at t = 0 that determine the solution for all time
t > 0. (We have shown this in one dimension but it holds
true in 3-space dimensions as well.) Thus, since Maxwell’s
equations are equations in the first derivative of E and B,
it follows that these are constraints that must be met by
the initial conditions at t = 0 at the start, before the prop-
agation by the wave equation takes over. The next theorem
verifies that any solution E(x, t) and B(x, t) that solves the
wave equation, and meets the Maxwell equations at time
t = 0, has the property that the fields meet the Maxwell
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equations at every future time t > 0 as well. The picture
then is clear: Maxwell’s equations are constraints on the
initial data that get propagated in time when the fields
are subsequently evolved in time by the evolution of the
wave equation. Since the wave equation can be thought
of as the equation that propagates the solution in every
direction at speed c, we see that each component of the
electric and magnetic fields propagates at speed c in ev-
ery direction, but all the components are constrained to be
related to each other in a complicated way at each time ac-
cording to the Maxwell equations (23)-(8). And the these
constraints, once met by the initial data, are met at every
future time as the fields evolve in time at speed c. In fact,
Albert Einstein modeled the equations of general relativ-
ity after Maxwell’s equations in this very way, in the sense
that the equations for the curvature of spacetime are non-
linear wave equations that propagate the gravitational field
at speed c, but the field must meet a first order constraint
on the initial data which, once satisfied initially, is satisfied
at every future time. The reason the equations of general
relativity are nonlinear and the Maxwell’s equations are
linear even though both electromagnetic waves and gravity
waves propagate at speed c in all directions according to
the equations, is because in general relativity, the space-
time through which the gravity waves propagate is itself an
unknown that evolves according to Einstein’s equations. It
takes a class in differential geometry to make precise sense
of this statement.

Theorem 1. Assume that all components of E and B evolve
according to the wave equation, such that at some initial
time t = 0, the initial data for these wave equations sat-
isfies Maxwell’s equations (23)-(8). Then E and B satisfy
(23)-(8) at every later time t > 0 as well.
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Proof: Assume the components of E and B evolve accord-
ing to the wave equation. We need only show that as a
consequence of the wave equation, the time derivative of
each equation (23)-(8) is zero. (Then if they start zero,
they stay constant, and hence stay zero!)

∂

∂t
{∇ · E} = ∇ · Et (23)

= ∇ ·
{

1

ε0µ0
∇×B

}
=

1

ε0µ0
Div (CurlB) = 0

where we have used that mixed partial derivatives commute
together with (8) to replace the time derivative of B with
a multiple of the curl. Note how beautifully the result of
Figure 13, that Curl followed by Div is always zero, comes
into play. Similarly,

∂

∂t
{∇ ·B} = 0. (24)

For the two Maxwell equations that involve the time deriva-
tives and the Curl, write

∂

∂t
{∇ × E + Bt} = ∇× Et + Btt (25)

=
1

µ0ε0
∇× (∇×B) + Btt

=
1

µ0ε0
{∇(∇ ·B)−∆B}+ Btt

= Btt − 1

µ0ε0
∆B = 0

because ∇ · B = DivB = 0, because of the formula (22)
for the Curl of the Curl, and because we assume B solves



24

the wave equation in each component. This competes the
proof of the theorem. �

Homework: Show that the Maxwell equations (6) and (8)
are constant in time under the assumption that all compo-
nents of E and B solve the wave equation.

7. Summary

The wave equation has played an incredible role in the
history of physics. The equation was first proposed by
D’Alembert in the late 1740s as a model for the vibrations
of a string, some seven decades after Newton’s Principia in
1687. His idea was that if u(x, t) is the displacement of a
string from equilibrium, then utt represents the continuum
version of acceleration in Newton’s force law F = ma, and
for weak vibrations of a string, the force should be pro-
portional to the curvature of the string uxx, leading to the
equation utt − c2uxx = 0. A few years after that, his col-
league in St Petersburg, Leonhard Euler, in the court of
Catherine the Great, derived the compressible Euler equa-
tions, linearized them, and discovered that the density in
air supports waves that solve the same wave equation. This
established the framework for the (linearized) theory of
sound, with modes of vibration and linear superposition of
waves, and all the rest. The picture of sound wave propaga-
tion was then clear: vibrating strings support oscillations
that propagate at a constant speed according to the wave
equation, and the vibrations of the string create vibrations
in the air that transmit at a constant speed according to
the same wave equation, but with a different speed, the
speed of sound. Thus, in the mid-seventeeth century, the
wave equation showed up to resolve arguably the greatest
scientific problem of the day, namely, what is sound—and
perhaps the great question of their day— what makes their
beloved and godly violin sound so beautiful!
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But in the middle of the next century, the wave equation re-
turned to lead the way, when Maxwell formulated Faraday’s
Laws of electromagnetism as a system of linear PDE’s.
Picking up on Faraday’s proposal that light might consist of
self-sustaining electromagnetic waves, he crafted his equa-
tions into a form in which the components of the field sat-
isfied the wave equation, with a speed chosen, among the
constants available, to agree with the speed of light. Thus
in the most natural way, the electric and magnetic fields
would satisfy the wave equation and thereby support the
transmission of waves at the speed of light, and his proposal
that light consisted of electromagnetic waves propagating
at the speed of light was as solid as the wave equation itself.
Thus, a century after Euler, the wave equation showed up
again to solve arguably the greatest problem of that day,
namely, what is light. And the answer, confirmed by Hein-
rich Hertz two decades later, began the modern age with
the principles sufficient to build a radio, and all else that
followed.

But then there was a major problem with Maxwell’s equa-
tions. Unlike the linearized sound waves obtained from
the compressible Euler equations, Maxwell’s equations pre-
sumed no medium for the waves to propagate within. In-
deed, as we showed, the wave equation can only hold in a
frame fixed with the medium of propagation, for only in
this frame can all waves generated by the wave equation
move at equal speed in all directions. Based on this, sci-
entists proposed the existence of an “ether”, an invisible
medium that set the frame of reference for Maxwell’s wave
equations, something like the rest frame of the gas in Eu-
ler’s equations. Then in 1905, Albert Einstein began the
modern age of physics by proposing that the wave equation
for electromagnetism was fundamentally correct in every in-
ertial frame, and that space and time were entangled in a
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new way to make it so. Thus, the wave equation, resonantly
tuned, so to speak, with spacetime itself, held the secret of
space and time. That is, encoded within the wave equation
were the spacetime transformations that preserve its form,
and assuming electromagnetic waves were resonantly tuned
to propagate the same in every inertial coordinate system,
the very essence of spacetime was coaxed, not directly from
the experiments, but from the wave equation derived from
them. Thus for a third century in a row, the wave equation
showed up to solve arguably the greatest scientific problem
of that era.

It is interesting to note the fundamental difference between
light propagation and sound wave propagation. Maxwell’s
equations are linear, but the compressible Euler equations
are nonlinear. Thus we have seen [topics of MAT22C] that
although weak vibrations in the air lead to the linear theory
of sound that we all love, the nonlinearities drive strong vi-
brations into shock waves, leading to shock wave dissipation
and the attenuation of signals by shock wave dissipation.
In contrast, Maxwell’s equations for light transmission are
linear at the fundamental starting point. In particular, this
means that the principle of linear superposition holds. As a
consequence, billions of signals can be superimposed at one
end of a transmission, the superposition remains intact dur-
ing transmission, and the signal can then be decoded at the
other end—and there are no nonlinearities and consequent
shock wave dissipation present to destroy the signals. The
linearity of Maxwell’s equations goes a long way toward
explaining why so many cell phones can operate over such
long distances, all at the same time!
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