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Show your work on every problem. Correct answers with no supporting work
will not receive full credit. Be organized and use notation appropriately. No
calculators, notes, books, cellphones, etc. may be used on this exam. Please
write legibly. Please have your student ID ready to be checked when you
turn in your exam.
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4 20

5 20
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Problem #1 (20pts): A particle of mass m = 2 moves along a trajectory
given by

r(t) = a cos bt i + a sin bt j + ct k,

where t is in seconds, r is in km, and a, b, c are dimensional constants. Find
formulas for the following in terms of a, b, c:

(a) The velocity vector v(t)

(b) The speed ds

dt
= v(t)

(c) The acceleration vector a(t)

(d) The unit tangent vector T(t)
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(e) The unit normal N(t)

(f) The curvature κ(t).

(g) The length of the component of a(t) in direction of N.
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Problem #2 (20pts): Let C denote the unit circle oriented counter-clockwise,
and let F = yi − xj.

(a) Evaluate the line integral
∫
C
F · Tds directly by parameterization.

(b) Evaluate
∫
C
F ·Tds by Green’s Theorem.
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Problem #3 (20pts): Find the following assuming

F(x, y, z) = 2xyzi + (x2z + 2y)j + (x2y + 1)k.

(a) Div F

(b) Curl F
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(c) Find f such that F = ∇ f

(d) Evaluate
∫
C

F ·T ds along any smooth curve C taking A = (−1, 1, 2) to
B = (1, 1,−1).
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Problem #4 (20pts): (a) Let F = M i + Nj + Pk be a vector field,
where M, N, P are assumed to be given functions of (x, y, z). Use Leibniz’s

substitution principle to show the following are equal: (Here r(t) denotes any
parameterization of curve C .)∫

C

F · T ds =

∫
C

F · dr =

∫
C

F · v dt =

∫
C

Mdx + Ndy + Pdz.
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(b) Assume further that F = −∇P for some scalar function P (x, y, z), and
that F = ma is the total force creating the motion of a particle along a curve

r(t) between two points of motion r(ta) = A and r(tb) = B. State and prove
the principle of Conservation of Energy. Give complete arguments. (Hint:
evaluate the line integral

∫
C

F · T ds two different ways.)
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Problem #5 (20pts): Let r(t) = x(t)i+ y(t)j be the trajectory of a planet
moving in a plane with the Sun at the center (x, y) = 0. In the Newton-Kepler

problem we showed that if x = r cos θ and y = r sin θ, then differentiating
r(t) twice and simplifying (using equal area in equal time) led to

ẍ cos θ + ÿ sin θ = r̈ −
H2

r3
(1)

−ẍ sin θ + ÿ cos θ = 0. (2)

Use these to solve for the acceleration vector a = r̈ = ẍi + ÿj, and show that

the acceleration vector points in the direction of the position vector r(t), (i.e.,
toward the sun).
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