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Problem #1 (20pts): A particle moves along a trajectory given by

~r(t) = a sinωt i + a cosωt j + a t k.

(a) Find a formula for the velocity vector ~v(t), the speed v = ds
dt , and the

unit tangent vector ~T.

Solution:
~v(t) = ~r′(t) = ωa cosωt i− ωa sinωt j + a k,

so
ds

dt
= ‖~v‖ =

√
ω2a2 cos2 ωt+ ω2a2 sin2 ωt+ a2 = a

√
1 + ω2.

Thus
~T =

~v

‖~v‖
=
ω cosωt i− ω sinωt j + k√

1 + ω2

(b) Find a formula for the acceleration vector ~a(t), and find tangential and
normal components of the acceleration aT , aN such that ~a(t) = aT ~T+ aN ~N.

Solution:
~a(t) = ~r′′(t) = −ω2a sinωt i− ω2a cosωt.

Since clearly ~a(t) · ~T = 0, it follows that ~a(t) = 0 · ~T + aN ~N, so

~a(t) = ~r′′(t) = ω2a {− sinωt i− cosωt j} = ω2a~N,

because ~a is a positive multiple of ~N. Thus aT = 0, aN = ω2a.
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Problem #2 (20pts): Consider the following vector field in R3.

~F(x, y, z) =
{

4x3y3
}
i + (3x4y2 − 2yz3)j + (−3y2z2 + 2)k.

Solution:

∂P

∂y
− ∂N

∂z
=

∂

∂y
(−3y2z2 + 2)− ∂

∂z
(3x4y2 − 2yz3) = 0

−
{
∂P

∂x
− ∂M

∂z

}
= −

{
∂

∂x
(−3y2z2 + 2)− ∂

∂z
(4x3y3)

}
= 0

∂N

∂x
− ∂M

∂y
=

∂

∂x
(3x4y2 − 2yz3)− ∂

∂y
(4x3y3) = 0

(a) Show ~F is irrotational (satisfies Curl ~F = 0), and hence conservative,
(because R3 is simply connected).
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(b) Find a scalar function f such that ~F = ∇f .

(c) Compute
∫
C
~F · ~T ds along the hypo-centrific-unimodular-cantankeron,

an extremely complicated smooth curve that takes A = (0, 0, 0) to B =
(1,−1, 1).
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Problem #3 (20pts): (a) Let r =
√
x2 + y2. Calculate

∫
C F ·Tds directly,

where C is the unit circle oriented counterclockwise, and

~F =
−y
r2

i +
x

r2
j.

Solution: Let ~r(t) = (cos t, sin t), 0 ≤ t ≤ 2π, and integrate as follows:

∫
C

~F · ~T ds =

∫ 2π

0

~F · ~v dt =

∫ 2π

0

(−y, x) · (− sin t, cos t) dt

=

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt =

∫ 2π

0

dt = 2π.
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(b) Calculate Curl ~F.

Solution: Using rx = x
r , etc, calculate

Curl ~F = {Nx −My}k =

{(
1

r2
− 2

x2

r4

)
+

(
1

r2
− 2

y2

r4

)}
= 0

(c) Reconcile (a) and (b) with Green’s Theorem.

Solution: Green’s theorem reads:
∫
C
~F · ~Tds =

∫ ∫
A Curl ~F · ~k dA for any

positively oriented curve C in the plane surrounding area A. Now Curl ~F = 0
appears to make the RHS zero, when the left hand side is 2π, but in fact, the
RHS does not have Curl ~F = 0 at r = 0, so we cannot conclude from Green’s
Theorem that the RHS is zero.
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Problem #4 (20pts): (a) Let F = M i+N j+Pk, let C be a smooth curve
that takes A to B, and let ~r(t) be a parameterization of C . Use Leibniz’s
substitution principle to show the following are equal:∫

C

~F · ~T ds =

∫
C

~F · d~r =

∫
C

~F · ~v dt =

∫
C

Mdx+Ndy + Pdz.

~F·~Tds = ~F·~vdt = ~F·d
~r

dt
dt = ~F·d~r = (M,N,P )·(dx, dy, dz) = Mdx+Ndy+Pdz
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(b) Assume further that F = ma, and ~F is conservative, so ~F = −∇P .
Derive the principle of conservation of energy{

1

2
mv2B −

1

2
mv2A

}
+ {P (B)− P (A)} = 0.

(Hint: Integrate
∫
C
~F · ~T ds two different ways.)

Let C be the trajectory of a curve taking A to B parameterized by ~r(t), where
t is the time so ~a(t) = ~r′′(t) is the acceleration, a ≤ t ≤ b. Then first

∫
C

~F · ~T ds = −
∫ b

a

∇P · ~v dt = −
∫ b

a

d

dt
P (~r(t)) dt = −(P (B)− P (A)

Also

∫
C

~F · ~T ds = −
∫ b

a

m~a · ~v dt = −m
∫ b

a

d

dt
(~v · ~v) dt = −1

2
mv2B −

1

2
mv2B

Thus {
1

2
mv2B −

1

2
mv2A

}
+ {P (B)− P (A)} = 0.
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Problem #5 (20pts): Consider Kepler’s Laws under the simplifying as-
sumption that the planets move in circular orbits with the sun at the center,
(not a terrible approximation). In this case, each planet moves around a
circle with position vector

~r(t) = R cosωt i +R sinωt j, (1)

where R and ω are constants which depend on the planet, and t is the time.
(Assuming r = R constant in (1) makes the orbit circular, and ω = const im-
plies equal area in equal time, guaranteeing Kepler’s first two laws.) Assume
Kepler’s third law

T 2

R3
= K, (2)

where T is the period of the planet’s rotation and K is a constant independent
of the planet. Use (1) and (2) to derive Newton’s Law of gravity

~a = −G
~r

r3
,

for circular orbits (1), and determine the value of the constant G.

Solution: The period T of (1) satisfies ωT = 2π, so T = 2π/ω. Now
differentiating (1) twice gives

~a = ~r′′(t) = −ω2~r,

and since T 2 = 4π2/ω2, we can use (2) to get

4π2

ω2R3
= K, so ω2 =

4π2

KR3
.

Putting this into the above formula for ~a gives

~a = −4π2

K

~r

R3
,

which, since r = R on circular orbits, gives Newton’s law of gravity with
G = 4π2

K .
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(Continued...)

Extra Credit (2pts): Albert Einstein said J. Willard Gibbs was the greatest
American Physicist of all time. Name one thing he did.

Solution: Gave the modern expression of vector calculus; Modern theory of
Thermodynamics.
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