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1. INTRODUCTION

In the next four sections we present applications of Stokes
Theorem and the Divergence Theorem. In the first applica-
tion, presented here, we use them to give a physical inter-
pretation of Maxwell’s equation of electromagnetism, and
then reproduce Maxwell’s demonstration that his equations
imply that in empty space, all components of the electric
and magnetic field evolve according to the wave equation,
with a speed c that can be derived by combining the elec-
tric constant and the magnetic constant in the equations.
The value of ¢ was very close to the speed of light, lead-
ing Maxwell to a rigorous proposal for Faraday’s original
conjecture that light actually consisted of oscillations in
electromagnetic fields. This remained controversial until
Heinrich Hertz generated radio waves from spinning mag-
nets some quarter century after Maxwell’s proposal. In
the second application in the next section, we derive the
Rankine-Hugoniot jump conditions from the weak formu-
lation of the equations. In the third application we derive
the compressible Euler equations from the physical princi-
ples of conservation of mass and momentum. And finally,
in the fourth application, we introduce the heat equation
and derive the maximum principle for solutions of Laplace’s
equation, motivating this by the condition that solutions of
the heat equation decay in time to solutions of Laplace’s
equation, and hence the limit of the heat equation cannot

support a local maximum.
1
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2. MAXWELL’S EQUATION, THE WAVE EQUATION, AND
THE SPEED OF LIGHT

Maxwell’s equations are a precise formulation Faradays laws
for electromagnetism in the language of PDE’s. The for-
mulation of Maxwell’s equations in the language of modern
vector calculus, as first given by Gibbs, is as follows:

VE=12 (1)
€0
V-B = 0, (2)
0B
VXE = —E, (3)
OE
VxB = M0J+/~00605- (4)

The first equation is Gauss’s Law, the second Gauss’s Law
for Magnetism, the third is Faraday’s Law of Induction,
and the fourth equation is Ampere’s Law with Maxwell’s
Correction. I.e., the last term on the RHS of (77?) is the so
called magnetic induction term, added in by Maxwell as a
highly educated guess based on symmetry between E and B
in (?77) and (?7?), dimensional analysis to get the constant
Lo€o in front of it correct, and his final justification that the
resulting theory produced electromagnetic waves of speed
(v/Ro€o) ™!, in close agreement with the speed of light.

We comment here that Maxwell’s original formulation en-
tailed 20 complicated equations. Fortunately for us, late
in the 19th century, Willard Gibbs of Yale University for-
mulated the Stokes Theorem and Divergence Theorems in
terms of the Div and C'url and used this to give the first
incredibly elegant formulation (?7?)-(??) of Maxwell’s equa-
tions. Here E = (FEy, Es, E3) is the electric field, B =
(B1, By, B3) is the magnetic field, p is the charge density

charge

volume’
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and J is the charge flux vector, J = pu. The two physical
constants in Maxwell’s equations are ¢, g,

€p = permittivity of free space,

and

(o = permeability of free space.

Here ¢ is an electrical constant and py a magnetic constant
that can be determined by experiments involving charges,
currents and magnets alone, and reasonably good approxi-
mations for these constants were known in Maxwell’s time.

To “solve” Maxwell’s equations, one must find functions
E(x,t), B(x,t), p(x,t) and u = u(x,t), for each x =
(x,9,2) € R® and t > 0 that satisfy (??)-(??7). In fact,
the equations specify the time derivatives of E and B, but
to close the equations (?7)-(??) one would need to aug-
ment (?77)-(?7) with equations for the evolution of p and
u, the fluid of charges in motion. For example, one could
couple Maxwell’e equation to the compressible Euler equa-
tions for p and u. But now we are interested in the evo-
lution of the pure E and B fields in empty space, our goal
being to understand electromagnetic waves that propagate
self-consistently, un-influenced by sources of charges p or
currents J. For this case, set p = 0, making J = pu = 0
as well, so that (??7)-(??) close up to form a self-consistent
set of equations for E and B, namely,

V.E = 0 (5)
V.B = 0, (6)
0B
VxE = _§7 (7)
E
VxB = /10606—. (8)

ot
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Again, the magnetic induction term on the right hand side
of (7?7) was added onto Ampere’s Law by Maxwell to make
the equations more symmetric in E and B. Essentially,
Maxwell guessed this term, and we’ll see how it is required
for the equations to give the wave equation in each com-
ponent of the E and B fields, with speed ¢ = (egpuo) /2.
Since c is very large, the term on the right hand side is very
small, too small to make Faraday aware of it.

For example, once Maxwell had formulated (?7)-(?7?) with-
out the magnetic induction term, the desire for symmetry
between E in (??) and B in (?7) cries out for a term on the
RHS of (??7) proportional to %—?. But the question then is,
what constant should be taken to sit in front of this term?
That is, how should Maxwell guess this constant when he
didn’t know it ahead of time? Well, equations (?7)-(?7?)
contain two fundamental constants of electricity and mag-
netism identified by Faraday, namely, po and ¢,. So the
simplest correction would be with a constant determined
by €p and . But it has to have the right dimensions. Now
since pi sits in front of the first term on the RHS of (?7),
it’s reasonable to write the constant in front of the missing
term %—Et] as [y times some other constant o to be deter-
mined, but given this, how does one “guess” the value of
ay? The answer is by dimensional analysis. Namely, it has
to have the right dimensions, and turns out, (we’ll show this
below!), €y has exactly the right dimensions to do the trick.
That’s it then...the first guess for the constant in front of
%—];3 on the right hand side of (??) has to be ppay = po€o
because this choice introduces no new physical constants,
and the dimensions of «g are the same as ¢;. All of this

cries out for the choice

an = €.



5

With this highly educated guess, Maxwell showed that a
consequence of (?77)-(?7) is that each component of E and
B solves the wave equation with speed ¢ = (y/figeg) /2, (we
show this below), and using the best experimental values
for pp and €y known in his time, Maxwell found that ¢ was
very nearly the speed of light. Boing! Maxwell proposed
his equations, and conjectured that light was actually elec-
tromagnetic radiation. But the “proof” came twenty five
years later, when Hertz generated those radio waves from
spinning magnets. This was one of the rare times in history
when a revolutionary new technology, the radio, was insti-
gated by a theoretical prediction that came first, and the
experiments to verify it came second. We now reproduce
Maxwell’s argument.

e So lets first show that the dimensions of o are the same as
€p. First, E is the force experienced by a unit unit charge
in an electric field, so the dimensions of E are force per
charge,
B [Force] ML

B = [Charge] QT2
(Here we let [-] denote the dimensional units of what is in-
side, using L=length, T=time, M =mass, ()=charge, etc.)
We can get the dimensions for the magnetic field from the
Lorentz force law,

F = ¢E + ¢qv x B. 9)

That is, once the fields E(x,t) and B(x,t) are determined
by (??7)-(77?), the resulting fields will accelerate a (small)
charge ¢ according to (?7?), where v is the velocity of the
charge. The first term accounts for E being force per
charge, but the additional acceleration due to B comes from
the second term, expressing that the magnetic force is in
direction perpendicular to both v and B, with magnitude
proportional to the charge ¢, and also proportional to the
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magnitude of v and B as well. Since every term in a phys-
ical equation has the same dimensions, we see from (77?)
that

[qv x B] = [¢E],
from which it follows that
B] = [E]le] = o

Now if, like Maxwell, we were trying to guess the constant

in front of %]f = E; in (77), starting with the assumption

that it equals ppag for some constant ag, then equating
dimensions on both terms on the RHS of (77) gives

(o Er] = [1oJ],
which yields

3 _ )T _ [l
] B [E

] =

But from equation (?77?) where ¢, first appears,

o] = o] [plL
[V x E] [E]

= o],

as claimed.

Conclude: Our proposed oy must have the same dimen-
sional units as €y, namely,

040 60 [E] - ML2 9
and therefore oy = ¢y is the simplest and most natural

choice for Maxwell’s guess as to the constant in front of
the proposed %—E‘ term on the RHS of (?7). By this we
understand how Maxwell might have guessed and proposed
the magnetic induction term on the RHS of (?7?) as poe0 2.



3. THE PHYSICAL INTERPRETATION OF MAXWELL’S
EQUATIONS BY USE OF STOKES THEOREM AND THE
DIVERGENCE THEOREM

We next use Stokes Theorem and the Divergence Theorem
to give the physical interpretation of (??)-(?7). This phys-
ical interpretation, credited to Faraday, was actually the
starting point of Maxwell’s theory, and from this he set to
put these laws into the language of PDE’s, and in so doing
he discovered the missing magnetic induction term in (77).
In particular, he anchored Faraday’s concept of the elec-
tric and magnetic fields by representing their components
as functions and finding the PDE equations they satisfy.
We now reverse the path that Maxwell took and show how
one can use Stokes Theorem and the Divergence Theorem
to derive the physical interpretation of (??)-(??). The ar-
gument now goes equally well both ways because of Gibb’s
notation for the vector calculus of Div and Curl. We begin
by reviewing Stokes Theorem and the Divergence Theorem.

We first review the fundamental first and second order op-
erators of classical physics. The three linear partial differ-
ential operators of classical physics are the Gradient=V,
the Curl=V x and the Divergence=V-. That is, formally
defining

o o0 0
V— <%75_y’£) :(ax7ay7az)7

the Gradient of a scalar function f(z,y, z) = f(x) becomes

_(9f 9of of
Vf— (%7@7%)7

and for a vector field

F(x) = (M(x), N(x), P(x)),



8

the Curl and Divergence are defined by

i j Lk
Curl(F) = VxF=Det| 0, 0, 0, (10)
M N P

Div(F) = V-F =M, +N,+P.. (11)

Note that the Curl(F) is a vector field and the Div(F) is
a scalar function.

The three first order differential operators V, Curl, Div
of classical physics are related in a remarkable way as di-
agrammed in Figure A. This is a snapshot way of seeing
that V takes scalar functions with values in R to vector
valued functions with values in R?; Curl takes vector val-
ued functions with values in R? to vector valued functions
with values in R3; and Div takes vector valued functions
with values in R? to scalar valued functions with values in
R. The diagram indicates that when written in this order,
taking any two in a row makes zero. This is really two
identities:

Curl(Vf) =0 (12)
Div(CurlF) = 0. (13)



Three first order linear differential operators of Classical Physics:
(1) Two in a row make zero.

(2) Only Curls solve Div=0, and only Gradients solve Curl=0.

Figure A

Moreover, an important theorem of vector calculus states a
converse of this. Namely, if a vector field “has no singular-
ites” (i.e., is defined and smooth everywhere in a domain
with no holes), then: (1) If CurlF = 0 then F = V f for
some scalar f; and (2) If DivF = 0, then F = CurlG for
some vector valued function G.

The most important second order operator of classical physics
is the Laplacian A, which can be defined in terms of these
by

. *f  *f  0f
pr— 2 pu— pr—
Af=V*f = Div(Vf) 8x2+8y2+822'

In terms of the Lapacian we can write the three funda-
mental second order linear PDE’s of classical physics, the
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Laplace Equation, the Heat Equation and the Wave Equa-
tion,

Au =0,
uy — kAu =0,
uy — 2 Au = 0,

respectively. We already know that the wave equation is
the equation that propagates information in all directions
at speed ¢, in the rest frame of the observer.

e Stokes Theorem and the Divergence Theorem are stated
and described in the Figures 1-4 below. By these theo-
rems we obtain a physical interpretation of the three linear
first order operators of classical physics. l.e., we already
know that the gradient of a function V f gives the magni-
tude and direction of steepest increase of a function f, and
points perpendicular to the level surface of f through a
given point. Stokes Theorem and the Divergence Theorem
tell us that, at any given point, Curl F -n is the circulation
per area around axis n in the vector field F, and Div F is
the flux per volume.



11

Divergence Theorem:

[ [ ®nio=[ [ [ iveav
/\ /\

{Flux of F through :{Integral of Divergence of F

closed surface Of) over the enclosed volume (2

Closed curve C is the }

boundary of surface S

Figure 2



12

Divergence Theorem:

//SF/-\ndA///QDz’/\deV

Flux of F through | Integral of Divergence of F
closed surface S = 9| | over the enclosed volume )

Figure 3

Closed surface S }
Q

enclosing volume

Figure 4
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4. THE CHARGE FLUX VECTOR AND THE MEANING OF
FLux

e Before applying Stokes Theorem and Divergence Theo-
rem to Maxwell’s equations, note that both the Divergence
Theorem and Stokes Theorem involve the flux of a vector
field through a surface. So let us recall in a paragraph the
meaning of flux. The flux of a vector field F through a
surface § is defined by

FluX://SF-ndA. (14)

To obtain a physical interpretation of flux, consider a den-
sity p = p(x,t) that is flowing according to a velocity u.
For example, the compressible Euler equations give the con-
straints on a mass density p moving with velocity u when
the momentum changes are driven by the gradient of the
pressure. The vector that describes the local transport of
mass is then the mass flux vector pu. In Maxwell’s equa-
tions we have a charge density p moving with velocity u,
and the charge flux vector J = pu also appears in the equa-
tions. Whenever you have a density p of “stuff per volume”
being transported by velocity u, the vector pu is the “stuft”
flux vector. Assume for specificity that p is charge per
volume. Then F = pu is the charge flux vector, and its
dimensions are

That is, it measures charge per area time, and when dotted
with the normal to a surface area dA, it gives the mass per
area time passing through dA. Thus on a small area AA
on the surface S oriented with normal n,

Ch
arg‘e AA — .
Area - Time Time

pu-nAA = Charge
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moving through AA. Thus if the surface is discretized into
a grid of N small areas of size AA; as in Figure 5, the
integral for the flux is approximated by the Riemann Sum

[ foemta = g 5o

AA;
— lim Z {charge through Z}

|AA;]—0 time

charge through S

— 15
time ’ (15)

because the sum, in the limit, is the total charge passing
through S per time.

Conclude: The flux (?7) of pu=the charge flux vector
through the surface S is equal to the rate at which charge
is passing through S.

Figure 5

e We now apply Stoke’s Theorem and the Divergence The-
orem to Maxwell’s equations (?7)-(??). That is, since (?7)
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and (??7) involve Divergence we can apply the divergence
theorem over an arbitrary volume (2, and since (??) and
(??7) involve Curl, we can apply Stokes Theorem over an ar-
bitrary surface S with boundary C, and then interpret the
physical principles that result. Starting with (??), integrate
both sides over a three dimensional surface {2 bounded by
surface S = 02 to obtain

///DwEdV //E ndA

on the left hand side of ( , a

/// Lav == {total charge in Q}.
Q€ €0

Equating the two we obtain Gauss Law: The total charge
within a closed surface S = 0 is equal to the total flux
of electric field lines passing through S, [times the constant

60./

Applying the same argument to equation (?7?) yields:

| [ [pwBiv=[ [B-naa-o

In words we have Gauss Law for B: The total fluz of mag-
netic field lines through any closed surface S = OS2 is zero.
This is diagrammed in Figure 6. The point is that the
field lines enter with a B vector pointing inward through
S and the field lines exiting point outward, so dotting with
the outward normal, on average, cancels out the total flux.
Note that E and B are not mass or charge or any other
kind of “stuft” flux vector formed by pu, so the flux of E or
B is not a charge per time or mass per time flowing through
S. Moreover, the vector fields E and B do not come to us
as tangent vectors to particle trajectories like the velocity
u of a fluid of mass or charge. But we can still talk about
the “field lines” as the integral curves of the electric and
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magnetic fields as solutions of first the order ODE’s
x = E(x,1),

and
x = B(x, 1),
respectively. It is very useful to have the analogy of mass

and charge flux vectors in mind when we say the total flux
of B through S 1is zero.

The left hand side of (??) is Curle, so to apply Stokes
theorem, dot both sides of (??) by n and integrate over any
surface S with normal n and boundary curve C to obtain

//C’urlE-ndA:/E-Tds, (16)
S c

from the left hand side, and

——// BdA. (17)

from the right hand side of (??7). Together they give

[Eore—t[Bar s

Here T is the unit tangent vector to the curve C, related
to n by the right hand rule, (see Figure 7). Now the line
integral of E on the left in (?7?) is the circulation in E
around the closed curve C because it is the sum of the
components of E tangent to the curve weighted with respect
to arclenth ds. Thus in words, Faraday’s Law in the form
(??) says: The circulation in E around the boundary curve
C s equal to minus the time rate of change of the flux of
magnetic field lines through any surface S it bounds.

Now the line integral for the circulation in E around C is
also the integral of force times distance, which is work done
by the force field E—except E is really force per charge
according to the Lorentz Force Law (?7). So the circulation
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in E around C gives the work done, or energy added, to
a unit charge as it moves around the loop. This is then
the potential difference around a circuit C. Conclude that
Faraday’s Law implies that changing magnetic field lines
can create currents just like a battery can. It also tells us
how currents create magnetic fields.

Finally, consider Ampere’s Law (?7?) with Maxwell’s correc-
tion term. Dotting both sides of (?7?) with respect to n and
integrating over a surface & with normal n and applying
Stokes Theorem as in (??7) we obtain

//C’urlB-ndA:/B-Tds, (19)
S C

from the left hand side, and

d
/LO//CurlJ-ndA—l—,uoeo—// B dA (20)
S dt ) Js

from the right hand side of (??7). Together they give

d
/B-Tds:uo//C’urlJ-ndA+uoeo—// E dA(21)
c s dt ) Js

Now since J = pu is the charge flux vector, we have shown
above that the first flux integral on the right hand side
of (?7?) is the charge per time passing through S. Thus in
words, Ampere’s Law in the form (??) says: The circulation
in B around the boundary curve C equal py times the rate at
which charge is passing through S plus the rate of change of
the flux of electric field lines through S. Maxwell’s proposal
was that not just moving charges could produce magnetic
fields, but changing electric fields could do it as well. In the
case of (?7)-(??7) when there are no charges or currents, this
establishes a symmetry between electric and magnetic field
such that changing fluxes of either one generated circula-
tion in the other. It is natural then to wonder whether
electric and magnetic fields could be self-generating. We
conclude by showing that as a consequence of Maxwell’s
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equations (?77)-(?7?), each component of F and B satisfy
the wave equation with speed ¢ = (ugeg)'/?, the speed of
light. Maxwell’s extra term established that electromag-
netic waves propagate at the speed of light, an idea that
changed the course of science.

The flux of B going in
plus the flux out is zero

Figure 6
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The potential difference = the circulation in E around C
equals
The time rate of change in the flux of B=through S.

“Changing magnetic field lines can create electrical currents.”

Figure 7

Summary: Maxwell actually reversed the steps above and
derived the equations (??)—(??) from Faraday’s exposition
of the principles we uncovered by Stokes Theorem and the
Divergence Theorem. The notation of Div and C'url came
from Gibbs who reformulated Maxwell’s original twenty
equations into the four equations (?7?) — (?7). We next
show how the judicious choice of the constant ppey in front
of the E; term on the right hand side of (?7) has the impli-
cation that (77)-(?7) imply self-sustaining electromagnetic
waves that propagate at the speed of light.

5. CONNECTING MAXWELL’S EQUATIONS TO LIGHT BY
MEANS OF THE WAVE EQUATION

We now demonstrate that solutions E(x,t), B(x,t) of (?77?)-
(??) have the property that each component of E and
Bsatisfy the wave equation with speed ¢ = (pgeg) /2. The
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only fact we need from vector calculus is the following iden-
tity:

V x (VxF)=V(V-F) - AF. (22)

Essentially, since CurlF is a vector field, and it makes sense
to take the curl of it again, and the result is some expression
in second order derivatives of F, and a calculation (omitted

here) yields (?7).

Armed with (?77)-(?7?7) we proceed as follows: First taking
the curl of both sides of (?7) yields:

0 0
E)=— —B=—— B
V x(V x E) ant ath :
where we used the fact that partial derivatives commute.
Using the identity (??) on the left hand side and (??) on

the right hand side yields

0 OF
Since V - E = 0 by (7?), we obtain
FE 1
g~ AE=0
ot e ’

where the second time derivative on the left hand side and
the Laplacian on the right hand side are taken on each
component of the vector E. This then achieves half of our
result: each component of E solves the wave equation with
speed ¢ = (ppen) /2.

Similarly for the B field, take the curl of both sides of (?7?)
to obtain

0
V x (VxB)=—puen=V x E,

ot
so again by (??) and (?7) we obtain
0 0B
V(V . B) — AB = — = MHo€0o—=

ot ot
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Since V- B =0 by (?7), we obtain

2
9B LAB =0,
ot oo

thereby showing that the components of B also solve the
wave equation with speed ¢ = (upeg) /2. Note that from
the point of view of the wave equation, the speed comes
from the coefficient pgeg, so in principle by replacing €, by
ap we could achieve the wave equation for any speed c,
making the dimensional analysis and the simplest choice
arguments for ¢y = ag very important for the discovery of
electromagnetic waves.

Conclude: Maxwell, building on Faraday’s idea that elec-
tricity and magnetism could be described by electric and
magnetic Vector Fields, discovered, by pure thought, that
light consists of waves propagating as fluctuations in these
electric and magnetic fields. To quote from Wikipedia:

Around 1862, while lecturing at King’s College, Mazwell
calculated that the speed of propagation of an electromag-
netic field is approximately that of the speed of light. He
constdered this to be more than just a coincidence, and
commented ‘We can scarcely avoid the conclusion that light
consists in the transverse undulations of the same medium
which is the cause of electric and magnetic phenomena.’

Maxwell’s theory of light remained controversial until 1887,
when Heinrich Hertz demonstrated that radio waves could
be created from oscillating electric and magnetic fields gen-
erated by spinning magnets.
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6. MAXWELLS EQUATIONS AS EVOLUTION BY THE WAVE
EQUATION WITH CONSTRAINTS ON THE INITIAL DATA

Now that we have shown that each component of the
electric and magnetic fields E and B propagate accord-
ing to the wave equation, it makes sense to ask in what
sense are Maxwell’s equations (?77)-(??) any more than just
a complicated reformulation of the wave equation. The
answer provides a powerful new way to understand how
Maxwell’s equations propagate the electric and magnetic
fields in time. That is, we have shown that the components
of E and B solve the wave equation, a second order PDE.
Thus starting from the initial fields at an initial time ¢ = 0,
we have seen that the wave equation requires the values of
the solution and its first time derivative as initial condi-
tions: the values of E, B as well as E;, B; are the initial
conditions at ¢t = 0 that determine the solution for all time
t > 0. (We have shown this in one dimension but it holds
true in 3-space dimensions as well.) Thus, since Maxwell’s
equations are equations in the first derivative of E and B,
it follows that these are constraints that must be met by
the initial conditions at ¢ = 0 at the start, before the prop-
agation by the wave equation takes over. The next theorem
verifies that any solution E(x,¢) and B(x,t) that solves the
wave equation, and meets the Maxwell equations at time
t = 0, has the property that the fields meet the Maxwell
equations at every future time ¢ > 0 as well. The picture
then is clear: Maxwell’s equations are constraints on the
initial data that get propagated in time when the fields are
subsequently evolved in time by the evolution of the wave
equation. Since the wave equation can be thought of as
the equation that propagates the solution in every direc-
tion at speed c, we see that each component of the electric
and magnetic fields propagates at speed c in every direc-
tion, but all the components are constrained to be related
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to each other in a complicated way at each time accord-
ing to the Maxwell equations (?77)-(??). And the these
constraints, once met by the initial data, are met at every
future time as the fields evolve in time at speed c. In fact,
Albert Einstein modeled the equations of general relativ-
ity after Maxwell’s equations in this very way, in the sense
that the equations for the curvature of spacetime are non-
linear wave equations that propagate the gravitational field
at speed ¢, but the field must meet a first order constraint
on the initial data which, once satisfied initially, is satisfied
at every future time. The reason the equations of general
relativity are nonlinear and the Maxwell’s equations are
linear even though both electromagnetic waves and gravity
waves propagate at speed c in all directions according to
the equations, is because in general relativity, the space-
time through which the gravity waves propagate is itself an
unknown that evolves according to Einstein’s equations. It
takes a class in differential geometry to make precise sense
of this statement.

Theorem 1. Assume that all components of E and B evolve
according to the wave equation, such that at some initial
time t = 0, the initial data for these wave equations satis-
fies Mazwell’s equations (77)-(??7). Then E and B satisfy
(77)-(?7) at every later time t > 0 as well.

Proof: Assume the components of E and B evolve accord-
ing to the wave equation. We need only show that as a
consequence of the wave equation, the time derivative of
each equation (?7)-(??) is zero. (Then if they start zero,
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they stay constant, and hence stay zero!)

%{V-E} = V-E, (23)

= V. {LV X B}
oo
= LDz'v (CurlB) =0
€oHo

where we have used that mixed partial derivatives commute
together with (?7) to replace the time derivative of B with
a multiple of the curl. Note how beautifully the result of
Figure 7?7, that Curl followed by Div is always zero, comes
into play. Similarly,

0
5 (V-B}=0. (24)

For the two Maxwell equations that involve the time deriva-
tives and the C'url, write

0
a{VXE—FBt} = VXEt+Btt (25)
1
= —V X (VXB)+Btt
Ho€o
1
Ho€o
1
- Btt - —AB == O

Ho€o
because V - B = DivB = 0, because of the formula (77)
for the Curl of the Curl, and because we assume B solves
the wave equation in each component. This competes the
proof of the theorem. [

Homework: Show that the Maxwell equations (?7) and (?7?)
are constant in time under the assumption that all compo-
nents of E and B solve the wave equation.
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7. SUMMARY

The wave equation has played an incredible role in the
history of physics. The equation was first proposed by
D’Alembert in the late 1740s as a model for the vibrations
of a string, some seven decades after Newton’s Principia in
1687. His idea was that if u(x,t) is the displacement of a
string from equilibrium, then u; represents the continuum
version of acceleration in Newton’s force law F' = ma, and
for weak vibrations of a string, the force should be pro-
portional to the curvature of the string u,,, leading to the
equation uy — c*uy, = 0. A few years after that, his col-
league in St Petersburg, Leonhard Euler, in the court of
Catherine the Great, derived the compressible Euler equa-
tions, linearized them, and discovered that the density in
air supports waves that solve the same wave equation. This
established the framework for the (linearized) theory of
sound, with modes of vibration and linear superposition of
waves, and all the rest. The picture of sound wave propaga-
tion was then clear: vibrating strings support oscillations
that propagate at a constant speed according to the wave
equation, and the vibrations of the string create vibrations
in the air that transmit at a constant speed according to
the same wave equation, but with a different speed, the
speed of sound. Thus, in the mid-seventeeth century, the
wave equation showed up to resolve arguably the greatest
scientific problem of the day, namely, what is sound—and
perhaps the great question of their day— what makes their
beloved and godly violin sound so beautiful!

But in the middle of the next century, the wave equation re-
turned to lead the way, when Maxwell formulated Faraday’s
Laws of electromagnetism as a system of linear PDE’s.
Picking up on Faraday’s proposal that light might consist of
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self-sustaining electromagnetic waves, he crafted his equa-
tions into a form in which the components of the field sat-
isfied the wave equation, with a speed chosen, among the
constants available, to agree with the speed of light. Thus
in the most natural way, the electric and magnetic fields
would satisfy the wave equation and thereby support the
transmission of waves at the speed of light, and his proposal
that light consisted of electromagnetic waves propagating
at the speed of light was as solid as the wave equation itself.
Thus, a century after Euler, the wave equation showed up
again to solve arguably the greatest problem of that day,
namely, what is light. And the answer, confirmed by Hein-
rich Hertz two decades later, began the modern age with
the principles sufficient to build a radio, and all else that
followed.

But then there was a major problem with Maxwell’s equa-
tions. Unlike the linearized sound waves obtained from
the compressible Euler equations, Maxwell’s equations pre-
sumed no medium for the waves to propagate within. In-
deed, as we showed, the wave equation can only hold in a
frame fixed with the medium of propagation, for only in
this frame can all waves generated by the wave equation
move at equal speed in all directions. Based on this, sci-
entists proposed the existence of an “ether”, an invisible
medium that set the frame of reference for Maxwell’s wave
equations, something like the rest frame of the gas in Eu-
ler’s equations. Then in 1905, Albert Einstein began the
modern age of physics by proposing that the wave equation
for electromagnetism was fundamentally correct in every in-
ertial frame, and that space and time were entangled in a
new way to make it so. Thus, the wave equation, resonantly
tuned, so to speak, with spacetime itself, held the secret of
space and time. That is, encoded within the wave equation
were the spacetime transformations that preserve its form,
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and assuming electromagnetic waves were resonantly tuned
to propagate the same in every inertial coordinate system,
the very essence of spacetime was coaxed, not directly from
the experiments, but from the wave equation derived from
them. Thus for a third century in a row, the wave equation
showed up to solve arguably the greatest scientific problem
of that era.

It is interesting to note the fundamental difference between
light propagation and sound wave propagation. Maxwell’s
equations are linear, but the compressible Euler equations
are nonlinear. Thus we have seen that although weak vi-
brations in the air lead to the linear theory of sound that
we all love, the nonlinearities drive strong vibrations into
shock waves, leading to shock wave dissipation and the at-
tenuation of signals by shock wave dissipation. In contrast,
Maxwell’s equations for light transmission are linear at the
fundamental starting point. In particular, this means that
the principle of linear superposition holds. As a conse-
quence, billions of signals can be superimposed at one end
of a transmission, the superposition remains intact during
transmission, and the signal can then be decoded at the
other end—and there are no nonlinearities and consequent
shock wave dissipation present to destroy the signals. The
linearity of Maxwell’s equations goes a long way toward
explaining why so many cell phones can operate over such
long distances, all at the same time!

8. APPENDIX: THE VECTOR POTENTIAL

In the modern theory of electo-magnetism, the equations
are expressed in terms of the vector potential A = (A%, A1) A%, A3).
The idea is that the electric and magnetic fields E and B
are joined together in an anti-symmetric 4 x 4 matrix F
called the Faraday tensor,
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0 B B, Ej
E, 0 By, By
By -B, 0 B
By —By —B;, 0

and this matrix describes a differential form



