
6–Energy Methods And The Energy of Waves

MATH 22C

1. Conservation of Energy

We discuss the principle of conservation of energy for ODE’s,
derive the energy associated with the harmonic oscillator,
and then use this to guess the form of the continuum ver-
sion of this energy for the linear wave equation. We then
verify that this energy is conserved on solutions of the wave
equation, and use it to solve the uniqueness problem for the
wave equation. That is, we use the energy of waves to prove
that the initial value problem for the wave equation has a
unique solution always decomposable into the sum of left
going and right going waves.

• Let’s begin by asking the question: How much energy is
stored in your car if it has mass m kg and is moving down
the freeway at velocity v km per hour? The answer is

Kinetic Energy (KE) =
1

2
mv2.

That is, if you hit a wall and come to a complete stop at
speed v = 100km

hr , and your car weighs 2000kg, you will
deliver

KE =
1

2
× 2000× 1002

kg km2

hr2
= 107 × 10002

3602
kg m2

s2

= 7.7× 107Newton−meter

of energy. One Newton-meter is the energy delivered to a
mass of about 1

10kg falling one meter through Earth’s grav-
ity at the surface. In particular, that’s how much energy
the wall will deliver to you upon impact. It goes up by the
square of the velocity, so that’s why speeding is so danger-
ous.
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So how do we know this? There are two main reasons. (1) It
comes up in the expression for the work done by a force, and
(2) It appears in the expression for the energy conserved
by a conservative force field. When we treat the mass as
a point mass, the framework is ODE’s, when we view the
mass as a continuous density, a mass per volume instead of
a point mass, the framework is PDE’s. In this section and
the next, we discuss the point mass case (ODE’s), and in
the last section we treat the continuum version (PDE’s) in
the context of the wave equation.

(1) The argument for evaluating the work done by a force
F on a mass m goes as follows:

The Work Done = W = Force×Displacement.
So

W =

∫ b

a

F · ds =

∫ b

a

ma · ds =

∫ b

a

m
dv

dt
· ds

=

∫ vb

va

m
ds

dt
· dv =

∫ vb

va

mv · dv

=
1

2
mv2]vbva =

1

2
mv2a −

1

2
mv2b = ∆KE.

Thus the work done by a force is equal to the change in
Kinetic Energy, so the work done by the wall as it moves
through your car as you come to rest equals the KE=1

2mv
2

you started with.

(2) The second argument incorporates kinetic energy into
the principle of conservation of energy. We say F is a con-
servative force if

F = −dU
dy

= −U ′(y)

for some function U(y) called the potential energy. For
example, let y denote distance from the Earth’s surface,
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and assume a mass m moves vertically under the influence
of gravity near the surface. Then Newton’s law F = ma
gives the ODE,

mÿ = −mg.

To get the energy, we write the force −mg as minus the
derivative of the potential U(y), that is,

mÿ = − d

dy
{mgy}

so we have

U(y) = mgy

in this case. This is one instance to which the following
very general principle applies.

Theorem 1. If the force is minus the gradient of a potential
U(y), so that the ODE describing the motion is

ÿ = −U ′(y),

then the energy

E =
1

2
mẏ2 + U(y)

is constant along each solution of the ODE.

This is so important that we give the

Proof: We show that E(y(t)) is constant along a solution
y(t) of the equation ẏ = −U ′(y). For this is suffices to show
that dE

dt = 0. But by the chain rule we calculate:

d

dt
E(y(t)) =

d

dt

{
1

2
˙y(t)

2
+ U(y(t))

}
= ẏÿ + U ′(y)ẏ

= ẏ
{
ÿ2 + U(y)

}
= 0

because y(t) solves the equation ÿ2 + U ′(y) = 0.
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Conclude: This is a mathematical theorem that holds for
ODE’s of form ÿ = −U ′(y) independent of any interpreta-
tion of ÿ as a force: The function E = 1

2mẏ
2 +U(y) is con-

stant along solutions. The physical interpretation is that
all along the motion the KE is the energy of motion, and it
can be stored and released as potential energy, but the sum
of the two is constant. Because we believe the fundamental
forces of nature are conservative, fundamental forces must
be conservative.

• As a first example consider the harmonic oscillator,

ÿ + a2y = 0.

To put it in the form of conservative system and find the
energy, solve for ÿ and write the “force” as a gradient:

ÿ = −a2y = − d

dy

{
a2

1

2
y2
}
.

Thus the potential energy is U(y) = 1
2a

2y2, and the above
theorem tells us that the total energy

E =
1

2
ẏ2 +

1

2
a2y2,

is constant along solutions of the harmonic oscillator.

We can immediately apply this to see that the trajectories
of solutions in the (y, ẏ) plane must be ellipses. I.e., recall
that ÿ + a2y = 0 is equivalent to the first order system(

u
v

)′(
0 1
−a2 0

)(
u
v

)
, (1)

with u = y and v = ẏ. In (u, v)-variables, constant energy
is

E =
1

2
v2 +

1

2
a2u2,

and this describes an ellipse in the (u, v)-plane. Thus the
energy immediately tells us that solution of the harmonic
oscillator must evolve on the constant energy curves which
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are ellipses. The energy by itself does not, however, tell us
anything about how the solution moves around the ellipse
in time.

• As a second nonlinear example, consider the nonlinear
pendulum,

ÿ +
g

L
sin y = 0.

the equations which describe the swinging motion of a mass
m at the end of a pendulum of length L, swinging about
the equilibrium point y = 0 under the influence of gravity
g. (Note the equation is independent of m!) Here y = θ is
the angle the pendulum makes with the downward vertical
rest point of the pendulum, so that y = θ = 0 is the stable
equilibrium at the bottom. (See Strogatz for a complete
discussion and derivation.) Again, to put this in the form
of a conservative system and find the energy, solve for ÿ
and write the “force” as a gradient:

ÿ = − g
L

sin y = − d

dy

{ g
L

(1− cos y)
}
.

Thus the potential energy is U(y) = g
L(− cos y), and the

above theorem tells us that the total energy

E =
1

2
ẏ2 +

g

L
(1− cos y), (2)

is constant along solutions of the harmonic oscillator. Note
that we have normalized the anti-derivative as 1− cos y in-
stead of − cos y in order that the minimum potential energy
occur at y = 0, when the pendulum is at its lowest point.
Expanding cos y = 1 − y2 + O(1)y4 and letting g

l = a2, we
see that including the 1 also gives

U(y) =
g

L
(1− cos y) =

g

L
y2 +O(1)y4



6

the correct constant so that it agrees with the potential
energy g

Ly
2 for the harmonic oscillator at the leading order.

The main difference between the linear harmonic oscillator
and the nonlinear pendulum is that the potential energy
a2y2 is unbounded in the linear case, but bounded in the
nonlinear case

0 ≤ U(y) =
g

L
(1− cos y) ≤ 2

g

L
.

Note also that, to give E the physical units of energy, say
kg m2/s2, we would need only multiply (2) through by the
mass mL2. (We lost this factor when we divided through
by the mass, and used the dimensionless angle θ as an un-
known instead of the true distance along the moving pen-
dulum.)

As in the case of the linear harmonic oscillator, we can
again apply the formula for the energy to get information
about the trajectories of solutions in the (y, ẏ) plane. Let’s
use it to see that there is a critical value of the energy
above which the pendulum swings around with ẏ = θ̇ never
changing sign, but below the critical energy, there must be
a point where ẏ = θ̇ changes sign, the point where it starts
swinging the other way.

For this, consider a fixed solution of the nonlinear pendu-
lum, and write the energy (2) as

1

2
ẏ2 = E − g

L
(1− cos y). (3)

where E is constant along the solution. Now the potential
energy is

U(y) =
g

L
(1− cos y),

which takes a maximum value of 2 g
L when cos y = −1. Thus

there is a critical energy E = 2 g
L , making for two distinct

cases, according to whether E > 2 g
L or E < 2 g

L .
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If E > 2 g
L , then the potential energy is never large enough

to make the right hand side of (3) zero, in which case the
left hand side, 1/2ẏ2 can never be zero along the solution, so
the pendulum keeps swinging in the same angular direction,
around and around.

On the other hand, if E < 2 g
L , then there must be an angle

y(t) in the solution where the potential energy is equal to
the energy E, i.e., E = g

L(1 − cos y(t)). At this point, the
KE must be zero, so the velocity ẏ(t) must be zero at that
point. That is, there must be a point where the pendulum
comes to rest. But at this point we claim that the veloc-
ity must actually change sign, that is, the pendulum must
change its direction of rotation. Indeed, if it did not, then
the cosine would continue changing in the same direction
at that point, making the potential energy larger than the
energy E, the right hand side of (3) would go negative,

making the KE= ẏ2

2 < 0 on the left hand side of (3) as well.
But the KE is always positive because ẏ2 ≥ 0, so to avoid
the contradiction, the velocity ẏ must change sign at the
point where ẏ = 0, as claimed.

Now a general principle of differential equations is that the
qualitative property of solutions can only change at critical
values of dimensionless constants. To find the dimension-
less constant, note that ẏ changes sign and the pendulum
changes direction when

E =
g

L
(1− cos y(t)),

and it does not change direction when E exceeds the largest
value on the right hand side. Dividing by g

L , our condition
is that ẏ changes sign when the dimensionless constant γ
meets the condition

γ =
L

g
E = (1− cos y(t)).
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The parameter γ is dimensionless because all terms in a
physical equation must have the same dimensions, and 1−
cos y on the right hand side is dimensionless. Thus the
qualitative property of solutions changes at a value of the
energy which makes γ equal to the largest value of 1 −
cos y—above this value the pendulum has enough energy
to swing over the top, but below this it swings back and
forth. Conclude: The dimensionless constant is γ = L

gE,
and its critical value γ = γ∗ is γ∗ = 2.

2. Energy Conservation for Point Masses
(ODE’s) in Three Dimensions

The physical principle of conservation as expressed in (1)
and (2) above can be generalized to more realistic motion
in three dimensions by introducing line integrals. This is
a topic of Vector Calculus. In this section we describe the
mathematical theory and its connection to the physics of
motion for multiple interacting point masses described by
systems of ODE’s. This is very beautiful mathematics, and
completes the ODE picture of conservation of energy for
point masses. In the next section we extend the notion of
conservation to PDE’s in the context of the wave equation.

To generalize (1) to three dimensions, we first need to
define the work done by a force field, and for this we must
recall the line integral. So let F(x, y, z) denote a vector
field in R3 which we interpret as a force field,

F(x, y, z) = F1(xy, z)i + F2(x, y, z)j + F3(x, y, z)k,

where (F1, F2, F3) are the components of the force at (x, y, z).
Then given a curve

C : r(t) = x(t)i + y(t)j + z(t)k,
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a ≤ t ≤ b, the work done by F on a point mass m as it
moves along C is defined as∫

C
F ·Tds, (4)

which is called the line integral of F along C. Recall that
the line integral is defined as the limit of the Riemann sum∫

C
F ·Tds = lim

N→∞

N∑
i=1

Fi ·Ti ∆s, (5)

where
Fi = F(r(ti))

is the force,

Ti =
r′(ti)

‖r′(ti)‖
is the unit tangent vector on C at time ti, ds is arc length
along C because

ds

dt
= ‖v(t)‖, v(t) = r′(t),

v(t) is the velocity vector tangent to C at r(t), and as usual,
ti denote the mesh points obtained by dividing [a, b] into
N equal intervals of size

∆t =
|b− a|
N

, t0 = a, ti = a+ i∆t, tN = b.

Thus the line integral is the natural generalization of work
because it is the limit of the sum of force times displacement
along the curve. Recall that by the substitution principle,
it has the nice property that it can be evaluated in terms
of any parameterization r(t) of the curve C by∫

C
F ·Tds =

∫ b

a

F(r(t)) · r′(t)dt, (6)

thereby reducing the line integral for work to an elementary
integral of first quarter calculus.
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Things start to get very interesting, as we saw in Vector
Calculus, when we apply these principles to the case when
the force is conservative. We say F is conservative if

F (y) = −∇f(y),

for some scalar function f(y) called the potential. The fol-
lowing mathematical theory generalizes the fundamental
theorem of calculus to line integrals:

Theorem 2. Assume F is conservative, so F (y) = −∇f(y)
for a scalar function f . Then∫

C
F ·Tds = f(r(b))− f(r(a)). (7)

Proof: This follows directly from the definition of line in-
tegral as follows:∫

C
F ·Tds =

∫ b

a

F(r(t)) · r′(t)dt (8)

=

∫ b

a

d

dt
F(r(t))dt

= F(r(b))− F(r(a)),

where we have applied the chain rule and then the regular
Fundamental Theorem of Calculus.

Comment: The definition of the line inertial in (6) is
purely mathematical, but its meaning as work comes to
light when we impose the vector form of Newton’s second
law F = ma. Two problems then immediately come to
mind, one of them easy and the other one hard. The easy
problem is this: Given a curve r(t), find the the total force
that is creating the motion. This is easy if we have formu-
las for the components of r(t) = (x(t), y(t), z(t)) because
we can then just calculate a = r′′(t) = (x′′(t), y′′(t), z′′(t))
and solve for the force F = ma. The hard problem is:
Given the force F, find the trajectory of the particle r(t)
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that gives the motion created by that force. Then F = ma
gives you an equation to solve for, namely, r′′(t) = 1

mF. In
particular, if the force depends on the position, this can
be a complicated ODE to solve for the position r(t), and
initial conditions will be required. To keep the following
arguments clear, it is important to keep in mind that many
forces may be acting on a mass m to create the motion r(t),
and for each separate force we can define the line integral
of the work done by that force, but it is only the sum of all
the forces, the total force, that creates the total acceleration
through F = ma.

The final justification of (6) as the correct generalization
of work to three space dimensions comes from the following
generalization of (1) and (2). In (1) we prove that the work
done is equal to the change in kinetic energy. In (2) we
prove that Kinetic Energy+Potential Energy is conserved
when the total force creating the motion is conservative.
For this we must assume that F is the TOTAL force which
is accelerating the mass along the curve C.

(1) Assume r(t) is the trajectory of a point mass m moving
according to Newton’s law F = ma, meaning implicitly
that F is the sum of all the forces creating the acceleration,
and therefore a(t) = r′′(t) is the vector acceleration of the
particle determined by its trajectory r(t). Then

W =

∫ b

a

F ·Tds =

∫ b

a

F(r(t)) · r′(t)dt

=

∫ b

a

m a · v dt =

∫ b

a

m r′′(t) · r′(t) dt

=

∫ b

a

1

2
m
d

dt
{r′(t) · r′(t)} dt =

∫ b

a

1

2
m
d

dt

{
‖v(t)‖2

}
dt

=
1

2
m‖v(b)‖2 − 1

2
m‖v(a)‖2 = ∆KE.
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Thus the work done by a force is equal to the change in
Kinetic Energy for general motions in three dimensions!

(2) The general principle of conservation of energy now
holds when the total force F acting on m is conservative.
I.e., assume

F = −∇U
for some scalar function U(y) called the potential energy.
Applying (7) with f = −U we conclude the work done by
F along C is not just the change in kinetic energy ∆KE (as
shown in (1)), but also, but Theorem 2, is equal to minus
the change in potential energy ∆PE as well, namely, we
have:

W =

∫ b

a

F ·Tds (9)

= −U(r(b)) + U(r(a)) = −∆PE.

Since by (1) W equals the change in KE, and by (9) it
equals minus the change in PE, so ∆KE + ∆PE = 0 all
along the curve, we must have

E = KE + PE =
1

2
m‖v(t)‖2 + U(r(t)) = const

all along the curve. Conclude: Energy is conserved in a
conservative force field.

Another way to express conservation of energy is in terms
of ODE’s, and this is the expression used in differential
equations. For this, notice that Newton’s law F = ma
for a conservative force field can be viewed as a system of
equations for the curve y(t), (we use y in place of r for
ODE’s), namely

mÿ′′(t) = −∇U(y), (10)

where y = (x, y, z). Conservation of energy can then be
re-expressed as the following theorem about equations of
form (10).
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Theorem 3. The quantity

E =
1

2
m‖ẏ‖2 + U(y),

which we call the sum of the kinetic and potential energy,
is always constant along solutions of (10).

We have already proven this through the notion of the
work done W which was expressed two ways, as a change
in KE and a change in PE. But we can prove this directly
without appealing to the notion of work at all:

Proof: Assume y = r(t) is a solution of (10), so ẏ = v(t).
Then for this solution, the energy is

E(t) =
1

2
m‖v(t)‖2 + U(r(t)).

To prove E(t) is constant along the solution r(t), we prove
Ė = 0 for every t. Writing ‖v‖2 = v · v and taking the de-
rivative using the product rule for the dot product together
with the chain rule, we obtain

Ė =
d

dt

{
1

2
m (v(t) · v(t))2 + U(r(t))

}
(11)

= mv′(t) · v(t) +∇U · r′(t)
= ma(t) · v(t) +∇U · v(t)

= −∇U · v(t) +∇U · v(t) = 0.

We used the product rule

d

dt
(v(t) · v(t))2 = v′(t) · v(t) + v(t) · v′(t) = 2a(t) · v(t),

and the chain rule
d

dt
U(r(t)) =

d

dt
U(x(t), y(t), z(t))

=
∂U

∂x
x′(t) +

∂U

∂y
y′(t) +

∂U

∂z
z′(t)

= ∇U · r′(t).
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Thus the energy is constant because when the force is con-
servative, the derivative of the kinetic energy is minus the
derivative of the potential energy.

In fact, this mathematical expression of conservation ex-
tends immediately to equations with any number of un-
knowns y = y1, ..., yn). For example, it extends to the mo-
tion of n = 1023 molecules in a container. The generaliza-
tion goes as follows. We say F is conservative if F = −∇U
for some scalar function U . Then the equations are (we
take m = 1)

ÿ = −∇U(y),

and the theorem says that energy is conserved in the sense
that the energy

E =
1

2
‖ẏ‖2 + U(y),

is constant along solutions. The proofs of (1) and (2) are
identical for general n as in the case n = 3. Just retain
the vector form of the equations in each step, and interpret
y as being in Rn instead of R3. This is a very general
mathematical principle.

3. The Energy of Waves

Recall that the initial value problem for the wave equation
is

utt − c2uxx = 0,

u(x, 0) = h(x), (12)

ut(x, 0) = k(x),

a problem that asks for a solution u(x, t) given initial data
functions h and k. That is, the wave equation is second
order in time, so by analogy with the second order har-
monic oscillator, we should be able to assign the initial
value u(x, 0) and the initial velocity ut(x, 0). Now in Sec-
tion 4 we found a solution to the initial value problem (12)
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in terms of a left going wave and a right going wave. The
result was that one particular solution of (12) is given by

u(x, t) = f(x+ ct) + g(x− ct), (13)

where

f(x) =
1

2

∫ x

0

[
h′(ξ) +

1

c
k(ξ)

]
dξ + f(0),

(14)

g(x) =
1

2

∫ x

0

[
h′(ξ)− 1

c
k(ξ)

]
dξ + g(0),

with the requirement

f(0) + g(0) = h(0).

This then defines the functions f and g in terms of the
given h and k so that (13) solves (12).

But although (14) is one solution, how do we know there
aren’t some other solutions hanging around? Maybe solu-
tions that cannot be decomposed into left and right going
waves? The answer is settled once we prove that for a given
h and k, the initial value problem (12) has one and only
one unique solution. This is what we can prove by using
the energy.

So to this end, we ask, what is the energy contained in a
solution u(x, t) of the wave equation? The answer is that
at each point, the kinetic energy is

KE =
1

2
u2t ,

(not too hard to guess), and the potential energy is

PE =
1

2
c2u2x ,

(not so easy to guess, but not unreasonable). But given the
energy is KE+PE at each point, the total energy at a given
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time t should be the sum of all the kinetic plus potential
energies, summed over all the points at time t. But this
is calculus, and this sum only makes sense as an integral.
Here is the energy of a solution u(x, t) at a given time t:

E(t) =

∫ +∞

−∞

1

2
u2t +

1

2
c2u2x dx.

But the only real proof that this is the correct energy of the
wave u(x, t) is the following theorem, which states that the
energy so defined, is constant in time along any solution of
the wave equation.

Theorem 4. If u(x, t) solves the wave equation,

utt − c2uxx = 0,

then E(t) is constant in time. That is,

d

dt
E(t) =

d

dt

∫ +∞

−∞

1

2
u2t (x, t) +

1

2
c2u2x(x, t) dx = 0. (15)

Before proving the Theorem, we first demonstrate its utility
by using it to prove the uniqueness of solutions of the initial
value problem (12).

•Uniqueness: Assuming Theorem 4, we can prove:

Theorem 5. Assume u(x, t) and v(x, t) are smooth func-
tions of finite energy which both solve the initial value prob-
lem (12) for the same given functions h(x) and k(x). Then

u(x, t) = v(x, t)

for all x ∈ R, t ≥ 0.

Proof: Assume then that both u(x, t) and v(x, t) solve
(12). We prove that w(x, t) = u(x, t) − v(x, t) = 0 for all
(x, t). Since the wave equation utt− c2uxx = 0 is linear and
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homogeneous, superposition holds, and so we know that
w = u− v also solves the wave equation. That is

(u− v)tt − c2(u− v)xx = utt − c2uxx + vtt − c2vxx = 0.

But u and v satisfy the same initial conditions,

u(x, 0)− v(x, 0) = h(x)− h(x) = 0,

ut(x, 0)− vt(x, 0) = k(x)− k(x) = 0.

That is, the function

w(x, t) = u(x, t)− v(x, t),

solves the wave equation with zero initial data,

w(x, 0) = 0 = wt(x, 0).

Thus by Theorem 4, the energy is constant in time along
the solution w(x, t) and the energy starts out zero, so

E(t) = E(0) =

∫ +∞

−∞

1

2
w2

t (x, 0) +
1

2
c2w2

x(x, 0) dx = 0,

because w and wt are both zero at t = 0. Therefore, at
each time t ≥ 0 we have

E(t) =

∫ +∞

−∞

1

2
w2

t (x, t) +
1

2
c2w2

x(x, t) dx = 0. (16)

But the integrand in the integral (16) is always non-negative,

1

2
w2

t (x, t) +
1

2
c2w2

x(x, t) ≥ 0,

and the only way an integral over a nonegative function can
be zero is if the integrand is zero,

1

2
w2

t (x, t) +
1

2
c2w2

x(x, t) ≥ 0.

That is, the only way the area under the graph of a non-
negative function can be zero is if the function is zero. It
follows then that both

wt = 0, wx = 0
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for all x and t ≥ 0. But wt and wx are the two components
of the gradient of w, so we have

∇w (x, t) = 0.

Now the only way the gradient of a function can vanish is
if the function is constant, so we must have

w(x, t) = const.

And since w(x, 0) = 0, it follows that the constant must be
zero,

w(x, t) = u(x, t)− v(x, t) = 0.

We conclude that the two solutions u and v that solve the
same initial value problem must be equal, and therefore
there can only be one unique solution to the initial value
problem, as claimed. �

• To finish the section, we now give the proof of Theorem
4. The main technique we will need is integration by parts
for partial derivatives. It’s really no different than regular
integration by parts so long as you ignore the other vari-
ables hanging around in the expression. For integration by
parts, assume you have two functions u(x) and v(x), and
use the PDE notation vx = v′(x). Then by the product
rule,

(uv)x = uxv + uvx,

so by the Fundamental Theorem of Calculus∫ +∞

−∞
uvx dx =

∫ +∞

−∞
(uv)x − uxv dx = uv]

+∞

−∞
−
∫ +∞

−∞
uxvdx.

In particular, if we assume the functions u and v vanish at
x = ±∞, then

∫ +∞

−∞
uvx dx =

∫ +∞

−∞
(uv)x − uxv dx = −

∫ +∞

−∞
uxvdx.
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Note that the formula would be no different if u and v
depended on x and t, so long as

lim
x→±∞

u(x, t) = 0 = lim
x→±∞

v(x, t),

namely∫ +∞

−∞
u(x, t)vx(x, t) dx = −

∫ +∞

−∞
ux(x, t)v(x, t) dx.

All the action is going on in the variable x that is being
integrated, and the t just goes along for the ride.

The final thing we need in order to see that the energy
is constant along solutions of the wave equation, is a for-
mula for differentiating through an integral sign. That is,
consider the general problem of differentiating G(t) with
respect to t when

G(t) =

∫ ∞
∞

f(x, t)dx.

We want to see that

G′(t) =
d

dt

∫ ∞
∞

f(x, t)dx =

∫ ∞
∞

∂

∂t
f(x, t)dx.

We can see this directly by writing the derivative as a limit,
and using properties of limits to pass the limits through the
integral sign. That is,

d

dt

∫ ∞

∞
f(x, t)dx = lim

∆t→0

1

∆t

{∫ ∞

∞
f(x, t+ ∆t)dx−

∫ ∞

∞
f(x, t)dx

}
= lim

∆t→0

{∫∞
∞ f(x, t+ ∆t)dx−

∫∞
∞ f(x, t)dx

∆t

}
= lim

∆t→0

∫ ∞

∞

f(x, t+ ∆t)− f(x, t)dx

∆t

=

∫ ∞

∞

∂

∂t
f(x, t)dx.

The point is that to justify all the steps, you only need the
differentiability of f and that limx→±∞ f(x, t) = 0 rapidly
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enough that all the integrals and sums are uniformly fi-
nite. (Getting the precise conditions straight is a topic in
Advanced Calculus.)

So, to prove the energy E(t) is constant along solutions,
differentiate (15),

d

dt
E(t) =

d

dt

∫ +∞

−∞

1

2
u2t (x, t) +

1

2
c2u2x(x, t) dx

=

∫ +∞

−∞

1

2

∂

∂t
u2t (x, t) +

1

2
c2
∂

∂t
u2x(x, t) dx

=

∫ +∞

−∞
ututt(x, t) + c2ux(x, t)uxt(x, t) dx

=

∫ +∞

−∞
ututt(x, t)− c2uxx(x, t)ut(x, t) dx

=

∫ +∞

−∞
ut
{
utt(x, t)− c2uxx(x, t)

}
dx = 0,

where we have first differentiated through the integral sign,
then applied the chain rule, and finally integration by parts
on the last term. The final expression has the wave equa-
tion as a factor in the integrand, which therefore vanishes
because u is assumed to be a solution of the wave equa-
tion at the start. We conclude that if the energy is finite,
then it is constant on solutions of the wave equation, so
this completes the proof of Theorem 4. �

Conclude: We have shown that the energy

E =

∫ +∞

−∞

1

2
u2t (x, t) +

1

2
c2u2x(x, t) dx

is constant along solutions of the wave equation. Using
this, together with the linearity of solutions, we prove that
the difference between two solutions stays zero if it starts
out zero, thereby proving uniqueness of the initial value
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problem. It follows that the solution of the initial value
problem we constructed as the superposition of a left going
wave and a right going wave, is the only solution, (at least
among those of finite energy!)
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