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1. Introduction

The purpose of this section is to solve the so called Rie-
mann problem for Burgers equation and for the p-system.
The Riemann problem is the initial value problem when
the initial data consists of two constant states UL and UR
separated by a jump discontinuity at x = 0. That is, the
initial value problem

Ut + f(U)x = 0, (1)

U(x, 0) = U0(x), (2)

where

U0(x) =

{
UL, for x ≤ 0,
UR, for x ≥ 0.

Shock wave theory only applies to equations in conserva-
tion form (10), in which a total derivative falls on the non-
linear function f . For systems of conservation laws like
the compressible Euler equations, U = (U1, ..., Un) and
f(U) = (f1(U), ..., fn(U)), and the components Ui of U are
called the conserved quantities and the components fi(U)
of f(U) are called the fluxes. For example, the compressible
Euler equations take the conservation form

ρt +Gx = 0, (3)

Gt +
(
G2/ρ+ p

)
x

= 0, (4)

with conserved quantities U = (ρ,G), G = ρu, and fluxes
f(U) = (G,G2/ρ+ p(ρ)).

1



2

In the case of the compressible Euler equations, and its
equivalent formulation as the p-system, the Riemann prob-
lem poses the shock tube problem, the problem when the
density and velocity of a gas at time zero are constant
states separated by a membrane. When the membrane is
removed, waves move in both directions down the shock
tube, and the Riemann problem determines exactly what
the waves will be. The predictions agree with experiment.
The Riemann problem is a building block for more gen-
eral solutions of conservation laws, as well as for numeri-
cal schemes to numerically simulate solutions. The simple-
waves of the previous section provide solutions of the Rie-
mann problem when the waves are expansive. Such cen-
tered simple waves are called rarefaction waves. But when
solutions are compressive, shock waves are required to com-
plete the picture.
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Figure 1a: Waves in a Shock Tube
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To describe the rarefaction waves in terms of simple waves,
recall the Simple-Wave Principle of the previous section
stated that simple wave solutions of

Ut + A(U)Ux = 0 (5)

can be constructed by imposing the condition that states
on the integral curve R(UL) propagate at speed given by
the eigenvalue at that state. Here R(UL) denotes the in-
tegral curve of the eigenvector R = R(U) from the eigen-
family (λ,R) ≡ (λ(U), R(U)), passing through the state
UL. Thus, if the eigenvalue increases from a state UL to
UR ∈ R(UL), then the Riemann problem can be solved
by asking that each state U ∈ R(UL) between UL and UR
propagate at speed λ(U). This creates a rarefaction wave
connecting UL to UR by a wave in the (x, t)-plane. (See
Figures 1 and 2.) But such waves only make sense when λ
increases from UL to UR along R(UL), and cannot be used
to create waves between states when λ decreases. That is,
when the λ-eigenfield is genuinely nonlinear GN,

∇λ ·R 6= 0,

then λ is monotone along all the integral curves R and can
be taken as the parameter along each one. In this case, for
a given left state UL, the λ-rarefaction waves can solve the
Riemann problem for all UR ∈ R+(UL), where

R+(UL) = {UR ∈ R : λ(UR) > λ(UL)} .
That is, for GN fields, R+(UL) is the half of the integral
curve R(UL) along which λ increases from UL. Shock waves
are required to extend the rarefaction waves to a complete
solution of the Riemann problem. Our goal is to show that
for each state UL there is a shock curve S−(UL) tangent
to the integral curve R+(UL) at UL, with matching second
derivative as well, (we say they make C2 contact at UL),
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such that the concatenation

W (UL) = R+(UL) ∪ S−(UL)

creates a wave curve along which the Riemann problem can
be solved whether λ increases or decreases from UL to UR
alongW (UL). (See Figures 1 and 3.) We will show that each
of the characteristic families of the p-system completes to
such a wave curve Wi(UL), i = 1, 2, and the concatenation
of these wave curves provides a coordinate system in U -
space centered at UL that tells how to solve the Riemann
problem for every UR. The solution is unique within the the
class of admissible shock waves and rarefaction waves.

An important point to make is that the theory of shock
waves only applies to equations in conservation form,

Ut + f(U)x = 0, (6)

in which a total derivative falls on the nonlinear function f ,
c.f. (10)). But the simple-wave form of the equations (5),
not the conservation form (6), is required to describe the
simple-waves. To get the simple wave form of the equations
from the conservation form we must differentiate the flux
f with respect to U and then U with respect to x, That is,

∂f

∂x
=
∂f

∂U

∂U

∂x
= A(U)Ux.

For a system of conservation laws in which U = (U1, ..., Un)
and f(U) = (f1(U), ..., fn(U)), the matrix A(U) is denoted
df , and is simply the matrix obtained by putting the gra-
dient ∇fi(U) in the i′th row to create an n × n matrix of
derivatives of f . Below we will use the conservation form
of the equations to determine the shock waves, and the
simple-wave form of the equations to determine the rar-
efaction waves, for Burgers equation and the p-system.
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Figure 3: The Wave Curve W(UL)
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2. The Rankine-Hugoniot Jump Condition for
Shock Waves

The principle for describing shock waves is the Rankine-
Hugoniot (RH) jump condition. The RH condition applies
to solutions U(x, t) of equations in conservation form

Ut + f(U)x = 0, (7)

when U(x, t) is smooth on either side of a smooth curve
(x(t), t) in the (x, t)-plane, but jumps from UL(t) to UR(t)
across it. (See Figure 4.) In particular, when UL and UR
are constant, RH implies the speed s is constant as well.
We will derive (7) as one of the applications of the diver-
gence theorem in the next section, but for now we accept
it. The Rankine-Hugoniot jump condition states that to
be a legitimate shock wave, the speed of the shock s = ẋ
must, at every time t, be related to the jump in u across
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the shock by the relation

s[U ] = [f(U)]. (8)

The standard notation here is that brackets around a quan-
tity [·] indicate the jump in the quantity from left to right
across the shock, (left and right measured in the (x, t)-
plane), so that [U ] = UR−UL and [f(U)] = f(UR)−f(UL).
(See Figure 4.)

For example, the conservation form of the Burgers equation
is

ut +

(
1

2
u2
)

x

= 0,

with flux function

f(u) =
1

2
u2.

In this case the role of RH is to give the speed of a shock in
terms of the right and left states. That is, solving for the
speed s in RH for Burgers equation gives an expression for
the shock speed in terms of the right and left states across
a Burgers shock:

s =
[f ]

[u]
=

1

2

u2R − u2L
uL − uR

=
uL + uR

2
.

Conclude that for the scalar Burgers equation, the RH con-
ditions simply tell us that the speed of a legitimate shock
must be the average of the states on the left and right of
the shock. For system of equations, unraveling the meaning
of the RH condition (8) is more problematic. A number of
comments are in order.
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Figure 4: The Rankine-Hugoniot Jump Condition for Shocks

• Note that the fundamental starting point of the theory of
shock waves is the conservation form of the equations (7).
The RH jump condition (8) only makes sense for equations
in conservation form. It tells the quantities that are con-
served, and these determine conservation across the shock
waves. As an example, multiplying Burgers through by u
gives

(u2)t +

(
2

3
u3
)

x

= 0,

which has the same simple-wave form

ut + uux = 0,

but the conserved quantity is u2 not u, so the RH condition
is not the same condition. Thus, the conservation form of
the equations is determined by the physically meaningful
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quantities that are conserved. For example, the conserva-
tion form of the compressible Euler equations is

ρt +Gx = 0,

Gt + (G2/ρ+ p)x = 0, (9)

of form

Ut + f(U)x = 0,

(upper case U to distinguish from the velocity u!), with
U = (ρ,G) and f(U) = (G,G2/ρ + p). Since mass and
momentum are what is conserved across a shock wave, and
the conserved quantities are the mass density ρ and mo-
mentum density G = ρu, these are the physically correct
conserved quantities and hence this is the physically correct
conservation form of the equations.

• Finally, note that if states UL = U1 and UR = U2 meet
the RH conditions

s[U ] = [f(U)],

then minus-ing the jumps on both sides shows UL = U2

and UR = U1 does also...the RH conditions can’t distinguish
between UL on the left and UR on the right, and the reverse.
But in fact, only one of these will produce a stable shock
wave. A large part of the theory of shock waves involves
the study of entropy conditions that rule out the unstable
shocks that have UL and UR on the wrong side. We will
presently see how to do this for the Burgers equation and
for the p-system and compressible Euler equations of gas
dynamics.

3. The Riemann Problem for Burgers Equation

The Riemann problem is the initial value problem when
the initial data consists of two constant states uL and uR
separated by a jump discontinuity at x = 0. (We use lower
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case u for the unknown because it is a scalar.) That is, the
initial value problem

ut + f(u)x = 0, (10)

u(x, 0) = u0(x), (11)

where

u0(x) =

{
uL, for x ≤ 0,
uR, for x ≥ 0.

First, we can construct the rarefaction wave solutions of
the Riemann problem when uL < uR from the Simple-Wave
Principle. To obtain the simple wave form of the equations
from the conservation form, differentiate the flux. That is,
for a general scalar conservation law

ut + f(u)x = 0,

differentiate f by the chain rule to obtain

f(u)x = f ′(u)ux.

Thus the simple wave principle says λ = f ′(u), R = 1,
and simple waves are constructed by asking that solutions
u(x, t) be constant along lines of speed ẋ = λ. In the case
of Burgers equation,

f(u) =
1

2
u2,

and so the simple-wave form of Burgers equation is

ut + uux = 0.

Thus Burgers equation expresses that u(x, t) should be con-
stant along lines of speed ẋ = u, and so for Burgers we can
construct the rarefaction wave solutions of the Riemann
problem when uL < uR by asking that each value of u
between uL and uR should propagate at speed u: Such a
solution creates a wave fan, or rarefaction wave, taking uL
to uR. When uL > uR, the rarefaction waves don’t exist
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because the speeds decrease from left to right, and the fan
of values expands inconsistently back toward uL. In this
case we take the shock wave solution that takes uL to uR.
As above, according to the RH condition, the speed of the
shock is the average of the speeds on each side,

s =
[f ]

[u]
=
uL + uR

2
.

Taking rarefaction waves when uL < uR and shock waves
when uL > uR solves the Riemann problem for every uL, uR.
The solution is pictured most easily in on the graph of f
as a function of u, (see Figure 5). By the simple-wave
formulation,

ut + f ′(u)ux = 0,

the speed of a wave is λ = f ′(u), which for Burgers happens
to be f ′(u) = u. Thus the rarefaction wave speeds for states
u between uL and uR > uL are the slopes of the tangent
lines of f at u, these slopes increasing as u increases from
uL to uR. The shock waves, on the other hand, have a speed
given by the slope of the chord between uL and uR < UL
because

s =
[f ]

[u]
.

This picture for getting the speeds of states that solve the
Riemann problem from the graph of f applies to any scalar
conservation law of form

ut + f(u)x = 0,

subject to f ′′(u) > 0, the condition for GN. It only remains
to discuss the admissibility condition, or entropy condition
that rules out the shock waves when uL < uR, allowable by
the RH condition alone.
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Figure 5: Riemann Problem for Scalar Conservation Law ut + f(u)x = 0

u
uL uR

f(u)

u

λ = f �(u)

s =
f(uL) − f(uR)

uL − uR

• The main condition that picks out the shocks uL > uR
for Burgers equation is the so called Lax entropy condition.
This states that characteristics should impinge on the shock
from both sides, c.f. Figure 6. Mathematically, this states
that an admissible shock should satisfy

λR < s < λL. (12)

Essentially, this rules out shocks in which the wave speed
can increase from uL to uR, because a rarefaction wave
could replace the shock wave as a solution of the Riemann
problem in this case. The shock wave is not allowed when
a smoother solution exists. A shock that can be replaced
by a rarefaction wave is called a rarefaction shock. Such
shocks are unstable because, under small perturbation of
the initial data, the solution would find the simple wave
from uL to uR, not the shock wave—and the rarefaction
wave is not a small perturbation of the shock wave.
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In contrast to rarefaction shock, Lax shocks are highly sta-
ble. Since characteristics impinge on the shock, a small
purturbation would send the solution constant along char-
acteristics, right back into the shock. Moreover, we showed
that when you linearize the constant state in Burgers equa-
tion, the purturbations evolve with almost the same wave
speed. Thus all small perturbations of uL and uR will get
swept into the shock wave as the characteristics impinge
on the shock. In particular, admissible Lax shocks destroy
information as they propagate...information about the past
is lost as characteristics impinge on the shock. See Figure 6
for how all information about the initial data except uL and
uR can be lost by characteristics impinging on the shock.
It follows that when shock waves are present, the past can-
not be recovered from the present, and the solutions are no
longer time-reversible. One can show that this loss of in-
formation in the compressible Euler equations corresponds
to increase of entropy, a thermodynamical measure of in-
formation lost.
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Figure 6: Characteristics Impinge on a Lax Shock
With Consequent Loss of Information

4. The Riemann Problem for the p-system

We now solve the Riemann problem for the p-system under
the assumptions that

p′(v) < 0, p′′(v) > 0. (13)

The first condition just states that pressure rises with den-
sity ρ = 1/v, and the second guarantees genuine nonlinear-
ity in both characteristic fields, c.f. Section 8. In particular,
the isothermal equations of state

p =
σ2

v

meets both conditions (13).

To start, recall that the p-system is the nonlinear wave
equation with sound speed c(v) =

√
−p′(v), and is ob-

tained from the compressible Euler equations by changing
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the spatial coordinate to a frame moving with the fluid at
each point. The p-system takes the conservation form

(
v
u

)

t

+

(
−u
p(v)

)

x

= 0., (14)

of form (10) with conserved quantities U = (v, u) and flux
f(U) = (−u, p(v)). The p-system is physically equivalent to
the compressible Euler equations, and in particular it can
be shown that the RH jump conditions determine the same
shock curves with transformed shock speeds. Because it is
simpler, we now derive the shock curves for the p-system,
and see how they connect with the rarefaction curves R+

derived in the previous section.

To construct the shock curves S(UL), we solve for the set of
right states U = (v, u) that meet the RH jump conditions
s[U ] = [f(U)] with left state UR = (vL, uR), and some speed
s. This defines the so called Hugoniot locus of UL, the set
of all possible states that can be connected to UL across a
shock wave. Putting (14) into RH gives

s[U ]− [f(U)] = s

(
v − vL
u− uL

)
−
(

uL − u
p(v)− p(vL)

)
= 0,

yielding the two equations

s(v − vL) = −(u− uL), (15)

s(u− uL) = p(v)− p(vL).

Multiplying both sides of (15) and (16) together gives

s2 = −p(v)− p(vL)

v − vL
= −p′(v∗), (16)

where the mean value theorem gives the existence of v∗ =
v∗(vL, v) between vL and v. (See Figure 7b.)
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Thus the shock speeds are

s = ±
√
−p(v)− p(vL)

v − vL
= ±

√
−p′(v∗), (17)

Since

lim
v→vL

√
−p′(v∗) = ±

√
−p′(vL) = ±c(vL), (18)

we set the 1-shock speed equal to

s1 ≡ s1(vL, v) = −
√
−p′(v∗), (19)

and the 2-shock speed equal to

s2 ≡ s2(vL, v) = +
√
−p′(v∗). (20)

To obtain the shock curves, eliminate s from (15), (16) to
obtain

(u− uL)2 = −(p(v)− p(vL))(v − vL), (21)

or

u = uL ±
√
−(p(v)− p(vL))(v − vL)

= uL ±
√
−p(v)− p(vL)

v − vL
(v − vL)

= uL ±
√
−p′(v∗)(v − vL).

Note that because p′(v) < 0, all functions under square
root signs are positive.

Now define the 1-shock curve S1 by,

u = uL +
√
−(p(v)− p(vL))(v − vL)

or

S1 : u = uL +
√
−p′(v∗)(v − vL).

and the 2-shock curve S2 as

u = uL −
√
−(p(v)− p(vL))(v − vL),
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or

S2 : u = uL +
√
−p′(v∗)(v − vL).

Now it is clear that S1 gives the curve of states U that make
shocks with UL of negative speed s1, and S2 gives the curve
of states U that make shocks with UL of positive speed s2.
To see this, note that by (15),

s = −u− uL
v − vL

,

so when s = s1 < 0 we have

−u− uL
v − vL

< 0,

meaning we must be on S1, and when s = s2, we have

−u− uL
v − vL

> 0,

meaning we must be on S2.

Now recall

R1(UL) = R1(UL)− ∪R+
1 (UL),

R2(UL) = R−2 (UL) ∪R+
2 (UL),

where R+
1 (UL) and R+

2 (UL) are the 1- and 2- rarefaction
curves passing through the state UL, that portion of the
integral curves along which the eigenvalues increase, so the
portion that corresponds to viable right states for rarefac-
tion waves starting with left state UL.

Similarly, define

S1(UL) = S1(UL)− ∪ S+
1 (UL),

S2(UL) = S−2 (UL) ∪ S+
2 (UL),

as diagrammed in Figure 8. We now prove the following
theorem:
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Theorem 1. For each UL, the 1-shock curve S1(UL) inter-
sects R1(UL) at the state UL, at which point the two curves
have equal first and second derivative. Similarly, the 2-
shock curve S2(UL) intersects R2(UL) at the state UL, and
these latter two curves are also have equatl first and second
derivatives at UL. We say that the shock curves have C2

tangency with the rarefaction curves at UL.

The tangency of the shock and rarefaction curves is dia-
grammed in Figure 9. The theorem completes the picture
of the shock and rarefaction curves. I.e., the shock curve
S−1 (UL) completes the rarefaction curve R+

1 (UL) to a C2

1-wave curve W1(UL) defined by, (c.f. Figure 10),

W1(UL) = S−1 (UL) ∪R+
1 (UL).

Similarly, define 2-wave curve W1(UL), also C2, is defined
by

W1(UL) = S−1 (UL) ∪R+
1 (UL).

Moreover, it follows from Figure 7b that the i-characteristics
impinge on the i-shock waves like Figure 6, thereby meet-
ing the Lax admissibility for shock waves, precisely when
UR is on S−i . Finally, it is easy to see that the wave curves
stay within the physical domain v > 0.

Before giving the proof of Theorem 1, we can complete the
resolution of the Riemann problem by defining a coordi-
nate system of wave curves based at UL. For this, draw all
2-wave curves W2(UM) for UM ∈W1(UL), as diagrammed
in Figure 11. Then for any right state U = UR, we can
solve the Riemann problem by finding the state UM such
that UL ∈W2(UM). Then the Rieman problem is resolved
by the negative speed 1-wave from UL to UM , followed by
a positive speed 2-wave from UM to UL. The waves are ei-
ther shock waves or rarefaction waves depending on which
region (I-IV) UR lies in relative to the coordinate system
of wave curves at UL, (see Figure 11). The various cases
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are diagrammed in Figures 12-15. Examples of wave inter-
actions that can be resolved by Riemann problems alone
are diagrammed in Figures 16,17. It is not so difficult to
justify that for isothermal gas dynamics p = σ2/v, this pro-
cedure produces a unique solution of the Riemann problem
in the class of shock waves and rarefaction waves. A com-
plete proof of uniqueness of solutions would entail showing
that two wave curves W2(UM1) never intersects W2(UM2 for
UM1 6= UM2 on W1(UL). This is true for any p satisfying
p′(v) < 0, p′′(v) > 0. To prove existence of a solution for
every UR, entails proving that every state UR in the phys-
ical domain v > 0, can be reached by W2(UM), for some
UM on W1(UL). It is not so difficult to show that this is
true for the isothermal equation of state. But for more
general equations of state, (like polytropic gases satisfying
p = 1/vγ, γ > 1), this is not strictly true because of the
possible formation of vacuum states. See [Smoller] for a
more in depth discussion of the very interesting issue of the
vacuum.

u

v

UL

S�
2 (UL)

S�
1 (UL)

vL

S+
1 (UL)

S+
2 (UL)

v < vL v > vL

Figure 8: The Shock Curves for the p-system.
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s
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u = uL +

s
�

p(v) � p(vL)

v � vL

(v � vL)
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u

v

UL

R+
1 (UL)

R+
2 (UL)

S−
2 (UL)

S−
1 (UL)

I

II

III

IV

vL

Figure 10: The Wave Curves of the p-system
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• Proof of Theorem 1: We show that the 1-rarefaction
curve is tangent to the 1-shock curve at U = UL, the case
of 2 shocks being similar. Recall then that the 1-integral
curves are given by

s = u− h(v) = const,

so

u = h(v) + const, (22)

where

h′(v) = c(v) =
√
−p′(v).

The 1-shock curve is given by

u = uL +

√
−p(v)− p(vL)

v − vL
(v − vL). (23)

We check agreement of the first two derivatives at v = vL.
First, along (22),

du

dv
= h′(v) = c(v),

d2u

dv2
= c′(v),

so at v = vL we have

du

dv
= c(vL),

d2u

dv2
= c′(vL). (24)

On the other hand, for the shock curve (23) we compute

du

dv
=

d

dv

√
−p(v)− p(vL)

v − vL
· (v − vL) +

√
−p(v)− p(vL)

v − vL
so at v = vL we have

du

dv
= lim

v→vL

√
−p(v)− p(vL)

v − vL
=
√
−p′(vL) = c(vL), (25)
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in agreement with (25). To verify agreement at the second
derivative, differentiate (26) by the product rule to obtain

d2u

dv2
=

d2

dv2
√
·(v − vL) + 2

d

dv

√
·.

Since the first term will vanish when v = vL, we get

d2u

dv2
|v=vL = lim

v→vL
2
d

dv

√
−p(v)− p(vL)

v − vL
.

But

2
d

dv

√
−p(v)− p(vL)

v − vL
=
−1√·

(v − vL)p′(v)− (p(v)−p(vL)
v−vL

v − vL
.

Substituting the Taylor approximation

p(v)−p(vL) = p′(vL)(v−vL)+
1

2
p′′(vl)(v−vL)2+O(v−vL)3,

and simplifying gives the second derivative of the shock
curve at v = vL as

d2u

dv2
|v=vL = lim

v→vL
− 1√·

1

2
p′′(vL) = c′(vL),

in agreement with (25), as claimed. �
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Figure 11: The Coordinate System of Wave Curves at UL
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Figure 16: A 1-Shock Interacts With a 2-Shock



27

x

t

UL UR

UL UR

UM

UM1

Figure 17: Two 2-Shocks Reflect a 1-rarefactions wave
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