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Exercises 5

Now we apply the induction hypothesis P, to obtain

Isin(n+1)x| < n|sinx| + |sinx| = (n+1)|sinx|.

Thus P,y holds. Finally, the result holds for all n by mathematical
induction. O

Exercises

1.1.
1.2.
1.3.

1.4.

1.5.
1.6.
1.7.
1.8.

1.9.

1.10.

1.11.

Prove 12422+ . .4+n? = In(n+1)(2n+1) for all natural numbers n.
Prove 3+ 11 +--- + (8n — 5) = 4n® — n for all natural numbers n.

Prove 1° +2°+... 4+ 1% = (1+ 2+ - +n)? for all natural numbers
n.

(a) Guess a formula for 1 + 3 + --- + (2n — 1) by evaluating the
sum for n =1, 2, 3, and 4. [For n = 1, the sum is simply 1.]

(b) Prove your formula using mathematical induction.

Prove 1 + 3+ ; + -+ + 3 = 2 — & for all natural numbers n.
Prove that (11)" — 4" is divisible by 7 when n is a natural number.
Prove that 7" — 6n — 1 is divisible by 36 for all positive integers n.

The principle of mathematical induction can be extended as fol-
lows. A list Py, Ppy, ... of propositions is true provided (i) P,, is
true, (ii) Pn41 is true whenever P, is true and n > m.

(a) Prove that n? > n+1 for all integers n > 2.

(b) Prove that n! > n? for all integers n > 4. [Recall that n! =
n(n—1)---2-1; for example, 5! =5-4-3-2-1=120,]

(a) Decide for which integers the inequality 2" > n? is true.
(b) Prove your claim in (a) by mathematical induction.

Prove (2n+ 1)+ (2n+3)+ (2n+5) +--- + (4n — 1) = 3n? for all
positive integers n.

For each n € N, let P, denote the assertion “n? + 5n + 1 is an even
integer.”

(a) Prove that P, is true whenever P, is true.
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(b) For which n is P, actually true? What is the moral of this

exercise?

1.12. Forn e N, let n! [read “n factorial”
Also let 0! = 1 and define

n n!
(k)=.k'(T—k_)—' for k:O,l,...,n.

The binomial theorem asserts that

(@a+b) = (g)a" + (:l)a"‘lb + (Z)a"'zbz +o
o)+ (e
n-1 n

=a"+1a""'b+ In(n - 1)a" 2B + ... 4 papr-1 + b

(a) Verify the binomial theorem for n = 1,2, and 3.

(b) Show that (7) + (" ) = ("") fork = 1,2, ... .

(c) Prove the binomial theorem using mathematical induction
and part (b).

§2 The Set Q of Rational Numbers

Small children first learn to add and
After subtraction is introduced, the need to expand the number sys-
tem to include 0 and negative numbers becomes apparent. At this
point the world of numbers is enlarged to include the set Z of all
integers. Thus we have Z — {0,1,-1,2,-2,..}.

Soon the space Z also becomes inadequate when division is in-
troduced. The solution is to enlarge the world of numbers to include
all fractions. Accordingly, we study the space Q of all rational num-
bers, i.e., numbers of the form ™ where m,n € Z and n # 0. Note
that Q contains all terminating decimals such as 1.492 — }—3%. The
connection between decimals and real numbers is discussed in 10.3
and §16. The space Q is a highly satisfactory algebraic system in
which the basic operations addition, multiplication, subt
division can be fully studied. No system is perfect, how

to multiply natural numbers,

raction and
ever, and Q

] denote the product1.2.3...p

——

Sp—

[ ——"2
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—_—

and these all can be eliminated by mentally substituting them into

the equation. We conclude that 4 — 7b? cannot be rational, so b cannot
be rational. n

As a practical matter, many or all of the rational candidates given
by the Rational Zeros Theorem can be eliminated by approximating
the quantity in question [perhaps with the aid of a calculator). It
is nearly obvious that the values in Examples 2 through 5 are not
integers, while all the rational candidates are, My calculator says that

bin Example 6 is approximately .2767; the nearest rational candidate
is +2/7 which is approximately .2857.

Exercises

2.1. Show that /3, \/5, V7, V24, and /3T are not rational numbers,

2.2. Show that 2'3 57 ang (13)'"* do not represent rational numbers.

2.3. Show that (2 + +/2)!2 does not represent a rational number.
2.4. Show that (5 — v/3)1”3 does not represent a rational number.
2.5. Show that [3 + +/Z]? does not represent a rational number,

2.6. In connection with Example 6, discuss why 4 — 7b% must be rational
if b is rational.

§3 The Set R of Real Numbers

The set Q is probably the largest system of numbers with which
you really feel comfortable. There are some subtleties but you have
learned to cope with them. For example, Q is not simply the set
{% ‘mn € Z,n # 0}, since we regard some pairs of different look-
ing fractions as equal. For example,  and 2 are regarded as the
same element of Q. A rigorous development of Q based on Z, which
in turn is based on N, would require us to introduce the notion of
equivalence class; see [38]. In this book we assume a familiarity with

and understanding of Q as an algebraic system. However, in order

b i gt it
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FIGURE 3.2

The inequality in Corollary 3.6 is very closely related to an
inequality concerning points a, b, ¢ in the plane, and the latter in-
equality can be interpreted as a statement about triangles: the length

of a side of a triangle is less than or equal to the sum of the lengths
of the other two sides. See Figure 3.2. For this reason, the inequality

in Corollary 3.6 and its close relative (ii) in 3.5 are often called the
Triangle Inequality.

3.7 Triangle Inequality.
la+b| < |a| + |b| for all a, b.

A useful variant of the triangle inequality is given in Exer-
cise 3.5(b).

Exercises
3.1. (a) Which of the properties Al-A4, M1-M4, DL, O1-05 fail for N?
(b) Which of these properties fail for Z?

3.2. (a) The commutative law A2 was used in the proof of (ii) in
Theorem 3.1. Where?

(b) The commutative law A2 was also used in the proof of (iii) in
Theorem 3.1. Where?

3.3. Prove (iv) and (v) of Theorem 3.1.
3.4. Prove (v) and (vii) of Theorem 3.2.
3.5. (a) Show that |b| < g if and onlyif-a<b<a.

(b) Prove that ||la] — |b|| < |a — b| foralla,b e R.

S P = N
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3.6. (a) Prove that|a+Db+c| < |al+|b|+c| for alla, b, ¢ € R. Hint: Apply
the triangle inequality twice. Do not consider eight cases.

(b) Use induction to prove
lay +az + -+ an| < larl + a2l + - +lan
for n numbers ay,4a;, ..., an.
3.7. (a) Show that |b| < aif andonlyif —a < b < a.
(b) Show that ja —b| < cifandonlyifb—c < a < b+c.
(c) Show that |a — b <cifandonlyifb-c<a<b+c.
3.8. Leta,b € R. Show that ifa < b, for every by > b, thena < b.

§4 The Completeness Axiom

In this section we give the completeness axiom for R. This is the
axiom that will assure us that R has no “gaps.” It has far-reaching
consequences and almost every significant result in this book relies
on it. Most theorerhs in this book would be false if we restricted our
world of numbers to the set Q of rational numbers.

4.1 Definition.
Let S be a nonempty subset of R.
(a) If S contains a largest element s, [that is, s belongs to S and
s < 8o for all s € S}, then we call s the maximum of S and write
§g = max S.
(b) If S contains a smallest element, then we call the smallest
element the minimum of 8 and write it as min§.

Example 1
(a) Every finite nonempty subset of R has a maximum and a
minimum. Thus

max{1,2,3,4,5}=5 and min{1,2,3,4,5}=1,

max{0,n,—7,¢3,4/3} =n and min{0, &, —7,¢,3,4/3} = -7,

max{n € Z : —4 < n <100} =100 and
min{n € Z : —4 < n <100} = -3.

e
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Then an < mbut m — 1 < an. Also, we have

m=(m-1)+1<an+1 < an+ (bn— an) = bn, K
s0 (1) holds. n 4

Exercises

4.1. For each set below that is bounded above, list three upper bounds
for the set. Otherwise write “NOT BOUNDED ABOVE” or “NBA."

(a) [0,1] (®) (0,1)
() (2,7} (d) {m e}
(e) {::neN} ® {0}

(8) [0,1]U[2,3]

@ MLl 1+

(X) {n+tiln :neN}

(m) {reQ:r? < 4}

(o) (xeR:x <0}

(q) {0,1,2,4,8,16}

(8) {%:neNandnis prime}
(u) {¥* :xeR}

(w) {sin(F):neNj}

(h) U2, (2n, 2n 4 1]
(j) - 31—,, :n €N}
M {reQ:r<2

(m) reQ:r* <2}

(@ {15,710}

(r) ML (-5 1+ )
(t) {xeR:x* < 8}

(v) {cos(%):neN)

4.2. Repeat Exercise 4.1 for lower bounds.

4.3. For each set in Exercise 4.1, give its supremum if it has one.
Otherwise write “NO sup.”

4.4. Repeat Exercise 4.3 for infima [plural of infimum].

4.5. Let S be a nonempty subset of R that is bounded above. Prove that

if sup S belongs to §, then sup S = max S. Hint: Your proof should
be very short.

4.6. Let S be a nonempty bounded subset of R.

(a) Prove that inf § < supS. Hint: This is almost obvious; your
proof should be short.

(b) What can you say about § if inf § = sup §?
4.7. Let S and T be nonempty bounded subsets of R.

(a) Prove thatif SC T, theninf T <infS <supS <supT.
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(b) Prove that sup(SU T) = max{sup§, sup T} Note: In part (b),
do not assume SC 7.

4.8. Let Sand T be nonempty subsets of R with the following property: |
s<tforallseSandteT.

(a) Observe that § is bounded above and that T is bounded below.

(b) Prove that supS < inf T.

(c) Give an example of such sets S and T where SNT is nonempty.

(d) Give an example of sets § and T where sup S = inf T and SN'T

is the empty set.

4.9. Complete the proof that inf§ =
proving (1) and (2).

—sup(—S§) in Corollary 4.5 by

410 Prove that if a > 0, then there exists n € N such that % <a<n

4.11. Consider a,b € R where a < b. Use Denseness of Q 4.7 to show
that there are infinitely many rationals between a and b.

4.12. Let [ be the set of real numbers that are not rational; elements of I ‘
are called irrational numbers. Prove that if a < b, then there exists a
x € Isuch thata < x < b. Hint: First show {r ++/2: 7€ Q} C L. :

4.13. Prove that the following are equivalent for real numbers a,b,c.
[Equivalent means that either all the properties hold or none of the
properties hold.] '

(@) la-bl <,
(b) b—c<a<b+c, 4
(c) ae(b—cb+o) ;‘

Hint: Use Exercise 3.7(b).

4.14. Let A and B be nonempty bounded subsets of R, and let § be the
set of all sums a + b where a € A and b € B.
(a) Prove that supS = sup A + supB.
(b) Prove that inf S = inf A + inf B.

4.15. Let a,b € R. Showthat1fa<b+

foralln € N, thena < b. }
Compare Exercise 3.8. :

4.16. Show thatsup{r e Q:r < a} =a foreacha e R.
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Exercises

5.1. Write the following sets in interval notation:
(a) xeR:x<0) (b) (xeR:x* <8}
(c) {¥*:xeR} (d) (xeR:x* < 8}

5.2. Give the infimum and supremum of each set listed in Exercise 5.1.

5.3. Give the infimum and supremum of each unbounded set listed in
Exercise 4.1.

5.4. Let S be a nonempty subset of R, and let —~§ = {—s : s € §}. Prove
that inf § = — sup(—S). Hint: For the case —o0 < inf S, simply state
that this was proved in Exercise 4.9.

5.5. Prove that inf S < sup S for every nonempty subset of R. Compare
Exercise 4.6(a).

5.6. Let S and T be nonempty subsets of R such that § C T. Prove that
inf T < inf § < sup S < sup T. Compare Exercise 4.7(a).

§6 * A Development of R

There are several ways to give a careful development of R based on
Q. We will briefly discuss one of them and give suggestions for fur-
ther reading on this topic. [See the remarks about optional sections
in the preface.]

To motivate our development we begin by observing that

a=sup{reQ:r <a} foreach aeR;

see Exercise 4.16. Note the intimate relationship: a < b if and only
ififreQ:r<a)C{reQ:r < b}and, moreover, a = b if and only
ififreQ:r < a}={reQ:r < b} Subsets a of Q having the form
{r € Q: r < a} satisfy these properties:

(i) @ # Q and « is not empty,
(ii) frea,s€eQands < 7, thens € ¢,
(iii) o contains no largest rational.

Moreover, every subset a of Q that satisfies (i)-(iii) has the form
{r e Q:r < a} for some a € R; in fact, a = supa. Subsets a of Q
satisfying (i)-(iii) are called Dedekind cuts.
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The remarks in the last paragraph relating real numbers and
Dedekind cuts are based on our knowledge of R, including the com-
pleteness axiom. But they can also motivate a development of R
based solely on Q. In such a development we make no a priori as-
sumptions about R. We assume only that we have the ordered field
Q and that Q satisfies the Archimedean property 4.6. A Dedekind
cut is a subset & of Q satisfying ()-(iii). The set R of real numbers
is defined as the space of all Dedekind cuts. Thus elements of R are

tercise 5.1.

et listed in

z §}. Prove defined as certain subsets of Q. The rational numbers are identified
mply state with certain Dedekind cuts in the natural way: each rational s cor-
responds to the Dedekind cut s* = fr e Q:r < s}. In this way

. Compare Q is regarded as a subset of R, that is, Q is identified with the set
Q' ={s*:5€Q).

Prove that The set R defined in the last paragraph is given an order structure
as follows: if @ and B are Dedekind cuts, then we define a < B to
signify that @ C B. Properties 01, 02 and O3 in §3 hold for this
ordering. Addition is defined in R as follows: ifa and B are Dedekind
cuts, then

a+ 8= {n +r:n (Eaandrz Eﬂ}

based on It turns out that « + 8 is a Dedekind cut [hence in R)] and that this

s for fur- definition of addition satisfies properties A1-A4 in §3. Multiplication

| sections of Dedekind cuts is a tedious business and has to be defined first for
Dedekind cuts that are > 0*. For a naive attempt, see Exercise 6.4.

at After the product of Dedekind cuts has been defined, the remaining
properties of an ordered field can be verified for R. The ordered field
R constructed in this manner from Q is complete: the completeness
and only property in 4.4 can be proved rather than taken as an axiom.

and only The development of R outlined above is given in [34] and [36).

the form The real numbers are developed from Cauchy sequences in Q in
[23], §5. A thorough development of R based on Peano’s axioms is
given in [28].

Exercises
he form
saofQ 6.1. Consider s, t € Q. Show that

(a) s<tifand only if s* C t*
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6.3.

6.4.

6.5.

6.6.

(b) s =t if and only if s* = t*;
(c) (s+1t)* =s" +t*. Note that s* + t* is a sum of Dedekind cuts.

Show that if @ and B are Dedekind cuts, thensoisa+ 8 ={r, +1;:
rleaandrzeﬂ}.

(a) Show that  + 0* = « for all Dedekind cuts a.

(b) We claimed, without proof, that addition of Dedekind cuts sat-
isfies property A4. Thus if @ is a Dedekind cut, there must exist
a Dedekind cut —« such that a + (—a) = 0*. How would you
define —a?

Let a and B be Dedekind cuts and define the “product”: a- 8 = {ryr; :
n eaandrz Eﬁ}

(a) Calculate some “products” of Dedekind cuts using the Dedekind
cuts 0%, 1* and (—1)*.

(b) Discuss why this definition of “product” is totally unsatisfactory
for defining multiplication in R.

(a) Show that {r € Q: r® < 2} is a Dedekind cut, but that {r € Q :
r? < 2} is not a Dedekind cut.

(b) Does the Dedekind cut {r € Q : r* < 2} correspond to a rational
number in R?

(c) Show that 0*U{r € Q : r > O and r? < 2} is a Dedekind cut.
Does it correspond to a rational number in R?

Leta=0"U{p € Q:p > 0andp* < 2}. Prove that « is a Dedekind
cut and also that it has the property o - @ = 2*; that is, the square
of a is 2*. Note: This seems to be surprisingly tricky, as pointed out
by Linda Hill and Robert J. Fisher at Idaho State University. Their
solution is available from them or from the author.

CHAPTE
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For n > max{N, N3}, the Triangle Inequality 3.7 shows that
€
2

This shows that |s — t| < € for all € > 0. It follows that Is—t| =0
hence s =¢.

€
ls—tl=l(s=sn)+ (S =) < |s—snl + |8, — t] < +o=e

’

Exercises

7.1. Write out the first five terms of the following sequences.
@) = 5 () b, = 34
(€ cn=5% (d) sin(")

7.2. For each sequence in Exercise 7.1, determine whether it converges.
If it converges, give its limit. No proofs are required.

7.3. For each sequence below, determine whether it converges and, if it
converges, give its limit. No proofs are required.

(a) a = ;% (b) b = %3
(€ cn=27" d tr=1+2
(€) x =73+ (-1) ® s ="
& yn=n! () d, = (-1)'n
@ & 0 &=

&) a2 @ sin(%)
(m) sin(nm) (n) sin(ZT"")
(0) lsinn (p) 5=t

@ % (r) (1+1y

() &2 () &t

7.4. Give examples of

(a) asequence (xy) of irrational numbers having a limit lim x, that
is a rational number.

(b) a sequence (ry) of rational numbers having a limit lim r,, that
is an irrational number.

7.5. Determine the following limits. No proofs are required, but show
any relevant algebra.

(a) lims, where s, = vVn2+1—n,

(b) lim(v/n? +n - n),

(c) lim(v4
Hint for
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(¢) lim(v/4nZ +n - 2n).

Hint for (a): First show that s, = J—;-z—l—m

§8 A Discussion about Proofs

In this section we give several examples of proofs using the definition
of the limit of a sequence. With a little study and practice, students
should be able to do proofs of this sort themselves. We will sometimes
refer to a proof as a formal proof to emphasize that it is a rigorous
mathematical proof.

Example 1
Prove that lim J; = 0.

Discussion. Our task is to consider an arbitrary € > 0 and show
that there exists a number N [which will depend on €] such that
n > N implies |;17 — 0] < €. So we expect our formal proof to begin
with “Let € > 0” and to end with something like “Hence n > N
implies lnif — 0] < €." In between the proof should specify an N and
then verify that N has the desired property, namely thatn > N does
indeed imply | — 0| < €.

As is often the case with trigonometric identities, we will initially
work backward from our desired conclusion, but in the formal proof
we will have to be sure that our steps are reversible. In the present
example, we want |J; — 0] < € and we want to know how big n
must be. So we will operate on this inequality algebraically and try
to “solve” for n. Thus we want n—l; < €. By multiplying both sides by n?
and dividing both sides by ¢, we find that we want 2 < n? or —}; <n

If our steps are reversible, we see that n > ﬁ implies |5 — 0| < .
This suggests that we put N = Jlg

Fermal Proof

Lete > 0. Let N = ﬁ.'l‘henn > N implies n > -ﬁwhichimplies

n* > 1 and hence € > ;. Thus n > N implies |3; — 0] < €. This
proves that lim ; = 0. (]
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then we clearly have m > 0 and |s,| > mforalln € N in view of (1).
Thus inf{|s,|:ne N} >m > 0, as desired. [ ]

Formal proofs are required in the following exercises.

Exercises
8.1. Prove the following:

@ lim&EL =g (b) lim ;=0
(c) imZ =1 (d) im 5 =0
8.2. Determine the limits of the following sequences, and then prove
your claims.
(@) an= 73 () by = 2=2
(€) e =72 @D & =3

(€) s, = lsinn

8.3. Let (sn) be a sequence of nonnegative real numbers, and suppose

that lims, = 0. Prove that lim /s, = 0. This will complete the
proof for Example 5.

8.4. Let (t,) be a bounded sequence, i.e., there exists M such that |t,| <

M for all n, and let (s,) be a sequence such that lim 8p = 0. Prove
that lim(s,t,) = 0.

8.5. (a) Consider three sequences (ay), (bn) and (s,) such that a, <
Sn < by for all n and lima, = limb, = s. Prove that lim 8, =8.

(b) Suppose that (s,) and (t,) are sequences such that 8] <ty for
alln and limt, = 0. Prove that lims, = 0.

8.6. Let (s,) be a sequence in R.
(a) Prove thatlims, = 0 if and only if lims,| = 0.

(b) Observe that if s, = (~1)*, then lim |s,| exists, but lim s, does
not exist.

8.7. Show that the following sequences do not converge.
(a) cos(Z) (b) s, =(~1)'n

(€) sin(3)

8.8. Prove the following [see Exercise 7.5]:
(@) lim[vn?+1-n]=0
(c) lim{v4n? +n—2n)=1

(b) lim{vn? +n—-n)=1

.Q.Q;A'Let (S) be .
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8.9. Let (s,) be 4 sequence that converges.

(a) Show that ifs, > a for all but finitely many n, thenlims, > a.

(b) Show that if s, < b for all but finitely many n, thenlims, < b.

(c) Conclude that if all but finitely many s, belong to [a, b], then
lim s, belongs to [a, b).

8.10. Let (s,) be a convergent sequence, and suppose that lims, > a.
Prove that there exists a number N such thatn > N implies s, > a.

§9 Limit Theorems for Sequences

In this section we prove some basic results that are probably already
familiar to the reader. First we prove that convergent sequences are
bounded. A sequence (s,) of real numbers is said to be bounded if
the set {s, : n € N} is a bounded set, i.e., if there exists a constant M
such that |s,| < M for all n.

9.1 Theorem.
Convergent sequences are bounded.

Proof
Let (s,) be a convergent sequence, and let s = lims,. Applying
Definition 7.1 with € = 1 we obtain N in N so that

n >N implies |s,—s| < 1.

From the triangle inequality we see thatn > N implies |sn| < [s|+1.
Define M = max{|s| + 1,|s1],!sz),...,|s~l}. Then we have |s,| < M
for all n € N, so (s,) is a bounded sequence. ]

In the proof of Theorem 9.1 we only needed to use property 7.1(1)
for a single value of €. Our choice of € = 1 was quite arbitrary.

4.2 Theovem.
If the sequence (s,) converges to s and k € R, then the sequence (ksn)
eonverges to ks. That is, lim(ks,) = klims,.
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To prove (1), suppose that lim s, = +00. Lete > 0 andlet M = %
Since lim s, = +o0, there exists N suchthatn > N impliess, > M =
L. Therefore n > N implies ¢ > + > 0,50

1
— -0

Sn

n > N implies < €.

That is, lim(;-) = 0. This proves (1).

To prove (2), we abandon the notation of the last paragraph and
begin anew. Suppose thatlim(+) = 0.LetM > Oandlete = +- Then
€ > 0, so there exists N such that n > N implies |1 — 0| < ¢ = 1

Sn M:
Since s, > 0, we can write
N implies 0 < 1 < 1
n> impli — < —
P s M
and hence
n >N implies M < s,.
That is, lim s, = +o0 and (2) holds. [ ]
Exercises
9.1. Using the limit theorems 9.2-9.6 and 9.7, prove the following.
Justify all steps.
(a) lim%ls=1 ) (b) lim ¥ =1
(©) lim St

9.2. Suppose that limx, = 3, lim Yn = 7 and that all y,, are nonzero.
Determine the following limits: .

(@) lim(x, +y,) (b) lim ¥t
9.3. Suppose that lima, = q, limb, = b, and that s, = a—i}'% Prove

lims, = “—;—*;—415 carefully, using the limit theorems.

9.4. Letsj=1land forn > 1 let Sn+1 = +/Sn + 1.
(a) List the first four terms of (s,,).

(b) It turns out that (s,) converges. Assume this fact and prove
that the limit is 1(1 + V/5).

95. Lett) =13
and find the

9.6. Lletx; =1ar
(a) Show th
(b) Does lir
(c) Discuss

‘9.7.¥ Complete th
needed to sh
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9.9. Suppose that
(a) Prove th
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(c) Prove th
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{b) Show tha
(c) Show tha

9.11. (a) Show tha
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(b) Show tha
+00.

(c) Show tha
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9.5.

9.6.

9.7.

9.8.

9.9.

9.11.

el

(812

2
Lett; = 1and tyy; = "‘27;2 for n > 1. Assume that (t,) converges

and find the limit.

Let x; =1 and x,4) = 3x2 forn > 1.

(a) Show thatifa =limx,, thena = § ora = 0.

(b) Does lim x, exist? Explain.

(c) Discuss the apparent contradiction between parts (a) and (b).

Complete the proof of 9.7(c), i.e., give the standard argument
needed to show that lims,, = 0.

Give the following when they exist. Otherwise assert “NOT EXIST.”

(a) limn? (b) lim(-n?)

(c) lim(—n)" (d) lim(1.01)"

(e) limn"

Suppose that there exists N; such that s, <t, foralln > Nj.

(a) Prove that if lims, = +o0, then lim¢, = +o00.
(b) Prove that iflimt, = —oo, then lims, = —oo.

(c) Prove that iflims, and lim¢, exist, then lims, <limt,.

. (@) Show that iflims, = 400 and k > 0, then lim(ks,) = +o0.

(b) Show that lim s, = 400 if and only if lim(—s,) = —oc.
(c) Show that iflims, = +o0 and k < 0, then lim(ks,) = —oc.

(@) Show that if lims, = +o00 and inf{t, : n € N} > —oo, then
lim(s, +t,) = +o0.

(b) Show thatiflims, = +ooandlimt, > —oc, thenlim(s,+t,) =
+00.

(c) Show that if lims, = +oc and if (¢,) is a bounded sequence,
then lim(s, + t,) = +o0.

Assume all s, # 0 and that the limit L = lim Ii"gfll exists.

(a) Show that if . < 1, then lims, = 0. Hint: Select a so that
L < a < 1 and obtain N so that {s,,,| < als,| for n > N. Then
show that |s,| < a" Nisy| forn > N.

(b) Show that if L > 1, then lim |s,| = +o00. Hint: Apply (a) to the
sequence t, = —-; see Theorem 9.10.

8nl

]
it ;X
4
1
g
i
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A e R
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9.13. Show that

0 if jal <1
lim a” = 1 if a=
nsoe )| +oo if a>1

does not exist if a<-1.

9.14. Let p > 0. Use Exercise 9.12 to show

o 0 if jal<1
lim s =1 +oo if a>1
e does not exist if g < —1.

9.15. Show that lim,,_, o gn—',' =0forallaeR.

9.16. Use Theorems 9.9, 9.10 or Exercises 9.9-9.15 to prove the following:

(@) lim %8 — oo
(®) Lm[Z +(-1)") = +oo
(c) lim[Z - 1= +oo
9.17. Give a formal proof that lim n? = +o0 using only Definition 9.8.

n

: 2 _ 1=g"+!
9.18. (a) Verifyl+a+a?+---+a" = 2~ fora # 1.

(b) Findlim, (1 +a+a?+--.+a") for ja| < 1.
(c) Caleulate limyoo(l + 3+ 5+ 5 +--- 4 3)-
(d) Whatislim, (1 +a+a’+--- +a") fora > 17

§10 Monotone Sequences and Cauchy
Sequences

In this section we obtain two theorems [Theorems 10.2 and 10.11]
that will allow us to conclude that certain sequences converge with-
out knowing the limit in advance. These theorems are important
because in practice the limits are not usually known in advance.

10.1 Definition.

A sequence (s,) of real numbers is called a nondecreasing sequence
if s, < 8,41 for all n, and (s,) is called a nonincreasing sequence

if 8, > Spyy for
S$n < Syu whenew
noniricreasing wi
sequence.
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The proof of Theorem 10.11 uses Theorem 10.7, and Theo-
rem 10.7 relies implicitly on the Completeness Axiom 4.4, since
witlmutthecompletenessaxiomitisnotclearthatlﬁninfs,,and
lim sups, are meaningful. The completeness axiom assures us that
the expressions sup{s, : n > N} and inf{s, : n > N} in Defini-
tion 10.6 are meaningful, and Theorem 10.2 [which itself relies on
the completeness axiom] assures us that the limits in Definition 10.6
also are meaningful.

Exercises on lim sup’s and lim inf's appear in §§11 and 12.

Exercises
10.1. Which of the following sequences are nondecreasing? nonincreas-
ing? bounded?
(a) 1 ) SF
() n’ (d) sin(Z%)
(® (-2 ® =

10.2. Prove Theorem 10.2 for bounded nonincreasing sequences.

10.3. For a decimal expansion k.diddsyd, - - -, let (sn) be defined as
in 10.3. Prove thats, < k+1 foralln e N. Hint: B+t + =
1 - = forall n.

10.4. Discuss why Theorems 10.2 and 10.11 would fail if we restricted
our world of numbers to the set Q of rational numbers.

10.5. Prove Theorem 10.4(ii).
10.6. (a) Let (s,) be a sequence such that
[Sns1 —Sq) < 27" forall neN.

Prove that (s,) is a Cauchy sequence and hence a convergent
sequence.

(b) Isthe result in (a) true if we only assume that |s,y; — s,| < 1
foralln € N?

10.7. Let S be a bounded nonempty subset of R and suppose sup § ¢8s.
Prove that there is a nondecreasing sequence (s») of points in §
such that lims, = supS.

10.8. Let (s,) be :
define o, =
sequence.

10.9. Letsy =1ar
(a) Finds;,

(b) Show tt

(c) Prove tl

10.10. Lets; =1 ar
(a) Find s;,

(b) Use ind

(c) Show th

(d) Show th

10.11. Lett; =1 an
(a) Show th

(b) What dc

10.12, Lett; =1 an
(a) Show th

(b) What dc

(c) Use inds

(d) Repeat
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10.8. Let (s,) be a nondecreasing sequence of positive numbers and
define 0, = %(sl +8,+---+8y). Prove that (oy,) is a nondecreasing
sequence.

10.9. Lets; =1 and s,y = (n—:'q)sﬁ forn > 1.
(a) Find s;, s3 and s,.
(b) Show that lim s, exists.
(¢) Prove that lims, = 0.
10.10. Lets; =1 and sp41 = §(sn + 1) forn > 1.
(a) Find s;, s3 and s4.
(b) Use induction to show thats, > 1 for all n.
(c) Show that (s,) is 4 nonincreasing sequence.
(d) Show that lim s, exists and find lims,,.
10.11. Lett; = 1 and tpy = [1 — 4] - tnforn > 1.
(a) Show that limt, exists.
(b) What do you think lim ¢, is?

10.12. Lett; = 1 and toy1 = [1 = gqy] tnforn > 1.

(a) Show that lim¢t, exists.

(b) What do you think lim¢, is?

(c) Use induction to show that t, = %,

(d) Repeat part (b).

§11 Subsequences

11.1 Definition.

Suppose that (s,)neN is 2 sequence. A subsequence of this sequence
i8 a sequence of the form (t)keN Where for each k there is a positive
integer n; such that

N <Ny <+ KNk < Ngp < -0
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that k > N implies |t —¢| < §. If k > max{N, 2}, then } < £ and
[t —t] < 5, s0 |sp, —t| < € by (3).]
Suppose next that t = +00. From (2) we have
1

S, >tk—i for keN. C))
Since lim ty = 400 it follows easily that limy_, o 8p, = 400. Therefore
t = +o00 belongs to S. The case t = —oc is handled in a similar
way. ]
Exercises

11.1. Leta, =3+ 2(-1)"forne N.
(a) List the first eight terms of the sequence (ay,).

(b) Give a subsequence that is constant [takes a single value].
Specify the selection function o.

11.2. Consider the sequences defined as follows:
1 ) 6n + 4

=, Ba=l G=n, d=o——

(a) For each sequence, give an example of a monotone subse-
quence.

(b) For each sequence, give its set of subsequential limits.
(c) For each sequence, give its lim sup and lim inf.

(d) Which of the sequences converges? diverges to +00? diverges
to —o0?
(e) Which of the sequences is bounded?

11.3. Repeat Exercise 11.2 for the sequences:
3

T a1

I1.4. Repeat Exercise 11.2 for the sequences:

nr 1
Sy = cos(?), t, Uy = (__Z_)n,

Wy = (—Z)Hr Ap = 5(_1)"1 Yn = 1+(_1)n,

11.5. Let (gn)be an enumeration of all the rationals in the interval (0, 1].

L1
Un = (=14

nr
zZy = ncos(—4—).
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11.8.

11.7.

11.8.

11.9.

11.10.

(a) Give the set of subsequential limits for (g,,).
(b) Give the values of limsupg, and lim inf g,.

Show that every subsequence of a subsequence of a given se-
quence is itself a subsequence of the given sequence. Hint: Define
subsequences as in (3) of Definition 11.1.

Let (r,) be an enumeration of the set Q of all rational numbers.
Show that there exists a subsequence (7,, ) such that limy_, o, Tn, =
+00.

(a) Use Definition 10.6 and Exercise 5.4 to prove that liminfs, =
—lim sup(—s,).

(b) Let () be a monotonic subsequence of (—sn) converging to
lim sup(—s,). Show that (~t;) is a monotonic subsequence of
(sn) converging to lim inf s,. Observe that this completes the
proof of Corollary 11.4.

(a) Show that the closed interval [a, b] is a closed set.

(b) Is there a sequence (s,) such that (0,1) is its set of
subsequential limits?

Let (sn) be the sequence of numbers in Figure 11.2 listed in the
indicated order.

(a) Find the set S of subsequential limits of (sy).

(b) Determine limsups, and liminfs,,.

OV
I 1/2/ 1/3 PRI

/ 1/7/ 1/3 1/4 1/5
C 1/4 1/5
1/2

1/3 1/4 1/5

FIGURE 11.2

§12 lims

Let (sp) be any !

subsequential lir
lim
and
lim

The first equaliti
and the second ¢
is designed to in¢
Most of the mate
niques by provi
text.

12.1 Theorem.
If (sy) converges
then

Here we allow th
fors > 0.

Proof
We first show

We have three c:

Case 1. Suppt

By Corollary
limy, o0 tn, = B.
limy, o Snitn, =
verges to sB, and
is the largest pos:




i)
i
-
B
H

78 2. Sequences

12.1. Let (s,) and (t,) be sequences and suppose that there exists
No such that s, < ¢, forall n > No. Show that lim inf S <
liminft, and lim sups, < limsupt,. Hint: Use Definition 10.6
and Exercise 9.9(c).

12.2. Prove that lim Sup |s»| = 0 if and only if lim Sy =0.

12.3. Let (s,) and (t,) be the following sequences that repeat in cycles
of four:

(8:)=(01,21,0,1,2,1,0,1,2,1,0,1,2,1,0,.. )
(t)=(21,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2,.. )

Find

(a) liminf's, + liminf+,, (b) liminf(s, +t,),
(c) liminf's, + limsupt,, (d) limsup(s, +t,),
(e) limsups, + limsupt,, (£) liminf(s,t,),

(8) limsup(s, tn)

12.4. Show that lim sup(s, + tr) < limsups, + limsupt, for bounded
sequences (sn) and (t,). Hint: First show

sup{s, +t,:n > N} < sup{s, : n > N} +sup{t, : n > N}.
Then apply Exercise 9.9(c).
12.5. Use Exercises 11.8(a) and 12.4 to prove
lim inf(s, + tn) > liminf's, + liminft,
for bounded sequences (sn) and (t,).

12.6. Let (s,) be a bounded sequence, and let k be a nonnegative real
number.

(a) Prove that lim sup(ks,) = k - lim supsy.
(b) Do the same for liminf. Hint: Use Exercise 11.8(a).
() What happens in (a) and (b) if k < 0?
12.7. Prove that iflim sups, = +ooandk > 0, thenlim sup(ksy,) = +o0.

12.8. Let (sy) and (t,) be bounded sequences of nonnegative numbers.
Prove that limsup s,t, < (limsups,)(lim sup tn).

12.9. (a) Prove that if lim Sn = 400 and liminft, > 0, then lim Spty =
+00.

(b) Prove that if lim sups, = +o0o and liminft, > 0, then
limsups,t, = +o0.

§1

(c) Obsen
th =k

12.10. Prove that {
12.11. Prove the fi

12.12. Let (s,) be
define o, =

(a) Show't
]
Hint: F

supio,

(b) Show f
lims,.

12.13. Let (s,) be
such that {n
>a.LetBt
Prove that s

12.14. Calculate (e

§13 * Son
Metric

In this book we a
cordingly, we hav
and studied such i
we briefly introdu
sis could have bee
it becomes easy a:
example, analysis
portant, but these
that R has, unless




1at there exists
1at liminf's, <

Definition 10.6

0.

repeat in cycles

1,0,...)
),2,...)
'tn),
F tn),

)

pt, for bounded

{t, :n > N}.

§13. * Some Topological Concepts in Metric Spaces 70

if t,

nonnegative real

11.8(a).

asup(ksy,) = +00.

egative numbers.
0, then lim s,t, =

inft, > 0, then

(c) Observe that Exercise 12.7 is the special case of (b) where
t,=kforall n e N.

12.10. Prove that (s,) is bounded if and only if lim sup |s,| < +o0.
12.11. Prove the first inequality in Theorem 12.2.

12.12. Let (s,) be a sequence of nonnegative numbers, and for each n
define 0, = 2(s) + 8+ -+ + 8n).

(a) Show that
liminfs, < liminfo, <limsupo, < limsups,.

Hint: For the last inequality, show first that M > N implies
1
sup{o, : n > M} < ﬁ(sl + 83+ -+ 8y) +sup{s, : n > N}L.

(b) Show that if lims, exists, then limo, exists and limo, =
lims,.

12.13. Let (s,) be a bounded sequence in R. Let A be the set of a € R
such that {n € N : s, < a} is finite, i.e., all but finitely many s, are
> a. Let B be the set of b € R such that {n € N: s, > b} is finite.
Prove that sup A = liminf's, and inf B = limsups,.

12.14. Calculate (a) lim(n)"™, () limimnm

§13 * Some Topological Concepts in
Metric Spaces

In this book we are restricting our attention to analysis on R. Ac-
cordingly, we have taken full advantage of the order properties of R
and studied such important notions as lim sup’s and lim inf’s. In §3
we briefly introduced a distance function on R. Most of our analy-
sis could have been based on the notion of distance, in which case
it becomes easy and natural to work in a more general setting. For
example, analysis on the k-dimensional Euclidean spaces R* is im-
portant, but these spaces do not have the useful natural ordering
that R has, unless of course k = 1.
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By Theorem 13.10, the intersection M7= Fn contains a point x,. This , 13.7.
pointbelongs to some set Uy in /. Since Up is open, there existsr > 0
so that 13.8.
xR dx,x) < r} C 1.
It follows that F, C Up provided 6 - 27" < r, but this contradicts 3) 4 13.9.
in a dramatic way. | 3
Since R = R, the preceding resuits apply to R.
13.10.
Exercises
13.1. For points x, y in R¥, let
di(x,y) =max{lx - yl:j=1,2,... k
and
x 13.11.
dxy) =) |~ yl.
=1 13.12.
(a) Show that d; and d, are metrics for R¥.
(b) Show that d; and d; are complete.
13.2. (a) Prove (1) in Lemma 13.3. 13.13.
(b) Prove the first assertion in Lemma 13.3.

13.3. Let B be the set of all bounded sequences x = (x;,x,,...), and 13.14
define d(x,y) = sup{ly, —y;| :j=1,2,...}.

(a) Show that d is a metric for B. 13.15
(b) Does d*(x,y) = Y21 1% — y;| define a metric for B?
13.4. Prove (iii) and (iv) in Discussion 13.7.
13.5. (a) Verify one of DeMorgan's Laws for sets:
ﬂ{S\U:UeM}:S\U{U:UeL{}.

(b) Show that the intersection of any collection of closed sets is |
a closed set.

13.6. Prove Proposition 13.9.
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Example 8
Consider the series
0 n 1 1 1 1 1
Ay R L L 1
; 4+2[+16+8 64+ 1)

Let a, = 209" since g, < 7= for all n, we can quickly conclude

that the series converges by the Comparison Test. But our real in-
terest in this series is that it illustrates the difference between the
Ratio Test and the Root Test. Since a,y1/a, = 1/8 for even n and
ant1/an = 2 for odd n, we have

1

- = liminf
3 mi

Qn41 Qn4

an

<1 < limsup

= 2.

Qn
Hence the Ratio Test gives no information.

Note that (a,)/" = 25! for even n and (@)™ = 2771 for odd
n. Since lim 2% = lim 2~} = 1 by Example 7(d) in §9, we conclude
that lim(a,,)'’" = 1. Therefore ¢ = lim sup(a.)"" = 1 < 1 and the
series (1) converges by the Root Test.

Example 9
Consider the series

(="
Z T ()

Since lim \/n/(n+ 1) = 1, neither the Ratio Test nor the Root Test
gives any information. Since > ﬁ diverges, we will not be able to
use the Comparison Test 14.6(i) to show that (1) converges. Since the
terms of the series (1) are not all nonnegative, we will not be able to
use the Comparison Test 14.6(ii) to show that (1) diverges. It turns

out that this series converges by the Alternating Series Test 15.3,
which we have deferred to the next section.

Exercises

14.1. Determine which of the following series conve
answers.

@ Xz ) T

rge. Justify your

© L%

(e) X2

14.2. Repeat Exerc:

14.3'

14.4.

14.5.

14.6.

14.7.

14.8.

14.9.

@ L%
() L3
(©) %
(® L7
Repeat Exerc
@ L
©) Lrm
() Xsin(§
Repeat Exerc
@ X5, o
) X
Suppose tha
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(b) X kay =
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14.2. Repeat Exercise 14.1 for the following.

() 23—
(e) X<%°

(@) L= (b) (-1
© T3 @ T5
QP ® Tw
® X%
14.3. Repeat Exercise 14.1 for the following.
@ Xz (b) X =5
© rm (@) Y360+ D)

(e) Lsin(3) ® =5
14.4. Repeat Exercise 14.1 for the following.
(@ X5 [n+(11)"]2 ®) Xvn+1- ]
@ X%
14.5. Suppose that Y a, = A and )} b, = B where A and B are
real numbers. Use limit theorems from § 9 to quickly prove the

following.
(@ Y (an+b))=A+B
(b) Y ka, =kA fork e R.

(c) Is Y anb, = ABa reasonable conjecture? Discuss.

14.6. (a) Prove that if Y lan| converges and (b,) is a bounded
sequence, then )_a,b, converges. Hint: Use Theorem 14.4.

(b) Observe that Corollary 14.7 is a special case of part (a).

14.7. Prove that if }_ a, is a convergent series of nonnegative numbers
andp > 1, then ¥ an converges.

Show that if 3" a, and }_ b, are convergent series of nonnegative
numbers, then Y /a,b,, converges. Hint: Show that anby < Gn+
b, for all n.

14.9. The convergence of a series does not depend on any finite number
of the terms, though of course the value of the limit does. More
precisely, consider series ) a, and Y b, and suppose that the set
{n € N : an # by} is finite. Then the series both converge or else
they both diverge. Prove this. Hint: This is almost obvious from

Theorem 14.4.

14.8
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14.10. Find a series Y a, which diverges by the Root Test but for which
the Ratio Test gives no information. Compare Example 8.

14.11. Let (a,) be a sequence of nonzero real numbers such that the
sequence (“2) of ratios is a constant sequence. Show that ¥ q,
is a geometric series.

14.12. Let (an)nen be a sequence such that liminf lan] = 0. Prove that
there is a subsequence (@n, xeN such that Z?:l an, converges.

14.13. We have seen that it is often a lot harder to find the value of an

infinite sum than to show that it exists. Here are some sums that
can be handled.

(a) Calculate 32 ()" and Z:il(—g_)n'

l .
(b) Prove 3°, @iy = 1. Hint: Note that Y7 D
1_ 1
ZZ:I[; - m]
(c) Prove that }°° | %=1 = 1. Hint: Note that W=k
(d) Use (c) to calculate Y20 2.

14.14. Prove that )"0, i diverges by comparing with the series > , a,
where (ay) is the sequence

(11111111111111111)

§15 Alternating Series and Integral
Tests

Sometimes one can check convergence or divergence of series by
comparing the partial sums with familiar integrals. We illustrate.

Example 1
We show that }~ 1 = 400,

Consider the picture of the function f(x) = % in Figure 15.1. For
n > 1 it is evident that

n

1
Z = Sum of the areas of the first n rectangles in Figure 15.1
k=1

|
AI—II‘Q'-‘ —
T

FIGURE 15.1

> Areau

/Vl"H ]
= : ;

Since lim,_, o log

The series .
observe that 3™
1,000 the sumisa
is approximately

Another proo:
However, an inte

Example 2
We show that ) _-
Consider the

Z": 1
k=1 k2
<
foralln > 1. Th
that is bounded :

sum is less than ¢
[without proof)] t]
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Remember that the numbers in brackets are nonnegative, since (ay,)
is nonincreasing. If n — m is even, the last term of A is +a,, so

A=[am*am+1]+[am+2—am-a-s]+"'+[an—z—an—1]+an >0

and

A:—am_

In either case we have 0 <A <a,,.

an(—l)*ak

k=m

= A < a,,.

[Bm+1 — Amia] = [Amys — Omia] =+ — [Ap—y — an] < Gy,

Hence from (2) we see that

Assertion (1) now follows since n > m > N implies

Z"j(-l)"ak
k=m

Exercises

<am <

an.

15.1. Determine which of the following series converge. Justify your

(b) ¥
15.2. Repeat Exercise 15.1 for the following.
(®) X [sin(F)r"

15.3. Show that Yoy n(Tlgnji converges if and only ifp > 1.

answers.

(@) Y&

(@) X[sin(‘F)"

15.4. Determine which of the following series conve

answers.
o o} 1
(a) ZV(:Z ﬁ]ogn
o} 1
(©) Xoes smmmtionmeny

(b) X2, e

@ 3

x logn
n=2 n¢

rge. Justify your

15.5. Why didn’t we use the Comparison Test to prove Theorem 15.1 for

p>1?

15.6. (a) Give an example of a divergent series ¥"a, for which Yal

converges.

(b) Observe that if D_an is a convergent series of nonnegative
terms, then )" a2 also converges. See Exercise 14.7.

(c) Give:
divery

15.7. (a) Prove
bers a
lan+1

(b) Use (¢

15.8. Formulate
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Theorem 15.1 for
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§16. * Decimal Expansions of Real Numbers 1()5

(c) Give an example of a convergent series ) a, for which }_ a2
diverges.

15.7. (a) Prove that if (a,) is a nonincreasing sequence of real num-
f bers and if ) _a, converges, then lim na, = 0. Hint: Consider
|an+1 + angz + -+ - + ay) for suitable N.

(b) Use (a) to give another proof that }_ 1 diverges.

15.8. Formulate and prove a general integral test as advised in 15.2.

§16 * Decimal Expansions of Real
Numbers

We begin by recalling the brief discussion of decimals in Discus-
sion 10.3. There we considered a decimal expansion k.did,ds - - -
where k is a nonnegative integer and each digit d; belongs to
{0,1,2,3,4,5,6,7,8,9}. This expansion represents the real number

—_— = "1—}
k+];10’ k+};d, 0

which we also can write as

n
3 — .10~
nllglo s, where s,=k+ ]};;Lij 1077,

Thus every such decimal expansion represents a nonnegative real num-
ber. We will prove the converse after we formalize the process of
long division. The development here is based on some suggestions
by Karl Stromberg.

16.1 Long Division.

Let's first consider positive integers a and b where a < b. We analyze
the familiar long division process which gives a decimal expansion
for £. Figure 16.1 shows the first few steps wherea =3 andb = 7. If
we name the digits d;, d, d, . . . and the remainders ry, 73, 73, . . ., then
sofard, = 4,d, = 2 and r; = 2, r; = 6. At the next step we divide 7
into 60 = 10-r; and obtain 60 = 7-8 + 4. The quotient 8 becomes the
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00000000100 - -

t be a repeating
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know that they
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the proof that
o )
1
¥
k= :
is irrational. Assume that € == % where a,b € N. Then both ble and
S L must be integers, so the difference

k=0 &1

=1

i —

"3

k=b+1 "

must be a positive integer. On the other hand, this last number is
less than
1 1 1

<1

!’

Sl W

b+1+(b+1)2+(b+1)3+”

a contradiction.

Example 7
There is a famous number introduced by Euler over 200 years ago

that arises in the study of the gamma function. Itis known as Euler's
constant and is defined by

. 1

k=1

# Even though

n

1
¥ lim — =400 and lim log,n=+0oQ,
: ‘ n—>o0 k=1 n—>oo

the limit defining y exists and is finite [Exercise 16.9]. In fact, y is ap-
proximately .577216. The amazing fact is that no one knows whether
y is rational or not. Most mathematicians believe y is irrational. This
isbecause it is “easier” for a number to be irrational, since repeating
decimal expansions must be regular. The remark in Exercise 16.8
hints at another reason it is easier for a number to be irrational.

Exercises
16.1. (a) Show that 2.749 and 2.750 are both decimal expansions for &.
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16.2.

16.3.

16.4.

16.5.

16.6.

16.7.
16.8.

16.9.

2. Sequences

(b) Which of these expansions arises from the long division
process described in 16.1?

Verify the claims in the first paragraph of the proof of Theo-
rem 16.3.

Suppose that }"a, and ¥ b, are convergent series of nonnegative
numbers. Show that if Gn < by for all n and if a, < b, for at least
one n, then } a, < Y b,.

Write the following repeating decimals as rationals, i.e., as fractions
of integers.

(a) 2 (b) .02_

(c) 02 (d) 3.14

(e) .10 ) 1292

Find the decimal expansions of the following rational numbers.
@ § ® %

(© 3 (d) g

(e & ® 5

Find the decimal expansions of 3 2,3 2, 2 and £. Note the

interesting pattern.

Is .1234567891011121314151617181 920212223242526 - - - rational?
Let (s») be a sequence of numbers in (0,1). Each s, has a decimal
expansion .d§")d§")d§") -+~ For each n, let e, = 6 if d” # 6 and
en=7if d,(,") = 6. Show that e;¢,e; - - - is the decimal expansion for
some number y in (0, 1) and that Y # sy for all n. Remark: This
shows that the elements of (0, 1) cannot be listed as a sequence. In
set-theoretic parlance, (0, 1) is “uncountable.” Since the set QN(o, 1)
canbe listed asa sequence, there must be a lot of irrational numbers
in (0, 1)!

Lety, = (3, 1) - log. n=737, ;- s 1.

(a) Show that(y,)isa decreasing sequence. Hint : Look at Yn—Vnt1.
(b) Show that 0 < y, <1 for all n.

(c) Observe that y = lim, Yn exists and is finite.
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