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Show your work on every problem. Correct answers with no supporting work
will not receive full credit. Be organized and use notation appropriately. No
calculators, notes, books, cellphones, etc. may be used on this exam. Please
write legibly. Please have your student ID ready to be checked when you

turn in your exam.

Problem Your Score Maximum Score
1 20
2 20
3 20
4 20
5 20
Total 100




Problem #1 (20pts): Short Answer: (a) Find the Least Upper Bound
and Greatest Lower Bound of the set

5={(—1)"—i:neN}.
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(b) Let a and b be real numbers. Use the triangle inequality to bound la + b]
above and below in terms of |a| and |b]. (You need not justify your answer.)
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(c) Is the following statement true or false? “If \/—1 > 0, then every real
number is rational.” Justify your answer.
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(d) Without using the negation sign or the word “not”, write the negation of
the following sentence employing the For Every and There Exists symbols:

There exists sy € R such that for every ¢ > 0 there exists N € N such
that for every n > N, |s, — so| < €.
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Problem #2 (20pts): Using only the field axioms for the real numbers,
prove that a - 0 = 0 for every real number ¢ € R, ] ustify every step.
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Problem #3 (20pts): Using the definition, prove that if s, — s, and
t, = to then s,t, — sptg.
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Problem #4 (20pts): Let r be a real number such that Il < 1, and let s,
denote the sequence of partial sum s, = D™ =124 4 4 Derive

a formula for s, that does not involve a, summation, and use it to evaluate
lim,,_, s,.




Problem #5 (20pts): Assume that 0 < s, < 2¢, and that ¢, — 0. Use the
definition of convergence to give a careful proof that s, — 0.
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