Maps between Manifolds:

- Recall vector field X

 flow $\Phi_s : M \rightarrow M$ (locally)

 in x-coordinates:

 $$\phi_s : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

 $$x \mapsto \phi_s(x)$$

Induce a derivative map:

$$\phi_s^* : T\mathbb{R}^n \rightarrow T\mathbb{R}^n$$

$$\frac{\partial^2}{\partial x^i} \mapsto \frac{\partial \phi_s^i}{\partial x^a} \frac{\partial}{\partial x^a}$$

This defines a coord. indept. map

$$\Psi_s^* : TM \rightarrow TM$$ (all s suff. small)
Move generally: consider any map
\[\phi : M^m \to N^n \]
(We don't even need to assume \(1-1\)).
We can define the derivative map \(\phi_* \) as follows:

- For any curve \(C(\xi) \) in \(M \), \(C(0) = q \), the map \(\phi \) defines a curve \((\phi \circ C)(\xi) \) in \(N \),
 \[(\phi \circ C)(0) = \phi(q) = p \]

Note: if \(\phi \) is not \(1-1 \), it doesn't go the other way: curves in \(N \) do not determine unique curves in \(M \).
Define the map \(\phi^*_q \) by:

\[
\phi^*_q : T_q M \rightarrow T_p N
\]

\[
X_q \mapsto (\phi^*_q X)_p = Y_p
\]

\[
T_q M \ni X_q = \frac{d}{d\xi} c(\xi) \rightarrow \frac{d}{d\xi} (\phi \circ c)(\xi) = Y_p \in T_p N
\]

- If \(x : U \rightarrow \mathbb{R}^m, \, \phi \in U \) and \(y : \phi(U) \rightarrow \mathbb{R}^n \) are coordinate systems,

Then \(y \circ \phi \circ x : (x) \) defines a map

\[
y^\dagger \circ \phi \circ x : \mathbb{R}^m \rightarrow \mathbb{R}^n
\]

\[
x \mapsto (y^\dagger \circ \phi \circ x)(x) = y
\]

Thm: \(\phi^*_q : \frac{\partial}{\partial x^i} \mid_{x^q} \rightarrow \frac{\partial y^a}{\partial x^i} \frac{\partial^2}{\partial y^a \partial y^b} \)

Con: \(n = m \) and \(\frac{\partial y^a}{\partial x^i} \) nonsingular \(\Rightarrow \phi^*_q \) is an isomorphism.
Alternatively: $X_p \in T_p M$ operates on scalar functions

$$X_p(f) = \frac{d}{dt} \bigg|_{t=0} (f \circ \phi^{-1})(t)$$

But if $f: \mathbb{N} \rightarrow \mathbb{R}$, then f determines a unique function on M:

$$f \circ \phi: M \rightarrow \mathbb{R}$$

(Note: if f not 1-1, it doesn't take functions on M uniquely to functions on \mathbb{N} - that's why the lower-* maps naturally push vectors forward - the map can be inverted if ϕ is)

Thm

$(\phi_* X)_p$ is the element of $T_p M$ that operates on smooth functions by

$$(\phi_* X)_p(f) = X_p(f \circ \phi)$$ (FIP)
The pullback map ϕ^*:

Let $\phi: M^m \to N^n$

For every $w^p \in T^*_p N$, define

$$\phi^*: T^*_p M \to T^*_p N$$

$$(\phi^* w^p) \mapsto w^p.$$

Now $w^p \in T^*_p N$ is defined as a linear functional on $T_p N$; i.e., it:

$$w^p = b^x \frac{\partial}{\partial x^y}$$

in y-coordinates, then for $X^p = a^x \frac{\partial}{\partial y^x}$

$$w^p (X^p) = b^x a^x.$$

Thus we can define $(\phi^* w^p)_p$ as the

1-form that acts on X^p the way w^p acts

on $\phi^* X^p$.

Defn: \((\phi^* w^p)(x^q) = w^p(\phi^*_q x^q)\)

Thm: in coordinates,
\[
\phi^*_p = \left(\frac{\partial y^i}{\partial x^j} b_x \right) dx^i \leftarrow b_x dy^i
\]

(Note: The pullback is natural for forms because when \(\phi\) not 1-1, \(\frac{\partial y^i}{\partial x^j}\) is defined, but not \(\frac{\partial x^i}{\partial y^j}\).)
Pullback ϕ^* & push forward ϕ_* can be extended to (k)-tensors if ϕ is 1-1 invertible.

Eq ϕ_t the flow for $X, T \in (1)$-tensors

$$T(x, w^q) = T_{x}^{i} x_{i} w_{j}$$ multi-linear at p

$\phi_t(q) = p$; $\phi_t : T_q M \rightarrow T_p M$; $\phi_t^* : T_p^* M \rightarrow T_q^* M$

$$p = \phi_t q$$

$q = \phi_t^{-1}(p) = \phi_t(p)$

Defn: $(\phi T_q)(x, w^q) = T_q(\phi x, \phi^* w^q)$

$$(\phi^* T_p)(x, w^q) = T_p(\phi^* x, \phi^* w^q)$$

"pushforward/pullback of T defined by pushforward/pullback of inputs $x, w"
Thus we can define Lie derivate of T:

$$L_y T = \frac{d}{dt} \left[\varphi_t^* T_{\psi_s}(p) \right]$$

$$L_y T(x_p, y_p) = \frac{d}{dt} (\varphi_t^* T_{\psi_s}(p))(x_p, w^p)$$

$$= \frac{d}{dt} \left[T^{\varphi_t}_{\psi_t}(p)(\varphi_t^* x_p, \varphi_t^* w^p) \right]$$

$$= \frac{d}{dt} \left[T^{\varphi_t}_{\psi_t}(p) \left(\frac{\partial \varphi_t^b}{\partial \psi_t^a} x^a_p, \frac{\partial \varphi_t^b}{\partial \psi_t^a} w^p \right) \right]$$

$$= \frac{d}{dt} T^{\varphi_t}_{\psi_t}(p)(x^a_p, w^p)$$

$$+ T^{\varphi_t}_{\psi_t}(p) \left(\frac{d}{dt} \left(\frac{\partial \varphi_t^b}{\partial \psi_t^a} x^a_p \right), \frac{d}{dt} \frac{\partial \varphi_t^b}{\partial \psi_t^a} w^p \right)$$

Now if $Y = \frac{\partial}{\partial x^i}$, $\varphi_t = (x^1_t, x^2_t, \ldots, x^n_t)$, $\frac{\partial \varphi_t^b}{\partial x^a} = \delta^b_a$.

So

$$L_y T(x_p, y_p) = \frac{d}{dt} T^{\varphi_t}_{\psi_t}(p)(x^a_p, w^p) = 0$$

"in coordinates where $Y = \frac{\partial}{\partial x^i}$, $L_y T$ is just deriv of components w.r.t x^i. " $\Rightarrow L_y T = 0$ means constant components in those coords."
Conclude: If \(L_y g = 0 \) for (\text{\textcircled{1}}) tensor metric \(g \), then in coordinates where \(y = \frac{2}{\partial x^1} \),

\[
g_{ij}(x', \ldots, x^n) = g_{ij}(x^1 + t, x^2, \ldots, x^n)
\]

\(\Rightarrow \) all angles & lengths indep. of \(x^1 \)

\(\Rightarrow \Phi_t \) is an isometry —

By expressing Lie Derivative in terms of Covariant derivative (next)

Thm: (Killing Vector Field) \(L_y g = 0 \) iff

\[
Y_{ij;j} + Y_{j;i} = 0
\]