APPENDIX B

DIFFERENTIAL FORMS, INTEGRATION, AND FROBENIUS’S
THEOREM

In this appendix we shall collect a number of results related to differential forms and
integration. Most of these results require only manifold structure; specifically, they
do not require the presence of a metric or a preferred derivative operator. Thus, they
are basic results of very general applicability in differential geometry.

B.1  Differential Forms
Let M be an n-dimensional manifold. A differential p-form is a totally anti-
symmetric tensor of type (0,p), i.€., s g, is a p-form if

Way-ay = Dfay---ap) B.1.D

We denote the vector spacé of p-forms at a point x by A% and the collection of p-form
fields by A?. Note that AZ = {0} if p > n and dim Af = n!/p!(n — p)! for
0 = p = n. If we take the outer product of a p-form w;, ..., and a g-form s, ...5,
we will get a tensor of type (0,p + g); but since this tensor will not, in general, be
totally antisymmetric, it is not a (p + ¢)-form. However, we can totally anti-
symmetrize this tensor, thus producing a map /\: A% X Af— AZ*9 via
(rt 9!

= -—;—D-E'!—' w[al"'apl'bbl"‘bq] . (B.1.2)
(f p + g > n, this tensor, of course, will be zero.) We define the vector space of
all differential forms at x to be the direct sum of the A%,

m=@m. (B.1.3)
&

The map /\: A, X A, — A, gives A, the structure of a Grassmann algebra' over the
vector space of one-forms.

If we are given a derivative operator, V,, we could define a map from smooth
p-form fields to (p + 1)-form fields by

Way - ay > (p + I)V[,,wal...ap] . (B.1.4)

(@ N\ p‘)al‘uapb]-“bq

If instead we were given another derivative operator V,, we would obtain the map

Way- - a, ™ (p + 1)@[,,%,‘..%] . (B.1.5)

1. See, e.g., Bishop and Crittenden (1964) for the definitior of a Grassmann algebra.
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However, according to equation (3.1.14), we have

14
V[bwal -+ ap] - V“,wal e ap) = 2 Cd[,,ajwa] o ld]- - ap) =0 (B 1 6)

Jj=1
since C¢,, is symmetric in a and b. Thus the map defined by equation (B.1.4) is
independent of derivative operator, i.e., it is well defined without the presence of a
preferred derivative operator on M. We denote this map by d. In particular, we may
use the ordinary derivative, d,, associated with any coordinate system to calculate

d.

Since the index structure of differential forms is trivial, it is customary to drop the
indices when writing them; e.g., we write @ instead of w,,...,, and write @ N p
instead of (w /\ w),...»,- (The only disadvantage in doing so is that we must
remember the dimensionality of the forms with which we are dealing.) We shall use .
boldface letters for forms to avoid confusion with functions. We denote the
(p + 1)-form resulting from the action of the map d: A" — AP*! on the p-form w
by dw.

An important property of the map d is that d> = dod = 0. This result, known as
the Poincaré lemma, follows from the fact that we can compute d using an ordinary
derivative operator. Indeed, restoring the indices, we have for an arbitrary smooth
p-form w,

(d*@ocay -0, = (P + D(p + DOpdcws...a) =0 (B.1.7)

because of the equality of mixed partial derivatives in R".

Conversely, it can be shown (see, e.g., Flanders 1963) that if one has a closed
p-form, i.e., a p-form «a satisfying da = 0, then locally (i.e., in any open region
diffeomorphic to R") this form is exact, i.e., there exists a (p — 1)-form B such that
«a = dp. However, in general this result is not valid globally. Indeed, an important
theorem in algebraic topology due to de Rham establishes that the dimension of the
vector space of closed p-forms modulo the exact p-forms equals a topological
quantity: the pth Betti number of the manifold.>

B.2  Integration

Let M be an n-dimensional manifold. At each point x € M, the vector space of
n-forms will be one-dimensional. If it is possible to find a continuous, nowhere
vanishing n-form field € = €,...,) on M, then M is said to be orientable and € is
said to provide an orientation.’ Two orientations € and €’ are considered equivalent
if € = fe', where f is a (strictly) positive function, so any orientable manifold

‘2. Roughly speaking, the pth Betti number of M is the number of independent p-dimensional
boundaryless surfaces in M which are not themselves boundaries of (p + 1)-dimensional regions. For
more details, including a complete statement and proof of de Rham’s theorem, see, e.g., Warner (1971).

3. For the case where M is an n-dimensional surface in the Euclidean space R"*', this definition of
orientability is equivalent to the more intuitive notion that there exists a consistent (i.e., continuous)
choice of normal vector u“ to M: If a continuous nonvanishing u“ exists, then € = €,, . ,,,, ™ provides
an orientation of M, where € is an orientation of R"*'. Conversely, if M is orientable, then
€% n+le, ., provides a continuous normal vector.
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possesses two inequivalent orientations, usually referred to as “right handed” and
“left handed.” It is easy to check that the manifolds R" and ™ are orientable. Indeed,
it is not difficult to show that every simply connected manifold is orientable. (As
discussed further in chapter 13, a topological space is said to be simply connected
if every closed curve can be continuously deformed to a point. R"and ™ for. m=2
are simply connected.) Furthermore, the product of any two orientable manifolds is
orientable. Thus, we obtain a wide class of examples of orientable manifolds. On the
other hand, the Mobius strip [defined as R? with the identification
(x,y) = x+ 1, —y)] provides a simple example of a nonorientable manifold.

We will define the integral of a continuous (or, more generally, a measurable*)
n-form field a over an n-dimensional orientable manifold (with respect to the orien-
tation €) as follows. We begin by considering an open region U C M covered by a
single coordinate system . If we expand € in the coordinate basis of ¢, we will
obtain

€= hdx'/\ .../ N\dx" (B.2.1)

(i.e. €;...q, = 1! h(dxa, * * + ([@XT)a,), where the function 4 is nonvanishing. If
h > 0, the coordinate system, ¢, is said to be right handed with respect to €, if
h < 0, ¢ is called left handed. We may also expand @ in the coordinate basis,
thereby obtaining

a=al', ..., x"dx' /N, Ndx" . (B.2.2)
If ¢ is right handed, we define the integral of & over the region U by

J a= J adx'. . .dx" (B.2.3)
U y[U]

where the right-hand side is the standard Riemann (or Lebesgue) integral in R”". If
W is left-handed, we define [, a to be minus the right-hand side of equation (B.2.3).

First, we note that [, « is independent of the choice of coordinate system, i,
covering U; namely, if we had used a different coordinate system ' to cover U, then
the expansion of a in the new coordinate basis would be

a=add'N...Ndx" . (B.2.4)

But it follows from the tensor transformation law, equation (2.3.8), that

, oxt
a =a det(ax"’) : (B.2.5)

The standard law for transformation of integrals in R" then shows that our definition,
equation (B.2.3), is coordinate independent.

To define the integral of a over all of M, we use the paracompactness property of
M. As discussed at the end of appendix A, a paracompact manifold can be covered
by a countable collection {O;} of locally finite coordinate neighborhoods such that

4. ais said to be measurable if for all charts its coordinate basis components are Lebesgue measurable
functions in R".
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each O; is compact. Furthermore, a partition of unity { f;} subordinate to this covering
will exist. If = fyr01fi|aildx' . . . dx" < «, we say a is integrable and we define
" (] i

fM a = 2 fOif,-a . (B.2.6)

It can be shown that this definition is independent of the choice of covering {O;} and
partition of unity {f;} and thus properly defines [, a.

We can use the above definition of integration on manifolds to define the integral
of p-forms on M over well behaved, orientable p-dimensional surfaces in M. First,
we must define more precisely the notion of a “well behaved surface.” Let S be a
manifold of dimensionp < n. If $:5 — M is C%, is locally one to one—i.e., each
q € S has an open neighborhood O such that ¢ restricted to O is one-to-one—and
¢ ':p[0]— Sis C*, then ¢[S] is said to be an immersed submanifold of M. If,
in addition, ¢ is globally one-to-one (i.e., @[S] does not “intersect itself”), then
¢[S]is said to be an embedded submanifold of M. (In some references the additional
condition is imposed on embedded submanifolds that ¢:S — @[S] is a homeo-
morphism with the topology on ¢[S] induced from M. Roughly speaking, this
additional condition ensures that ¢[S ] does not come arbitrarily close to intersecting
itself.) We shall use the notion of an embedded submanifold as our precise notion
of a “well behaved surface” in M. An embedded submanifold of dimension (n — 1)
is called a hypersurface.

For an embedded submanifold, there is a natural manifold structure on ¢[S]
obtained via ¢ from the manifold structure on S. Thus, at each g € ¢[S], the
tangent space W, for ¢[S] is defined. This tangent space is naturally identified with
a p-dimensional subspace of V,, the tangent space of g in M. Thus, a p-form 8 in M
at ¢ naturally gives rise to a p-form B on ¢[S] by restriction of the action of B to

- vectors lying in W,. The integral of B over the surface ¢[S] may then be defined as

simply the integral of the p-form B over the p-dimensional manifold ¢[S].

An important special case of an embedded submanifold arises when ¢[S] is the
(n — 1)-dimensional boundary, N, of a closed region N C M such that N is a
“manifold with boundary.” Here, the notion of an n-dimensional manifold with
boundary, N, can be defined in the abstract in the same way as a manifold (see
chapter 2) except that R" is replaced by “half of R",” i.e., by the portion of R" with
x! = 0. The boundary, N, of N is composed of the set of points of N which are
mapped into x' = 0 by the chart maps. Note that these chart maps of N with x! set
to zero give N the structure of an (n — 1)-dimensional manifold without boundary.
Note also that int(N) = N — N is an n-dimensional manifold without boundary.

If N is an orientable manifold with boundary, then an orientation on N induces a
natural orientation on the boundary as follows: We consider the coordinate systems
on N which arise from deleting the first coordinate, x', of a right-handed coordinate
system on N in the family of charts that makes N into a manifold with boundary. We
wish to define an orientation on N which makes these coordinate systems be “right
handed.” In order to do so, we verify first that the Jacobian, det(dx’'#/dx"), is
positive in the overlap region of any two such coordinate systems. Then, we choose
a partition of unity (F,, U;) of N, where each U, is a coordinate neighborhood of this
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type. Finally, we define € on Nby € = 2,: F dx} - - - dxl. Th.en € is continuous and
nonvanishing and thus defines the desired orientation of N. Having defined the
orientation of N, we may now state one of the most important results concerning
integration on manifolds, the proof of which can be found in many references (see,
e.g., Flanders 1963).

THEOREM B.2.1 (Stokes’s theorem). Let N be an n-dimensional compact oriented
manifold with boundary and let & be an (n — D)-form on M which is C'. Then

j da = J a . (B.2.7)
itV N

Integration of functions on an orientable manifold M can be accomplished if one
is given a volume element, that is, continuous nonvanishing n-form €. (A volume
element differs from an orientation in that orientations are considered equivalent if
they differ by positive multiples whereas volume elements are not.) The integral of
f over M is defined by

JMf= JMfe , (B.2.8)

where the integral of the n-form fe was defined previously.’

If one is given only the structure of a manifold, M, there is no natural choice of
volume element. However, if M has a metric, g.», defined on it, then a natural choice
of € is specified up to sign (i.e., up to choice of orientation) by the condition

Ga"'-d"eal"'a,, = (_I)Sn! ’ (B29)

where s is the number of minuses appearing in the signature of g.. (Thus, s = 0 for
a Riemannian metric, while s = 1 for a Lorentzian metric.) Note that differentiation
of equation (B.2.9) using the derivative operator, V,, associated with the metric
implies that

2" " Vey .0, = 0, (B.2.10)
which, in turn, implies that
Vi€iooa, = 0 (B.2.11)
since Vy€, ...4, 15 totally antisymmetric in its last n indices and € "™ i non-
vanishing. It is also worth noting that
€ gy, = (—1)°n! 8y, 8%, - - 8, (B.2.12)

where 8¢, is the identity map on the tangent space. Equation (B.2.12) follows from
the fact that the tensors of type (n, n) on an n-dimensional manifold which are totally
antisymmetric in all lower and all upper indices form a one-dimensional vector space
and thus must be proportional to the antisymmetrized product of 8% tensors; the

5. Integration of functions on a nonorientable manitold can be defined by choosing a continuous
“n-form modulo sign” € and performing integrals of fe’ over each of the local coordinate neighborhoods
by choosing the sign of € which makes the coordinate system “right handed™ with respect to it.
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constant of proportionality is fixed by the normalization condition (B.2.9). Con-
traction of equation (B.2.12) over j of its indices yields

€Ay gy, = (S = LSS, 8%, (B.2.13)

J
Equation (B.2.9) implies that the components of € in a right handed orthonormal
basis are

_ {(=1)" if all w; are distinct
Curropn = { 0 otherwise (B.2.14)
where P is the signature of the permutation (1, ...,n) — (u, ..., M,). Ina
coordinate basis, the components of € satisfy
> gM L gkney €.y, = (—1)n! (B.2.15)

But the left-hand side of this expression is just (n!)(€;»...,)* times the determinant of
the matrix (g*), and det(g**) = 1/det(g,,). Thus, choosing the plus sign appropri-
ate for a right handed coordinate system, we find

€. = [(—1) det(g,)]"? = V]g| (B.2.16)

where g = det(g,,). Thus, in any (right handed) coordinate basis, the natural volume
element defined by equation (B.2.9) takes the form

€=V]|g|ldx'\...Ndx" . (B.2.17)

Using the natural volume element € associated with a metric, we can convert
Stokes’s theorem, equation (B.2.7), into a “Gauss’s law” form. Let N be an oriented,
compact n-dimensional manifold with boundary. Let g,, be a metric on N with
associated volume element €. Given any C' vector field v°, we obtain an
(n — 1)-form a by

Cavary = Ebarra O (B.2.18)
We have
(dQ)ca,- -0, = NV (Eplay-- a0, ,10%)
= Ne€yg,...q, Vav® (B.2.19)

where equation (B.2.11) was used. On the other hand any totally antisymmetric
tensor of type (0, n) must be proportional to €, so

eb[a,---a,,_,vc]Ub = h(:‘cal...,,n_l . (B220)

The function h may be evaluated by contracting with €° " "*-1 and using equation
(B.2.13). We obtain

V,v® =nh . (B.2.21)
Thus, we find
da = (Vv , (B.2.22)
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and thus Stokes’s theorem states that
j V00 = Ie,,‘,,...,,n_,ub , (B.2.23)
int(N) N

where the natural volume element € on N is understood in the integral on the
left-hand side of equation (B.2.23).

The right-hand side of equation (B ‘.2.23) can be reexpressed as follows. The
metric g. on N induces a tensor field h,, on N by restrictipn of g, to vectors tangent
to N. If h,, is nondegenerate—which will be the case if N is not a null surface—we

may use it to define a volume element € on N. It is not difficult to show that

1 .

;1' €40y = May€ay 0] > (B.2.24)
where n? is the unit normal to N and is chosen to be “outward pointing” if spacelike
and “inward pointing” if timelike in order that € be of the orientation class used in
Stokes’s theorem. Contracting v® into both sides of equation (B.2.24) and restricting
the resulting (n — 1)-forms to vectors tangent toN, we obtain

eb“l""‘n—lub = (npo?)&ayvean_; » (B.2.25)

where we view both sides of this equation as forms on N. Thus, if N is not null, we can
express Stokes’s theorem in the form.

Lm(N) Vav® = JN nav® (B.2.26)

for all C! vector fields v® where the natural volume elements € and € on int(N) and
N, respectively, are understood. Of course, if N is null, equation (B.2.23) still
applies. Furthermore, in the null case, if we choose any € on N in the orientation class
used in Stokes’s theorem and define n° to be the normal to N such that equation
(B.2.24) holds, then Stokes’s theorem again takes the form (B.2.26).

B.3  Frobenius’s Theorem

Let M be an n-dimensional manifold. An issue which arises frequently is the
following: At each point x € M we are given a subspace W, C V; of the tangent
space V, with dim W, = m < n. The subspace W, is required to vary smoothly with
x in the sense that for each x € M we can find an open neighborhood O of x such
that in O, W is spanned by C~ vector fields. We denote the collection of subspaces
W, by W. We wish to know whether we can find integral submanifolds of W, i.e.,
whether through each point x we can find an embedded submanifold S such that the
tangent space to this submanifold at each y € § coincides with W. An important
special case of this general problem arises when one has a metric on M and wishes
to know if a vector field £° is orthogonal to a family of hypersurfaces (see, e.g.,
section 6.1), i.e., whether the (n — 1)-dimensional subspaces, W, orthogonal to £*
are integrable.
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If the subspaces W are one-dimensional, the above problem reduces to that of
finding integral curves of a smooth vector field v%. As discussed in section 2.2, such
integral curves always can be found. However, if dim W > 1, it is possible for the
W-planes to “twist around” so that integral submanifolds cannot be found. To see that
this is the case, we note that if we could find integral submanifolds, we could span
W in a neighborhood of any point by coordinate vector fields X§, . . . , Xnin M such
that [X,, X,] = 0. Since any two vector fields Y?, Z® which lie in W can be expressed
as linear combinations of these coordinate vector fields, this implies that for all Y*,
Z° € W we have

[v,2] = SfuXme Xl = X (fXu(8) — 8uXulfi)X, € w . B3]
v v

If W satisfies the property that [V, Z) € Wforall Y%, Z* € W, then W is said to be
involute. We have just shown that a necessary condition for W to possess integral
submanifolds is that it be involute. Conversely, it can be shown (see, e.g., Bishop
and Crittenden 1964) that this condition is also sufficient. This result is known as
Frobenius’s theorem.

TaeEOREM B.3.1 (Frobenius’s theorem; vector form). A necessary and sufficient
condition for a smooth specification, W, of m-dimensional subspaces of the
tangent space at each x € M to possess integral submanifolds is that W be
involute, i.e., for all Y°, Z° € W we have [Y,Z]" € W.

Frobenius’s theorem also has a dual formulation in terms of differential forms.
Given W, C V, as above, we can consider the one-forms @ € V,* which satisfy

w, X = (B.3.2)

for all X® € W,. It is not difficult to see that such «’s span an (n — m)-dimensional
subspace, T, C'V,", of the dual tangent space at x. Conversely, an
(n — m)-dimensional subspace T;" of V," defines an m-dimensional subspace W, of V;
via equation (B.3.2). Thus, we may reformulate our above question in terms of T:
Under what conditions does a smooth specification, T*, of (n — m)-dimensional
subspaces of one-forms at each point have the property that the associated tangent
subspaces W (consisting at each x of all vectors X* satisfying w,X¢ = 0 for all
w, € T.') admit integral submanifolds?

According to Frobenius’s theorem, integral submanifolds will exist if and only if
for all w, € T* and all Y°, Z* € W (so that 0, Y* = w,Z° = 0), we have

w [V, Z) = . (B.3.3)

To see what this implies for w,, we substitute our expression (3.1.2) for the commu-
tator in terms of an arbitrary derivative operator V, to obtain

0 = w,(Y'V,Z° — ZN, Y9
= —Z2YV,0, + Y°ZV,0,
= T Ve (B.3.4)
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However, equation (B.3.4) can hold for Y* and Z° in the subspace annihilated by T~
if and only if ¥, w,; can be expressed as
Views) = D, KWV (B.3.5)
a=1
where each v is an arbitrary one-form and each u* € T'. Thus, we can reformulate
Frobenius’s theorem in terms of differential forms as follows:

THEOREM B.3.2 (Frobenius’s theorem; dual formulation). Let T* be a smooth
specification of an (n — m)-dimensional subspace of one-forms. Then the asso-
ciated m-dimensional subspace W of the tangent space admits integral sub-
manifolds if and only if for all w € T" we have dw = 2 u® N\ v®, where each
Ma E T‘. a

The dual formulation of Frobenius’s theorem gives a useful criterion for when a
vector field & is hypersurface orthogonal. Letting 7" be the one-dimensional sub-
space spanned by & = g,&°, we see that £° will be hypersurface orthogonal if and
only if &) = &[.vs) (Where we have set pu, = &, since T" is one-dimensional). This
latter condition is equivalent to ¢, V,&, = 0, and thus we see that the necessary and
sufficient condition that ¢° be hypersurface orthogonal is

£V =0 . (B.3.6)




