
Homework Problems
MAT 280, F14, Diff Geom & GR

Temple

(1) Derive the transformation laws for ∂
∂xi
.

(2) Derive the transformation laws for dxi.

(3) Prove that
{
dx0, ..., dx3

}
is a basis for the T ∗Mp.

(4) Verify the general transformation law for

(
1
1

)
-tensor- and

(
0
2

)
-tensor-tensors, and write

the laws in summation and matrix notation.

(5) Prove that dx⊗ ∂
∂xj
|p spans the space of

(
1
1

)
-tensor-tensors at p.

(6) Prove that if gij is defined in each coordinate system so that (at a given p ∈M) we have

gija
ibj =< X,Y >= ḡαβa

αbα,

for all vectors X = ai
∂
∂xi

= āα
∂
∂yα , Y = bj

∂
∂xj

= b̄β
∂
∂yβ
∈ TpM, then gij must transform by

gij
∂xi

∂yα
∂xj

∂yβ
.

Write the matrix version of this transformation law.

(7) Prove that the dimension of the space of multi-linear functionals on the cross product V1 × V2

of two vector spaces, equals the product of the dimensions of the vector spaces Vk.

(8) Prove by counterexample that symmetry is not a covariant (i.e., coordinate independent) prop-
erty of (1, 1)-tensors, but is a covariant property of (0, 2)-tensors.

(9) Let X1, ..., Xn be a basis of tangent vectors in TpM. Prove that there exists a coordinate system
x : Ux → R, p ∈ Ux such that

Xi =
∂

∂xi
|p.

(10) Prove that if g is a Riemannian metric and X ∈ TpM, then < X,X >= 0 if and only if X = 0.

(11) Prove that Γikj + Γjki = gij,k.

(12) Prove that in special relativity, (gij ≡ ηij = Diag {−1, 1, 1, 1}), the map that takes the
components of a vector (with respect to the coordinate basis ∂

∂xi
) in T0M to the corresponding

point in spacetime named by the Minkowski coordinate system xi, is exactly the exponential map
as we defined it.
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(13) For a given vector X ∈ TpM, define the orthogonal projection of vector Y onto X by

ProjXY =
< X,Y >

< X,X >
X.

In the case of 1+1 special relativity gij = ηij , show that this is the correct definition by decomposing
Y into Y = aX + bX⊥ and seeing that ProjXY = aX “projects Y onto X along the vector g-
orthogonal to Y ”. (Note that Y can be anything, but explain geometrically why ProjXY is
undefined when X is lightlike. ).

(14) Show that for Lorentz transformation, L(θ)L(θ̄) = L(θ+θ̄), and use this to prove the relativistic
velocity addition law

¯̄v =
v + v̄

1 + vv̄
c2
,

where v is the velocity of the barred frame as measured in the unbarred frame, and v̄ is the velocity
of the double barred frame as measured in the barred frame, and ¯̄v is the velocity of the double
barred frame as measured in the unbarred frame.

(15) Prove that the Proper Lorentz Transformations A are characterized by A0
0 ≥ 1 and Det(A) > 0.

Give a careful proof that if A(ξ) is a family of Lorentz transformations that depend continuously
on the parameter ξ ∈ R and A(0) is proper, then A(ξ) is proper for every ξ.

(16) Prove that the set of coordinate transformations of the form xi = Aiαy
α + ai, where Aiα, ai

are constants and Aiα satisfy ηij = AiαA
j
βηαβ, forms a group under composition, (the Poincare or

Inhomogeneous Lorentz group).

(17) Show that in coordinates, [X,Y ] = XY−Y X =
(
XσY j

,σ − Y σXj
,σ

)
∂
∂xj

where
(
XσY j

,σ − Y σXj
,σ

)
transforms contra-variantly.

(18) If c(ξ) is a curve in manifoldMn with tangent vector X, and x and y are coordinates systems
which overlap, use the chain rule and our conventions to deconstruct the meaning of:

d

dξ

(
∂xi

∂yα

)
=

∂2xi

∂yα∂yβ
Xβ.

(19) In the summation convention, when the contraction of two indices expresses the multiplication
of a matrix by it’s inverse, like

∂xi

∂yα
∂yα

∂xj
,

we set it equal to = δij , and then set i = j. Assuming i, j, k, ... refer to x-coordinates and α, β, γ, ...
to y-coordinates, use the transformation law for gγσ and the summation conventions to directly
verify the following identity: (Put in every step, and do not introduce matrix multiplication.)

gγσgij
∂2xj

∂yα∂yβ
∂xi

∂yγ
=
∂yγ

∂xj
∂2xj

∂yα∂yβ
.
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(20) Write the following canonical boost to velocity v ∈ R3, ‖v‖ = v, as a 4× 4 matrix, and prove
that it is indeed a Lorentz transformation: γ −vt

c γ

−v
c γ I + γ−1

c2
v·vt

v2

 . (1)

(Hint: Lorentz transformations map ON bases to ON bases.)

(21) In the proof that B = AĀ−1 is a pure rotation if A, Ā are boosts with the same velocity, we
used Ā−1 = ηĀtη to conclude that B0

0 = Aσ0ησσĀ
σ
0η

00, (sum on σ). Verify this using the definition
of matrix multiplication, and η−1 = η = diag{−1, 1, 1, 1}.

(22) Use the summation convention (instead of matrix multiplication) to verify that:

gγσηij
∂2xj

∂yα∂yβ
∂xi

∂yσ
=
∂yγ

∂xi
∂2xi

∂yα∂yβ
= Γ̄γαβ

so long as y is the transformation of an Locally Inertial Frame x, so

gγσ = ηij
∂yγ

∂xi
∂yσ

∂xj

(23) In the case of

(
1
1

)
-tensors, express the statements that (1) Covariant differentiation ∇X

commutes with contraction (2) Covariant differentiation ∇X commutes with raising and lowering
of indices. The prove both statements.

(24) In the case of

(
1
1

)
-tensor-tensors, prove the Liebniz rule for tensor products:

∇X (Y ⊕ ω) = ∇XY ⊕ ω + Y ⊕∇Xω,

where

Y = Y i ∂

∂xi
, and ω = ωj dx

j .

(25) Use that ωα;i = ωα,i − Γσαiωσ to prove that in coordinates

(∇j∇iω)α − (∇i∇jω)α = Rσαijωσ

(26) Prove that if RασijZ
σ transforms like a

(
1
2

)
-tensor for every vector Zσ, then Rασij transforms

as a

(
1
3

)
-tensor.

(27) The Riemann curvature tensor for a metric is a “curl” plus a “commutator”,

Rαβij = Γαβj,i − Γαβi,j + Γατ,iΓ
τ
β,j − Γατ,jΓ

τ
β,j
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Argue that in Riemann normal coordinates, the commutator should in general be a lower order
term relative to the curl.

(28) Prove that anti-symmetry and symmetry under pair exchange is a coordinate independent
property of tensors.

(29) Complete the argument that the Riemann curvature tensor for a metric has (no more than)
twenty independent entries.

(30) Prove that for the Einstein equations G = κT , if T = 0, then Gij = 0 if and only if Rij = 0.
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