Homework Problems
MAT 280, F14, Diff Geom & GR
Temple

a.
oz’

(1) Derive the transformation laws for
(2) Derive the transformation laws for da’.

(3) Prove that {da?, ...,dz*} is a basis for the T*M,,.

(4) Verify the general transformation law for ( 1 )—tensor— and ( (2) )—tensor—tensors, and write

the laws in summation and matrix notation.

1
(5) Prove that do ® %|p spans the space of < ) )—tensor—tensors at p.

(6) Prove that if g;; is defined in each coordinate system so that (at a given p € M) we have

gijaibj =< X, Y >= gopa”d?,

for all vectors X = ai% = da%, Y = bj% = 55% € T, M, then g;; must transform by
- ozt 0xJ
Gij aya 8y5 .

Write the matrix version of this transformation law.

(7) Prove that the dimension of the space of multi-linear functionals on the cross product V; x V5,
of two vector spaces, equals the product of the dimensions of the vector spaces V.

(8) Prove by counterexample that symmetry is not a covariant (i.e., coordinate independent) prop-
erty of (1,1)-tensors, but is a covariant property of (0, 2)-tensors.

(9) Let X1, ..., X, be a basis of tangent vectors in T, M. Prove that there exists a coordinate system

X :Ux — R, p € Uy such that
0

(10) Prove that if g is a Riemannian metric and X € T, M, then < X, X >= 0 if and only if X = 0.
(11) Prove that I'jk; + U'jgi = gijik-

(12) Prove that in special relativity, (gi;; = 7;; = Diag{—1,1,1,1}), the map that takes the
components of a vector (with respect to the coordinate basis %) in To.M to the corresponding
point in spacetime named by the Minkowski coordinate system z*, is exactly the exponential map
as we defined it.



(13) For a given vector X € T, M, define the orthogonal projection of vector ¥ onto X by

<X, Y >

ProjxY = ~22— —
TR T XX >

In the case of 1+1 special relativity g;; = 7;;, show that this is the correct definition by decomposing
Y into Y = aX 4+ bX"' and seeing that ProjxY = aX “projects Y onto X along the vector g-
orthogonal to Y”. (Note that Y can be anything, but explain geometrically why ProjxY is
undefined when X is lightlike. ).

(14) Show that for Lorentz transformation, L(0)L(#) = L(6+6), and use this to prove the relativistic

velocity addition law
- v+
V= ——,
1+ %
where v is the velocity of the barred frame as measured in the unbarred frame, and v is the velocity
of the double barred frame as measured in the barred frame, and v is the velocity of the double

barred frame as measured in the unbarred frame.

(15) Prove that the Proper Lorentz Transformations A are characterized by A9 > 1 and Det(A) > 0.
Give a careful proof that if A(§) is a family of Lorentz transformations that depend continuously
on the parameter £ € R and A(0) is proper, then A(€) is proper for every &.

(16) Prove that the set of coordinate transformations of the form z' = A’ y® + a’, where A, a’
are constants and AY, satisfy n;; = AfXAf]Bnaﬁ, forms a group under composition, (the Poincare or
Inhomogeneous Lorentz group).

(17) Show that in coordinates, [X,Y] = XY~V X = <XUY;Z; - Y"Xf;,.) 0 where (XUYg; - YUng,)

transforms contra-variantly.

(18) If ¢(€) is a curve in manifold M"™ with tangent vector X, and x and y are coordinates systems
which overlap, use the chain rule and our conventions to deconstruct the meaning of:

d¢ \ oy oy~oyPs

(19) In the summation convention, when the contraction of two indices expresses the multiplication
of a matrix by it’s inverse, like

ozt Oy®

Oy> Oz’

we set it equal to = 5;, and then set i = j. Assuming i, j, k, ... refer to x-coordinates and «, 3,7, ...
to y-coordinates, use the transformation law for ¢7? and the summation conventions to directly
verify the following identity: (Put in every step, and do not introduce matrix multiplication.)

oy O 08 _ o
99 OyeoyP oy Oxd Oy0yP’




(20) Write the following canonical boost to velocity v € R3, ||v|| = v, as a 4 x 4 matrix, and prove
that it is indeed a Lorentz transformation:

Vt
( )

1 vt
_%’Y I+7 1V2

c2 v

(Hint: Lorentz transformations map ON bases to ON bases.)

(21) In the proof that B = AA~!is a pure rotation if A4, A are boosts with the same velocity, we
used A~! =nAln to conclude that BY = Agn,, AN, (sum on o). Verify this using the definition
of matrix multiplication, and n~! =7 = diag{—1,1,1,1}.

(22) Use the summation convention (instead of matrix multiplication) to verify that:

o 9*xd 9zt Oy 0 _
gmiaaaﬂaa_aiaaaﬁ_aﬁ
Y=oy~ oy xr oy-oy

so long as y is the transformation of an Locally Inertial Frame x, so

i 0Y” 0y”
ozt OxJ

Vo

1 . . .
(23) In the case of < -tensors, express the statements that (1) Covariant differentiation Vx

1
commutes with contraction (2) Covariant differentiation Vx commutes with raising and lowering
of indices. The prove both statements.

(24) In the case of ( i

)—tensor—tensors, prove the Liebniz rule for tensor products:
Vx Y ow)=VxYdw+Y @ Vxuw,

where

Y=Y and w:wjdwj.

ii
ox?’

(25) Use that wa;; = wa,i —I'%,w, to prove that in coordinates

(Vjviw)a — (Viij)a = Rging

o1] (ox%1

as a < :13 >—tensor.

(27) The Riemann curvature tensor for a metric is a “curl” plus a “commutator”,

(26) Prove that if R?,.Z7 transforms like a ( ; )—tensor for every vector Z7, then RY,. transforms

Ry =T — Uiy + 1205, —T7,T5



Argue that in Riemann normal coordinates, the commutator should in general be a lower order
term relative to the curl.

(28) Prove that anti-symmetry and symmetry under pair exchange is a coordinate independent
property of tensors.

(29) Complete the argument that the Riemann curvature tensor for a metric has (no more than)
twenty independent entries.

(30) Prove that for the Einstein equations G = T, if T' = 0, then G;; = 0 if and only if R;; = 0.



