APPENDIX C

MAPS OF MANIFOLDS, LIE DERIVATIVES, AND KILLING
FIELDS

This appendix deals with topics related to the maps induced on tensor fields by maps
between manifolds. As will be shown in section C.1, if we have a map, ¢:M — N,
between manifolds M and N, we can use ¢ to bring upper index tensor fields from
M to N and lower index tensor fields from N to M. If ¢ is a diffeomorphism, all types
of tensor fields can be carried from M to N or from N to M. An important special case
of this result occurs when ¢,: M — M is a one-parameter family of diffeomorphisms
generated by a vector field v°. We can compare a given tensor field with the new
tensor field that arises from the action of ¢, for small ¢. As will be shown in section
C.2, this gives rise to the notion of the Lie derivative with respect to the vector field
v°. Finally, a vector field which generates a one-parameter group of isometries is
called a Killing vector field. Using the general formulas for Lie derivatives, an
equation for Killing fields is easily obtained and some important properties of them
are derived in section C.3.

C.1  Maps of Manifolds

Let M and N be manifolds (not necessarily of the same dimension) and let
¢:M— N be a C* map. In a natural manner, ¢ “pulls back” a function f: N— R on
N to the function fo¢:M— R obtained by composing f with ¢. Similarly, in a
natural way, ¢ ‘“carries along” tangent vectors at p € M to tangent vectors at
¢(p) € N—i.e., it defines a map ¢: V,— Vop—as fo]lows For v € V, we define
¢'v € Vg by

(@'0)(f) = v(fod) (C.1.1)

for all smooth f:N— R, where we have dropped the vector indices on v and ¢'v
since that notation is inconvenient here. It is easy to check that ¢*v satisfies the
properties requ1red of a tangent vector at ¢(p) and thus equation (C.1.1) properly
defines the map ¢*. Note that ¢’ is linear and may be viewed as the “derivative of
¢” at p. [The matrix of components of ¢* in the coordinate bases of a coordinate
system {x’} at p and a coordinate system {y*} at ¢(p) equals the Jacobian matrix of
the map ¢ between the coordinates, i.e., (¢")*, = dy*/dx*.] By the 1mphc1t func-
tion theorem, ¢:M— N will be one-to-one in a neighborhood of p if ¢":V,— Vj,
is one-to-one.
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438 Maps of Manifolds, Lie Derivatives, and Killing Fields

Similarly, we can use ¢ to “pull back™ dual vectors at ¢(p) to dual vectors at p,
We define the map &, :V4,,— V, by requiring that for all v* € V,

(D)t = pma(P'v) . (C.1.2)

We can extend the action of ¢, to map tensors of type (0,) at ¢(p) to tensors of
type (0,/) at p by

(. Tay- oo (L) -+ ()" = Ty (o) - - - (@' . (C.1.3)

Similarly, we can extend the action of ¢ to map tensors of type (k, 0) at p to tensors
of type (k,0) at ¢(p) by

(T O (s, + - - (dn, = TP P (bpti)s, - -+ (Puptidy, - (C.1.4)

(By eq. [C.1.2], this is consistent with our original definition of ¢" on vectors.)
However, in general we cannot extend ¢" or ¢, to mixed tensors since ¢ does not
know how to “carry along” lower index tensors, while @, does not know how to “pull
back” upper index tensors.

As defined in chapter 2, a C™ map ¢:M — N is said to be a diffeomorphism if it
is one-to-one, onto, and its inverse is C™. If ¢ is a diffeomorphism (which necessarily
implies dim M = dim N), then we can use @' to extend the definition of ¢ to
tensors of all types by using the fact that (¢ ™")" goes from Vy,, to V,. IfT? %, .,
is a tensor of type (k,[) at p, we define the tensor (¢'T)" "%, ..., at ¢(p) by,

(DT Py (s, o o (U (2™ - - - (1)
= Th b (bapids, - - (@7 ) (C.1.5)

Similarly, we could extend the map ¢, to all tensors. However, it is not difficult to
show that ¢, = (¢7')", so we need only consider ¢" and (¢ )"

If $:M — M is a diffeomorphism and T is a tensor field on M, we can compare
T with ¢'T. If ¢'T = T, then even though we have “moved T via ¢, it has “stayed
the same.” In other words, ¢ is a symmetry transformation for the tensor field 7. In
the case of the metric g,,, a symmetry transformation—i.e., a diffeomorphism ¢
such that (¢'g)ws = gu—is called an isometry.

We have already remarked in chapter 2 that if ¢:M — N is a diffeomorphism,
than M and N have identical manifold structure. If a theory describes nature in terms
of a spacetime manifold, M, and tensor fields, T*”, defined on the manifold, then if
¢:M — N is a diffeomorphism, the solutions (M,T) and (N, ¢'T"”) have phys-
ically identical properties. Any physically meaningful statement about (M, T'") will
hold with equal validity for (N, ¢"T*"). On the other hand, if (N, T'") is not related
to (M, T") by a diffeomorphism and if the tensor fields T represent measurable
quantities, then (N, T'"”) will be physically distinguishable from (M, T"). Thus, the
diffeomorphisms comprise the gauge freedom of any theory formulated in terms of
tensor fields on a spacetime manifold. In particular, diffeomorphisms comprise the
gauge treedom of general relativity.

It is worth noting that an alternative viewpoint on diffeomorphisms can be taken.
Above, we have discussed diffeomorphisms without introducing or making any
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C.2 Lie Derivatives 439

reference to coordinate systems. We have taken an “active” point of view by asso-
ciating with ¢ a map from tensors at p to tensors at ¢ (p). However, if we are given
a coordinate system {x*} covering a neighborhood, U, of p and a coordinate system
{y*} covering a neighborhood, V, of ¢(p), we may take the following “passive”
point of view. We may use ¢ to define a new coordinate system x'* in the neigh-
borhood O = ¢~'[V] of p by setting x'#(g) = y*(¢(g)) for ¢ € O. We then may
view the effect of ¢ as leaving p and all tensors at p unchanged, but inducing the
coordinate transformation x* — x'#. This “passive” point of view on dif-
feomorphisms is, philosophically, drastically different from the above “active” view-
point, but, in practice, these viewpoints are really equivalent since the components
of the tensor ¢'T at ¢(p) in the coordinate system {y*} in the active viewpoint are
precisely the components of T at p in the coordinate system {x'*} in the passive
viewpoint.

C.2  Lie Derivatives

Let M be a manifold and let ¢, be a one-parameter group of diffeomorphisms. As
discussed in section 2.2, ¢, will be generated by a vector field, v®. By the results of
the previous section, we can use ¢, to carry along a smooth tensor field T4 %, ...,
Comparison of T "%, ...p, and ¢>, T "%, ...y, for small t gives rise to the notion
of the Lie derivative, £,, with respect to v°. More precisely, we define £, by

* ai- +a ar --a
¢_,T1 kbl"'bl— T4 kbl“'bl

t

£0T“1""’kbl”_bl = llm{

0

} , (C.2.1)

where all tensors appearing in equation (C.2.1) are evaluated at the same point p.
Note that the vector index on v° is dropped in the symbol £, since its presence could
lead to confusion.

It follows immediately from its definition, equation (C.2.1), that £, is a linear map
from smooth tensor fields of type (k, [) to smooth tensor fields of type (k, [). It also
is not difficult to show (see eq. [C.2.4] below) that £, satisfies the Leibnitz rule on
outer products of tensors. Furthermore, since v* is tangent to the integral curves of
¢, for functions f:M — R we have

£.0)=0o() . (C.2.2)

Note also that £, 7% """ %, ..., = 0 everywhere if and only if for all 7, ¢, is a symmetry
transformation for 77" %, ...p.

To analyze the action of £, on an arbitrary tensor field, it is helpful to introduce
a coordinate system on M where the parameter ¢ along the integral curves of v is
chosen as one of the coordinates x!, so that v® = (d/dx")". (This always can be done
locally in any region where v® # 0.) The action of ¢_, then corresponds to the
coordinate transformation x' = x! + f, withx?, . . . , x"held fixed. From the paren-
thetical remark below equation (C.1.1), we have (¢"*, = 6*, and hence, the coor-
dinate basis components of >, T4 "%, ... at the point p whose coordinates are
(x',...,x") are

(@5, TH B, )Y, Xy = TR R x?x) L (C23)
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Consequently, the components of the Lie derivative of 7%, ..., in a coordinate
system adapted to v are simply
gTH i,
£.TH “",,I...L,, = ————(?—tjl—“‘l ) (C.2.4

Thus, in particular, ¢, will be a symmetry transformation of """, ..., if and only
if the components T """, ..., in a coordinate system adapted to ¢ are independent
of the integral curve coordinate x'.

We can obtain a coordinate independent expression for the Lie derivative of a
vector field w® by noting that in an adapted coordinate system we have by equation
(C.2.4),

owt

£owh =
W pw

(C.2.5)

On the other hand, since v* = (d/dx')* and w* = % wH(d/dx*)¢, the commutator of
v’ and w® is given by

[e,w]* = z u”aw“-—w”é}ﬁ
v - ox” ax”
owt
= ) C.26
P ( )

Thus, we find that the components of £,w* and [v,w]* are equal in an adapted
coordinate system. However, since both of these quantities are defined in a
coordinate-independent manner, we obtain

£ow? = [, w] (C.2.7)

which is the coordinate-independent tormula we sought for the Lie derivative of a
vector field.

The action of the Lie derivative on all other types of tensor fields is determined
by equations (C.2.2), (C.2.7) and the Leibnitz rule. For example, for a dual vector
field, w,, we have by equation (C 2.2)

£(aw?) = vlaw?) (C.2.8)

where w* is an arbitrary field. On the other hand, by the Leibnitz rule and equation
(C.2.7), we have,

£olpaw) = wit e + polo,w]t (C.2.9)

From the equality of the right sides of equations (C.2.8) and (C.2.9) we obtain a
formula which determines £, u,. This formula is most conveniently expressed in
terms of a derivative operator. If V, is an arbitrary derivative operator on M, we have
by properties (4) and (2) of the definition of derivative operator (see section 3.1)

vlpaw?) = 0"V ()
= y;,hw”vb/,l,a + l_,‘b/.LquW“ . (C?_IO)
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On the other hand, we showed previously (see eq. [3.1.2)) that

[o,w] = v*Vw® — wVo? . (C.2.11)
Thus, we find

oWV, + 0P, w® = weLop, + 0 Vw? — uwV0? (C.2.12)

ie.,

£opta = 0V, + mViv® . (C.2.13)
More generally for an arbitrary tensor field T“""‘I’c",,1 ..., we find by induction that

£,T %y o = 0V T "Wy — 2Tf’""c"'“k,,l...b,VCv“i

!
+ 2T"""“kbl...c...b,Vb.v‘ . ‘ (C214)
j=1

Again, we emphasize that equation (C.2.14) holds for any derivative operator V,.

Finally, we already remarked in section C.1 above that if ¢:M—M is a dif-
feomorphism, then (M, g.;) and (M, ¢’g.,) represent the same physical spacetime. If
we consider a one-parameter family of spacetimes (M, ga, (M), then (M, 5 ga(A))
represents the same physical one-parameter family, where ¢, is an arbitrary one-
parameter group of diffeomorphisms. If, as in sections 4.4 and 7.5, we consider the
first order perturbation of g, | Ao Obtained by differentiating g,,(A) with respect to
Aat A = 0, we find that y,, = dgas/dA | =0 and viy = d(Px8u)/dA | -0 Tepresent
the same physical perturbation. But, it is not difficult to see that

Yab = Yab — £08ab > (C.2.15)

where v° is the vector field which generates ¢, and g = ga(A = 0). Thus, the
gauge freedom in perturbations, Y., is given by £,84, where v®is an arbitrary vector
field. Furthermore, by equation (C.2.14) we have

£ogab = UCV:':gab + gcbVavc + gachUC
= Vo, + o, , (C.2.16)

where the second line of equation (C.2.16) holds when V, is the derivative operator
associated with g.. Thus, the gauge transformations of linearized general relativity
about a solution g, are

Yoo Yab = Yar — VaUp — Vota . (C.2.17)

This is closely analogous to the gauge freedom A,— A, = A, — V.X of electro-
magnetism.

C.3 Killing Vector Fields

If ¢,:M— M is one-parameter group of isometries, ¢, g = 8, the vector field
£ which generates ¢, is called a Killing vector field. As already remarked below
equation (C.2.2), the necessary and sufficient condition for ¢, to be a group of
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isometries is £:8, = 0. Thus, according to equation (C.2.16), the necessary and
sufficient condition that & be a Killing field is that it satisfy Killing’s equation

Vagb + tha = O s (C31)

where V, is the derivative operator associated with g,.
One of the most useful properties of Killing vector fields is given in the following

proposition.

ProposITION C.3.1. Let &% be a Killing vector field and let y be a geodesic with
tangent u®. Then £,u” is constant along 7.
Proof. We have

uth(é—uua) — u”u“Vhfa + faubv;,ll“
=0 |, (C.3.2)

since the first term vanishes by Killing's equation (C.3.1) and the second term
vanishes by the geodesic equation.

Since in general relativity timelike geodesics represent the spacetime motions of
freely falling particles and null geodesics represent the paths of light rays, proposi-
tion C.3.1 can be interpreted as saying that every one-parameter family of sym-
metries gives rise to a conserved quantity for particles and light rays. This conserved
quantity enables one to determine the gravitational redshift in stationary spacetimes
and is extremely useful for integrating the geodesic equation when symmetries are
present (see section 6.3).

Another useful formula relates the second derivative of a Killing field to the
Riemann tensor. By definition of the Riemann tensor, we have

Vangv - vaagc = Rab(‘dé‘d . (C33)
On the other hand, by Killing’s equation, we can rewrite equation (C.3.3) as
Vavbgc + vat‘ga = Rab('d_d . (C34)

If we write down the same equation with cyclic permutations of the indices (abc),
and then add the (abc) equation to the (bca) equation and subtract the (cab) equation,
we obtain

2Vch§a = (Rabr'd + Rbmd - R('ubd)‘f.:d
= —2R..,& (C.3.35)

where the symmetry property (3.2.14) of the Riemann tensor was used in the last
equality. Thus, for any Killing ficld £, we obtain the formula

Vu ‘7b§(‘ = —Rbcad,d . (C36)

An important consequence of equation (C.3.6) is that a Killing field, &9, is
completely determined by the values of & and L, = V,§, at any point p € M;
namely, if we are given (¢, L) at p, then (£, L) at any other point g is determined
by integration of the system of ordinary differential equations
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U“Vaqf,b = DaLab ’ (C37)
DaVaLb( = —R,,m"g,,v” , (C38)

along any curve connecting p and g, where v® denotes the tangent to the curve.
Immediate corollaries of this result are (i) if a Killing field and its derivative vanish
at a point, then the Killing field vanishes everywhere, and (ii) on a manifold of
dimension 7, there can be at mostn + n(n — 1)/2 = n(n + 1)/2 linearly indepen-
dent Killing fields [and, thus, at most an n(n + 1)/2 parameter group of isometries],
since this is the dimension of the space of initial data for (£9, L,y).

It is worth noting that if we contract equation (C.3.6) over a and b, we find

VeV,¢ = —R.AE . (C.3.9)

Thus, in a vacuum spacetime, R.¢ = 0, £ satisfies the source-free Maxwell equation
(4.3.15) for a vector potential in the Lorentz gauge. (There is a sign difference in the
Ricci tensor term between egs. [4.3.15] and [C.3.9], so Maxwell’s equation is not
satisfied when R,, # 0.) The Lorentz gauge condition V,£° = 0 is also satisfied
because of Killing’s equation, and thus all Killing fields in vacuum spacetimes give
rise to solutions of Maxwell’s equation. Some solutions of physical interest can be
obtained in this way (Wald 1974b).

In the case of a hypersurface orthogonal Killing vector field, X¢, we can obtain a
simple formula for V,X,. By Frobenius’s theorem B.3.2, there exists a vector field
v such that

ViXs = ViaXe) = Xiats) (C.3.10)

Assuming that X is not null, we may choose v* to be orthogonal to X“. Contracting
equation (C.3.10) with X®, we obtain

1 1
EVa(X”Xl,) = —EvaXbXb . (C.3.11)
Hence, by solving equation (C.3.11)for v and substituting the result in equation

(C.3.10), we find that an arbitrary hypersurface orthogonal Killing field X* with
XX, # 0 satisfies

VoXy = =XV In|Xx.| . (C.3.12)

Finally, we mention two generalizations of the notion of Killing vector fields.
First, a conformal isometry, ¢, on a manifold, M, with metric, g, is defined to be
a diffeomorphism ¢:M — M for which there is a function () such that
@ 8 = Q?ga. (The fact that ¢ is a diffeomorphism implies that {) is nonvanishing.
The case £ = 1, of course, corresponds to an ordinary isometry.) The infinitesimal
generator, Y°, of a one-parameter group, ¢,, of conformal isometries is called a
conformal Killing vector field. Clearly, the Lie derivative of g, with respect to ¢/*
must be proportional to g,,. Thus, ¢ satisfies

Vo, + Vo, = agay (C.3.13)
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where V, is the derivative operator associated with g,,. Taking the trace of equation
(C.3.13), we evaluate the function «, thus obtaining

2
Vud/h + Vb‘»[/a = ;(V( wc)gub s (C314)

where n = dim M. Equation (C.3.14) is known as the conformal Killing equation.

In Proposition C.3. 1, we proved that for any geodesic with tangent u* and for any
Killing field &4, the inner product, £ u*, is constant along the geodesic. The same
calculation for a conformal Killing field yields

ubV, (du”) = ,—ll(V“t,//‘.)u"ub . (C.3.15)

Thus, in general, Y, u“ is not constant along a geodesic. However, for a null geodesic
we have u’u, = 0, so the right-hand side of equation (C.3.15) vanishes. Thus,
conformal Killing fields give rise to constants of motion for null geodesics.

The second generalization we mention of a Killing vector is that of a Killing
tensor. A Killing tensor field of order m on a manifold M with derivative operator
V, is defined to be a totally symmetric m-index tensor field, K, ..., = Ky, 4,
which satisfies the equation

V7(4‘5Kﬂ|"‘am) =0 . (C316)

Although equation (C.3.16) is a natural generalization of Killing’s equation (C.3.1),
it should be noted that (aside from Killing vectors or Killing tensors formed from
products of Killing vectors) Killing tensor fields do not arise in any natural way from
groups of diffeomorphisms of M. However, Killing tensors share with Killing
vectors the property of giving rise to constants of the motion: A repetition of the
proof of Proposition C.3.1 shows that for any geodesic y with tangent u“, the
quantity K, ..., u® . . . u®" is constant along y. The Kerr metric (see chapter 12)
possesses a nontrivial Killing tensor K,,,, and the constant of motion to which it gives
rise (together with the constants obtained from the two Killing vectors) enables one
to obtain all the geodesics explicitly.




