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Physics is not a finished logical system. Rather, at any moment it spans a
great confusion of ideas, some that survive like folk epics from the heroic periods
of the past, and others that arise like utopian novels from our dim premonitions
of a future grand synthesis. The author of a book on physics can impose order on
this confusion by organizing his material in either of two ways: by recapitulating
its history, or by following his own best guess as to the ultimate logical structure
of physical law. Both methods are valuable; the great thing is not to confuse

physics with history, or history with physics.
- This book sets out the theory of gravitation according to what I think is its
inner logic as a branch of physics, and not according to its historical development.
It is certainly a historical fact that when Albert Einstein was working out general
relativity, there was at hand a preexisting mathematical formalism, that of
Riemannian geometry, that he could and did take over whole. However, this
historical fact does not mean that the essence of general relativity necessarily
consists in the application of Riemannian geometry to physical space and timé.
In my view, it is much more useful to regard general relativity above all as a theory
of gravitation, whose connection with geometry arises from the peculiar empirical
properties of gravitation, properties summarized by Einstein’s Principle of the
Equivalence of Gravitation and Inertia. For this reason, I have tried throughout
this book to delay the introduction of geometrical objects, such as the metric, the
affine connection, and the curvature, until the use of these objects could be

n'lotivated by considerations of physics. The order of chapters here thus bears very
little resemblance to the order of history.
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Nevertheless, because we must not allow the history of physics “to slip away
into the abyss of oblivion,” this first chapter presents a brief backward look at
three great antecedents to general relativity—non-Euclidean geometry, the
Newtonian theory of gravitation, and the principle of relativity. Their history is
traced up to 1916, the year in which they were brought together by Einstein in the
General Theory of Relativity.!

1 History of Non-Euclidean Geometry

Euclid showed in his Elements? how geometry could be deduced from a few
definitions, axioms, and postulates. These assumptions for the most part dealt
with the most fundamental properties of points, lines, and figures, and seem as
self-evident to schoolboys in the twentieth century as they did to Hellenistic
mathematicians in the third century B.c. However, one of Euclid’s assumptions
has always seemed a little less obvious than the others. The fifth postulate states

“If a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, the two straight lines if produced indefinitely
meet on that side on which the angles are less than two right angles.”

For two thousand years geometers tried to purify Euclid’s system by proving that
the fifth postulate is a logical consequence of his other assumptions. Today we
know that this is impossible. Euclid was right, there is no logical inconsistency in a
geometry without the fifth postulate, and if we want it we will have to put it in at
the beginning rather than prove it at the end. However, the struggle to prove the
fifth postulate is one of the great success stories in the history of mathematics,
because it ultimately gave birth to modern non-Euclidean geometry.

The list of those who hoped to prove the fifth postulate as a theorem includes
Ptolemy (d. 168), Proclos (410-485), Nasir al din al Tusi (thirteenth century),
Levi ben Gerson (1288-1344), P. A. Cataldi (1548-1626), Giovanni Alfonso Borelli
(1608-1679), Giordano Vitale (1633-1711), John Wallis (1616-1703), Geralamo
Saccheri (1667-1733), Johann Heinrich Lambert (1728-1777), and Adrien Marie
Legendre (1752-1833). Without exception, their efforts only succeeded in replacing
the fifth postulate with some other equivalent postulate, which might or might not
seem more self-evident, but which in any case could not be proved from Euclid’s
other postulates either. Thus, the Athenian neo-Platonist Proclos offered the
substitute postulate: “If a straight line intersects one of two parallels, it will
intersect the other also.” (That is, if we define parallel lines as straight lines that
do not intersect however far extended, then there can be at most one line that
passes through any given point and is parallel to a given line.) John Wallis,
Savillian Professor at Oxford, showed that Euclid’s fifth postulate could be
replaced with the equivalent statement ‘“‘Given any figure there exists a figure,
similar to it, of any size.” And Legendre proved the equivalence of the fifth
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postulate with the statement ‘“There is a triangle in which the sum of the three
angles is equal to two right angles.”?

The attempt to dispense with Euclid’s fifth postulate began to take a different
direction in the eighteenth century. In 1733 the Jesuit Geralamo Saccheri published
a detailed study of what geometry would be like if the fifth postulate were false.
He particularly examined the consequences of what he called the “hypothesis of
the acute angle,” that is, that ‘‘a straight line being given, there can be drawn a
perpendicular to it and a line cutting it at an acute angle, which do not intersect
each other.”® However, Saccheri did not really think that this is possible; he still
believed in the logical necessity of the fifth postulate, and explored non-Euclidean
geometry only in the hope of eventually turning up a logical contradiction.
Similar tentative explorations of non-Euclidean geometry were begun by Lambert
and Legendre.

It seems to have been Carl Friedrich Gauss (1777-1855) who first had the
courage to accept non-Euclidean geometry as a logical possibility. His gradual
enlightenment is recorded in a series of letters* to W. Bélyai, Olbers, Schumacher,
Gerling, Taurinus, and Bessel, extending from 1799 to 1844. In a letter dated 1824
he begged Taurinus to keep silent about the “heretical opinions” he had revealed.
Gauss even went to the extent of surveying a triangle*® in the Harz mountains
formed by Inselberg, Brocken, and Hoher Hagen to see if the sum of its interior
angles was 180°! (It was.) Then, in 1832, Gauss received a letter from his friend
Wolfgang Bélyai, describing the non-Euclidean geometry developed by his son,
Janos Boélyai (1802-1860), an Austrian army officer. He subsequently also learned
that a professor in the Kazan, Nikolai Ivanovich Lobachevski (1793-1856), had.
obtained similar results in 1826.

Gauss, Bélyai, and Lobachevski had independently discovered what in modern
terms is called the two-dimenstonal space of constant negative curvature. Such spaces
are still very interesting; we shall see in the chapter on cosmography that the space
in which we actually live may be a three-dimensional space of constant curvature.
But to its discoverers the important thing about their new geometry was that it
describes an infinite two-dimensional space in which all of Euclid’s assumptions
are satisfied—except the fifth postulate! In this it is unique, which perhaps
explains why it was discovered more or less independently in Germany, Austria,
and Russia. (The surface of a sphere also satisfies Euclidean geometry without the
fifth postulate, but being finite it does not have room for parallel lines.) We shall
see in Chapter 13, on symmetric spaces, that the two-dimensional space of constant
negative curvature cannot be realized as a surface in ordinary three-dimensional
Euclidean space, which is doubtless why it took two millennia to find it. And of
course it also violates the alternative ‘‘common-sense” versions of Euclid’s fifth
postulate given by Proclos, Wallis, and Legendre—through a given point there
can be drawn infinttely many lines parallel to any given line; no figures of different
size are similar; and the sum of the angles of any triangle is less than 180°.

However, it still remained an open possibility that Euclid’s fifth postulate

TV At 3 e bl n nbbhinmn Fan it wrao nat at all Ahviane that the cenmetrv of
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Gauss, Bélyai, and Lobachevski did not contain a logical inconsistency. The usual
way to ‘“‘prove” that a system of mathematical postulates is self-consistent is to
construct a model that satisfies the postulates out of some other system whose
consistency is (for the moment) unquestioned. For both Euclidean and non-
Euclidean geometry the “model” is provided by the theory of real numbers.
Descartes’ analytic geometry shows that if a point is identified with a pair of real
numbers (z,, z,) and the distance between two points (z,, z,) and (X,, X,) is
identified as [(z, — X,)* + (z, — X,)*]'/%, then all of Euclid’s postulates can be
proved as theorems about real numbers. In 1870 a similar analytic geometry® was
constructed by Felix Klein (1849-1925) for the geometry of Gauss, Bélyai, and
Lobachevski—a ‘“‘point” is represented as a pair of real numbers z,, z, with

z,2 + x,% < 1 (1.1.1)
and the distance d(x, X) between two points z, X is defined by

d(z, X)] _ 1 — 2, X, — 2,X,
1 —z?— 221 - X,? - X,

(1.1.2)

cosh [
a

where a is a fundamental length which sets the scale of the geometry. Note that
this space is infinite, because d(z, X) - o0 as X,? + X,? approaches unity.
With this definition of “‘point”’ and ‘“‘distance” one can verify that this model
satisfies all of Euclid’s postulates except the fifth, and in fact obeys the geometry
discovered by Gauss, Bélyai, and Lobachevski. Thus after two millennia the logical
independence of Euclid’s fifth postulate was at last established.

This was just the beginning of the development of non-Euclidean geometry.
We saw that in order to discover the geometry of Gauss, Bélyai, and Lobachevski
it was necessary to give up the idea that a curved surface could only be described
in terms of its embedding in ordinary three-dimensional spaces. How then can we
describe and classify curved spaces ¢ To pick up our story we must go back to 1827
when Gauss published his Disquisitiones generales circa superficies curvas. Gauss for the
first time distinguished the inner properties of a surface, that is, the geometry expe-
rienced by small flat bugs living in the surface, from its outer properties, that is, its
embedding in a higher-dimensional space, and herealized thatitis theinner properties
of surfaces that are “‘most worthy of being diligently explored by geometers.”

Gauss also realized that the essential inner property of any surface is the
metric function d(z, X), which gives the distance between z and X along the
shortest path between them on the surface. For instance, a cone or a cylinder has
the same local inner properties as a plane, since a plane can be rolled without
stretching or tearing (i.e., without distorting metric relations) into a cone or a
cylinder. On the other hand, all cartographers know that a sphere cannot be
unrolled onto a plane surface without distortion, and thus its local inner properties
are not the same as the plane’s.

There is a simple example that has been used Eby Einstein, Wheeler, and others
to illustrate how the inner properties of a surface can be discovered by exploring
its metrie. (See Figure 1.1.) Consider N points in a plane. We can use one point as
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Figure 1.1 Problem: Is Middle Earth flat ?

distances between the various points are described in terms of (2N — 3) co-
ordinates, that is, the z-coordinate of the second point and the z- and y-coordinates
of the remaining (N — 2) points. But there are N(N — 1)/2 different distances
between the N points, and thus for large enough N these distances must be
subject to M algebraic relations, where

N(N2— ) _ oN - 3) = (v - 2)2(N — 3)

M =

(1.1.3)

For instance, in the simplest interesting case, N = 4, we can easily show that the
distances d,,, between points m and 7 satisfy the single relation

0 = dy,* dag? + dy3* dya? + dis* dys® + dys* dig? + dyt ds? + dyyt d,,?
+ dyy 2 dya? a4 dip? das? dgy? + dia?tdy, P dy® + dys?dy,? dyy?
- dxzz d232 d342 - d132 dszz 4242 - dlzz d242 d432 - d142 d422 d232
—d3?dy dyy? dys? dys’ d3,” — dy3® ds,? dyy? — dy? dy3® dy,?

_ 2 2 2 2 2 2 2 2 2 2 2 2
dyy” dgy” dy3® — dy“dia dgs” — dy, " dy; dyy” — 33 dy“dyy




8 1 Historical Introduction

This relation will be satisficd on any simply connected patch of a cylinder or a
cone, which share the same inner properties as the plane, but it will not be satisfied
by a table of airline distances among any four cities, because the earth’s surface has
different inner properties. There is a different relation appropriate to spherical
surfaces, which is satisfied by airline mileage tables, and can be used to measure the
radius of the earth. Of course, this is not the most convenient method and it is not
the method used by Eratosthenes, but the important point here is that the curva-
ture of the earth’s surface can be determined from its local inner properties.

Were our imaginations given free rein, we could conceive of a great variety of
peculiar metric functions d(x, X). It was Gauss’s great contribution to pick out one
particular class of metric spaces, which was broad enough to include the space
of Gauss, Bélyai, and Lobachevski as well as that of ordinary curved surfaces, but
narrow enough to deserve the name of geometry. Gauss assumed that in any
sufficiently small region of the space it would be possible to find a locally Euclidean
coordinate system (¢,, &,) so that the distance between two points with coordinates
(&, &) and (&, + dé,, &, + d&,) satisfies the law of Pythagoras,

ds? = dé2 + dEy? (1.1.5)

For instance, we can set up such a locally Euclidean coordinate system at any
point in an ordinary smooth curved surface by using the Cartesian coordinates of a
plane tangent to the surface at the given point. However, this should not make us
suppose that Gauss’s assumption has anything to do with outer properties; it
deals only with inner metric relations for infinitesimal neighborhoods.

If a surface is not Euclidean, it will not be possible to cover any finite part of
it with a Euclidean coordinate system (£, £,) satisfying the law of Pythagoras.
Suppose that we use some other coordinate system (z,, z,) that does cover the
space, and ask what form Gauss’s assumption takes in these coordinates. It is easy
to calculate that the distance ds between points (z,, z,) and (z, + dx,, x, + dx,)
is given by

ds? = gll(xl, 2:2) dxlz + 2g12(x1, xz) dxl dxz + 922(2}1, xz) d‘”zz (116)

where
NG
EEEE e
() ()

This form for ds? is the hallmark of a metric space. [We shall see in Chapter 3 that
this derivation can be reversed; given any space with ds given by (1.1.6), we can
at any point choose locally Euclidean coordinates &,, £, satisfying (1.1.5).] For the

case of a sphere of radius a we can use spherical polar coordinates 0, ¢, and the
metric is

o~ —

2 o 0 a = a?sin? (1.1.8)
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It is the factor sin? @ in g, that gives a sphere different inner properties from a
plane. In the geometry of Gauss, Bélyai, and Lobachevski, we can use the co-
ordinates z,, z, of Klein’s model, and find from the posited formula for d(z, X)
that

a’(l — 2,%) g1y = a’rx, Gyy = a’(l — z,?)
12 = 22 =
(1 - xlz - xzz)z (1 - xlz - xzz)z (1 — x12 - xzz)z

911 =

(1.1.9)

The length of any path can be determined by integrating ds along the path.

The metric functions g;; determine all inner properties of a metric space, but
they also depend on how we choose the coordinate mesh. For instance, we can use
polar coordinates 7, 0 to describe a plane surface, and find that the metric functions
are

Ger = 1 ng =0 Joo = 7‘2 (1110)

This does not look like a Euclidean space, but of course it is, as we can show
formally by transforming to Cartesian coordinates x = rcosf, y = rsin 6.
More generally, a change of coordinates from (z,, x,) to (z{, ;) will change the
metric functions g,; to g;;, where, for instance,

! aél 2 662 2
= [ —= + P
i (ax;) (ax;
_ (5&‘2& 4 Qé?'ﬁz)z + (.a___fza_x_l 4 ‘szax__z)z

Ox, 0xy; 0z, 0xy Ox, 0xy Oz, 0z

+ 2g9,, — —= + 1.1.11
911 (axi) 912 oz, o, 922 o ( )

How then can we tell the inner properties of a space by looking at its metric
coefficients ? What we need is some function of the g;; and their derivatives that
depends only on the inner properties of the space and not, like the g;;, also on the
particular coordinate system chosen to describe the space.

Gauss found this function, and found it to be essentially unique; it is the
so-called Gaussian curvature:

K(x,, x,) = 1 2 0’915 _ 0%y _ %95,
2 99| owy 0x,  Om,? o, 2

9221 (%14 26912 0922\ _ 0911 2
4¢* | \ O, ox, Oz 0z,
+ 912 | {0911\ (9922 _ 9 9911 0922
4g% |\ 0z, ) \ Oz, oz, J\ 0z,
+ 23912 _ 0944 2(7912 _ 093,
0x, ox, ox, ox,

- 0u[(%) (3 %1n  F0ur) _ (%)'] a112)
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where ¢ is the determinant

glx,, ;) = g11922 — 9122

(The reader should not quail at the awful appearance of this formula. After
introducing a certain amount of mathematical formalism, we shall be able to
derive and discuss the curvature in a far more compact and elegant notation, in
Chapter 6.) By applying Eq. (1.1.12) to the metric functions (1.1.8) and (1.1.9), we
find that the surface of a sphere is a space of constant positive curvature

1
K = = (sphere) (1.1.13)

whereas the space of Gauss, Boélyai, and Lobachevski has constant negative
curvature

K = —-13 (G-B-L) (1.1.14)
a

(Incidentally, there is nothing very exotic about negative curvature; an ordinary
saddle is negatively curved. It is the constancy of K that makes the geometry of
Gauss, Bélyai, and Lobachevski unrealizable for ordinary curved surfaces. It is also
obvious that only with K constant could the other postulates of Euclid be satisfied,
because these other postulates describe an intrinsically homogeneous space,
whereas if K varied from point to point then the inner properties of the space
would vary with it.) Finally, if we apply our formula for K to the metric (1.1. 10)
that descrlbes a plane in polar coordinates, then we find :

K =0 (plane) (1.1.15)

as of course we must. Thus, however perverse we are in our choice of coordinate
system, the inner properties of a space can still be revealed by the straightforward
procedure of calculating K.

Having come so far, it was not long before mathematicians turned to the
problem of describing the inner properties of curved spaces having three or more
dimensions. It was not a trivial matter to expand the work of Gauss to more than
two dimensions, because the inner properties of such spaces cannot be described
by a single curvature function K. In D dimensions there will be D(D + 1)/2
independent metric functions g,;, and our freedom to choose the D coordinates at
will allows us to impose D arbitrary functional relations on the g;;, leaving C
functions that truly express the inner properties of the space, where

DD +1) _,_DD-1
2 - 2

C =

For D = 2, C = 1, as found by Gauss. For D > 2, C > 1, and the description of
the geometry becomes much more complicated. This problem was completely
solved in 1854 bv Geors Friedrich Bernhard Riemann (1826-1866), who presented
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what we now call Riemannian geometry in his Gottingen inaugural lecture, Uber
die Hypothesen, welche der Geomelrie zu Grunde liegen. Subsequent work by
Christoffel, Ricci, Levi-Civita, Beltrami, and others developed Riemann’s ideas
into the beautiful mathematical structure described in our chapters on tensor
analysis and curvature. However, it remained for Einstein to see the use physics
could make of non-Euclidean geometry.

2 History of the Theory of Gravitation

At the end of the Principia, Isaac Newton (1642-1727) described gravitation
as a cause that operates on the sun and planets “according to the quantity of solid
matter which they contain and propagates on all sides to immense distances,
decreasing always as the inverse square of the distances.”® There are two parts to
Newton’s law, which were discovered in different ways, and which played different
roles in the development of mechanics from Newton to Einstein.

1t was of course Galileo Galilei (1564—1642) who discovered that bodies fall at a
rate independent of their mass. His tools were an inclined plane to slow the fall,
a water clock to measure its duration, and also a pendulum, to avoid rolling friction.
These observations were later improved by Christaan Huygens (1629-1695).
Newton could thus use his second law to conclude that the force exerted by
gravitation is proportional to the mass of the body on which it acts; the third
law then ensures that the force is also proportional to the mass of its source.

Newton was well aware that these conclusions might be only approximately
true, and that the “inertial mass’ entering in his second law might not be precisely
the same as the ‘“gravitational mass’ appearing in the law of gravitation. If this
were the case, we would have to write Newton’s second law as

F=ma (1.2.1)
and write the law of gravitation as
F=mg (1.2.2)

where g is a field depending on position and other masses. The acceleration at a

given point would be
a = <”_"a) g (1.2.3)
m.

and would be different for bodies with different values for the ratio m,/m;; in
particular pendulums of equal length would have periods proportional to
(m;/m,)'/?. Newton tested this possibility by experiments with pendulums of
equal length but different composition, and found no difference in their periods.
This result was later verified more accurately by Friedrich Wilhelm Bessel (1784 -
1846) in 1830. Then. in 1889. Roland von E6tvos’ succeeded by a different method
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in showing that the ratio m /m; does not differ from one substance to another by
more than one part in 10°. (See Figure 1.2.) E6tvés hung two weights A and B
from the ends of a 40-cm beam suspended on a fine wire at its center. At equilibrium
the beam would sag in such a way that

Lymg9 — miag,) = lp(m,pg — Mipgy) (1.2.4)

e’ ming;

Figure 1.2 Schematic view of the E&tvds experiment.

where g is the earth’s gravitational field, g; is the vertical component of the centri-
petal acceleration due to the earth’s rotation, and I, and I, are the effective lever
arms for the two weights. [Of course E6tvos chose weights and lever arms to be
nearly equal, but the point of his method is that even if 4 is a little bigger than B,
the beam will still sag just so as to make (1.2.4) correct.] At the latitude of Budapest
the centripetal acceleration due to the earth’s rotation also has an appreciable
horizontal component g, giving to the balance a torque around the vertical axis
equal to

T = lAmiAg.,s - lewg;

Using the equilibrium condition to determine /5, we have then

-1
T = lAmiAg; [1 - <m——gA g — 9;) (m'—g—B g — 9;) ]
M4 m;p

or, since ¢, is much less than g,
. ’ i4 _ iB
T = lAgsmgA [:H_ :]
My,  Myp

Any inequality in the ratios m,/m, for the two weights would thus tend to twist
the wire from which the balance was suspended. No twist was detected, and
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Eo6tvos concluded from this that the difference of m/m, for wood and platinum
was less than 107 7.

Einstein was very impressed with the observed equality of gravitational and
inertial mass®, and as we shall sce, it served him as a signpost toward the Principle
of Equivalence. (It also sets very stringent limits on any possible nongravitational
forces that might exist. For instance, any new kind of electrostatic force in which
the number of nucleons plays the role of charge would have to be much weaker
than gravitation.?) In recent years a group under R. H. Dicke!? at Princeton has
improved on Eotvés’ method, by using the gravitational field of the sun and the
earth’s centripetal acceleration toward the sun, rather than the rotation of the
earth, to produce the torque on the balance. The advantage is that the angle
between the direction of the sun and the balance arm changed with a 24-hr period,
and so Dicke could filter out of his data any noise not at the diurnal frequency. In
this way he concluded that “‘aluminum and gold fall toward the sun with the same
acceleration, the accelerations differing from each other by at most one part in
10.11’ It has also been shown (with very much less precision) that neutrons fall
with the same acceleration as ordinary matter,! and that the gravitational force
on electrons in copper is the same as on free electrons.!?

We now move on to the second part of Newton’s law of gravitation, which says
that the force decreases as the inverse square of the distance. This idea was not
entirely original with Newton. Johannus Scotus Erigena (c. 800—c. 877) had guessed
that heaviness and lightness vary with distance from the earth. This theory was
taken up by Adelard of Bath (twelfth century), who realized that a stone dropped
into a very deep well could fall no farther than the center of the earth. (Incidentally,
Adelard also translated Euclid from Arabic into Latin, thus making it available to
medieval Europe.) The first suggestion of an inverse-square law may have been
made around 1640 by Ismael Bullialdus (1605-1694). However, it was certainly
Newton who in 1665 or 1666 first deduced the inverse-square law from observa-
tions. He knew that the moon falls toward the earth a distance 0.0045 ft. each
second, and he knew that the moon is 60 earth radii away from the center of the
earth. Hence, if the gravitational force obeys an inverse-square law, then an apple
in Lincolnshire (which is 1 earth radius away from the center of the earth) should
fall in the first second 3600 times 0.0045 ft, or about 16 ft, in good agreement with
the measured value. However, Newton did not publish this calculation for twenty
years, because he did not know how to justify the fact that he had treated the earth
as if its whole mass were concentrated at its center. Meanwhile, it became known to
several members of the Royal Society, including Edmund Halley (1656-1742),
Christopher Wren (1632-1723), and Robert Hooke (1635-1703), that Kepler’s third
law would imply an inverse-square law of force if the orbits of planets were circular.
That is, if the squares of the periods, r?/v?, are proportional to the cubes of the
radii 73, then the centripetal acccleration v?/r is proportional to 1/r%. However, the
planets actually move on ellipses, not circles, and no one knew how to calculate
their centripetal acceleration. Under Halley’s instigation, Newton in 1684 proved
that planets moving under the influence of an inverse-square-law force would
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indeed obey all the empirical laws of Johannes Kepler (1571-1630); that is, they
would move on ellipses with the sun at a focus, they would sweep out equal areas in

equal times, and the square of their periods would be proportional to the cube of

their major axes. Finally, in 1685, Newton was able to complete his lunar calcula-
tion of 1665. These stupendous accomplishments were published on July 5, 1686,
under the title Philosophiae Naturalis Principia Mathematica.'?

In the following centuries Newton’s law of gravitation met with a brilliant
series of successes in explaining the motion of the moon and plancts. Some
irregularities in the orbit of Uranus remained unexplained until, in 1846, they were
independently used by John Couch Adams (1819-1892) in England and Urbain
Jean Joseph LeVerrier (1811-1877) in France to predict the existence and position
of Neptune. The discovery of Neptune shortly thereafter was perhaps the most
splendid verification of Newton’s theory. The motion of the moon and Encke’s
comet (and, later, Halley’s comet) still showed departures from Newtonian theory,
but it was clear that nongravitational forces could be at work.

One problem remained. A year before his prediction of Neptune, LeVerrier
had calculated that the observed precession of the perihelia of Mercury was
35" [century faster than what would be expected according to Newton’s thcory
from the known perturbing fields of the other planets. This discrepancy was
confirmed in 1882 by Simon Newcomb (1835-1909), who gave a value of 43" for
the excess centennial precession.!* LeVerrier had thought that this excess was
probably due to a group of small planets between Mercury and the sun, but after a
careful search none were discovered. Newcomb then suggested that perhaps the
matter responsible for the faint “zodiacal light’’ seen in the plane of the ecliptic
of the solar system was also responsible for the excess precession of Mercury.
However, his calculations showed that the amount of matter needed to account
for the precession of Mercury would, if placed in the plane of the ecliptic, produce a
rotation of the plane of the orbits (that is, a precession of the nodes) of both
Mercury and Venus different from what had been observed. For this reason,

Newcomb was led by 1895 ““to drop these explorations as unsatisfactory, and d to
——t it

prefer prov1smnally the hypothesis that the Sun’s grav1tatlon is not exactly as  the

inverss Square WS T ———

~~Unfortunately this was not the last word. In 1896 H. H. Seeliger constructed
an elaborate model of the zodiacal light, placing the matter responsible on ellipsoids
close to the sun, which could account for the excess precession of Mercury without
upsetting the agreement between theory and experiment for the rotation of the
planes of the inner planets’ orbits. Today we know that this model is totally wrong,
and that there simply is not enough interplanetary matter to account for the
observed excess precession of Mercury. However, Seeliger’s hypothesis, together
with the continued success of Newtonian theory elsewhere, convinced Newcomb
that there was no need to alter the law of gravitation.'>

I do not know whether Einstein was very much influenced, in creating general
relativity, by the problem of the precession of Mercury’s perihelia. However, there
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is no doubt that the first confirmation of his theory was that it predicted an excess
precession of precisely 43" /century.

3 History of the Principle of Relativity

Newtonian mechanics defined a family of reference frames, the so-called
inertial frames, within which the laws of nature take the form given in the Principia.
For instance, the equations for a system of point particles interacting gravitationally
are

d’xy A mNmM(xM — Xy)

my (1.3.1)

where m, is the mass of the Nth particle and xj is its Cartesian position vector
at time ¢. It is a simple matter to check that these equations take the same form
when written in terms of a new set of space-time coordinates:

x =Rx + vt +d
Vot 4z (1.3.2)
where v, d, and 7 are any real constants, and R is any real orthogonal matrix. (If O
and O’ use the unprimed and primed coordinate system, respectively, then O’ sees
the O coordinate axes rotated by R, moving with velocity'v, displaced at ¢ = 0 by
d, and O’ sees the O clock running behind his own by a time z.) The transforma.-
tions (1.3.2) form a 10-parameter group (three Euler angles in R, plus three com-
ponents each for v and d, plus one t) today called the Galileo group, and the
invariance of the laws of motion under such transformations is today called
Galilean invariance, or the Principle of Galilean Relativity.

What really impressed Newton about all this was that theére are a great many
more transformations that do not leave the equations of motion invariant. For
instance, (1.3.1) does not retain its form if we transform into an accelerating or a
rotating coordinate system, that is, if we let v or R depend on ¢. The equations of
motion can hold in their usual form in only a limited class of coordinate systems,
called inertial frames. What then determines which reference frames are inertial
frames ? Newton answered that there must exist an absolute space, and that the
inertial frames were those at rest in absolute space, or in a state of uniform motion
with respect to absolute space. In his words'®:

“Absolute space, in its own nature and with regard to anything external, always
remains similar and unmovable. Relative space is some movable dimension or
measure of absolute space, which our senses determine by its position with
respect to other bodies, and is commonly taken for absolute space.”
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Newton also described several experiments that demonstrated what he inter-
preted as the effects of rotation with respect to absolute space. The most famous is
the rotating bucket'”:

“If a bucket, suspended by a long cord, is so often turned about that finally
the cord is strongly twisted, then is filled with water, and held at rest together
with the water; and afterwards by the action of a second force, it is suddenly
set whirling about the contrary way, and continues, while the cord is untwisting
itself, for some time in this motion; the surface of the water will at first be level,
just as it was before the vessel began to move; but subsequently the vessel, by
gradually communicating its motion to the water, will make it begin sensibly to
rotate, and the water will recede little by little from the middle and rise up at the
sides of the vessel; its surface assuming a concave form. (This experiment I
have made myself.) . . . At first, when the relative motion of the water in the vessel
was greatest, that motion produced no tendency whatever of recession from the
axis, the water made no endeavor to move upwards towards the circumference,
by rising at the sides of the vessel, but remained level, and for that reason its
true circular motion had not yet begun. But afterwards, when the relative
motion of the water had decreased, the rising of the water at the sides of the
vessel indicated an endeavor to recede from the axis; and this endeavor reveals
the real circular motion of the water, continually increasing till it had reached its
greatest point, when relatively the water was at rest in the vessel. ...”

Newton’s conception of absolute space was rejected by his great opponent
Gottfried Wilhelm von Leibniz (1646-1716), who argued that there is no philo-
sophical need for any conception of space apart from the relations of material
objects. The issue was debated in a famous series of letters'® (1715-1716) between
Leibniz and Newton’s supporter, Samuel Clarke (1675-1729), and philosophers
continued the argument, with Newton’s position defended by Leonhard Euler
(1707-1783) and Immanuel Kant (1724-1804) and attacked by Bishop George
Berkeley (1685-1753) in his Principles of Human Knowledge (1710) and Analyst
(1734). Of course none of this high-minded metaphysics led to any idea about how
to develop a dynamical theory that might replace Newton’s. :

The first constructive attack on Newtonian absolute space was launched in the
1880°s by the Austrian philosopher Ernst Mach (1836-1916). In his book Die
Mechanik in threr Entwicklung® he remarks that

“Newton’s experiment with the rotating vessel of water simply informs us, that
the relative rotation of the water with respect to the sides of the vessel produces
no noticeable centrifugal forces, but that such forces are produced by its relative
motion with respect to the mass of the Earth and the other celestial bodies. No
one is competent to say how the experiment would turn out if the sides of the
vessel increased in thickness and mass until they were several leagues thick.”
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The hypothesis, that there is some influence of “the mass of the Karth and the
other celestial bodies” which determines the inertial frames, is called Mach’s
principle.

There is a simple experiment that anyone can perform on a starry night, to
clarify the issues raised by Mach’s principle. First stand still, and let your arms
" hang loose at your sides. Observe that the stars are more or less unmoving, and
that your arms hang more or less straight down. Then pirouette. The stars will
seem to rotate around the zenith, and at the same time your arms will be drawn
upward by centrifugal force. It would surely be a remarkable coincidence if the
inertial frame, in which your arms hung freely, just happened to be the reference
frame in which typical stars are at rest, unless there were some interaction between
the stars and you that determined your inertial frame.

This argument can be made more precise. The surface of the earth is not
exactly an inertial frame, and of course the rotation and revolution of the earth
give the stars an apparent motion, but these effects can be eliminated by using the
inertial frame defined by the solar system as a whole. In this inertial frame of
reference the average observed rotation of the galaxies with respect to any axis
through the sun is less than about 1 arc-sec/century!>°

We seem to be faced with an unavoidable choice: Either we admit that there
is a Newtonian absolute space-time, which defines the inertial frames and with
respect to which typical galaxies happen to be at rest, or we must believe with
Mach that inertia is due to an interaction with the average mass of the universe.
And if Mach is right, then the acceleration given a particle by a given force ought
to depend not only on the presence of the fixed stars but also, very slightly, on the
distribution of matter in the immediate vicinity of the particle. We shall see in
Chapter 3 that Einstein’s equivalence principle gives an answer to the problem of
inertia that does not refer to a Newtonian absolute space and yet does not quite
agree with the conclusions of Mach. The issue is not closed.

I have not yet mentioned special relativity because, despite its name, it really
does not affect the antinomy between absolute and relative space. However, we
shall have to formulate the equivalence principle in special-relativistic terms, so a
detailed review of special relativity is presented in the next chapter; for the
moment we only take a glance at its history.

The theory of electrodynamics presented in 1864 by James Clark Maxwell
(1831-1879) clearly did not satisfy the principle of Galilean relativity. For one
thing, Maxwell’s equations predict that the speed of light in vacuum is a universal
constant ¢, but if this is true in one coordinate system 2’ t, then it will not be true
in the “moving” coordinate system z'’, ¢’ defined by the Galilean transformation
(1.3.2). Maxwell himself thought that electromagnetic waves were carried by a
medium,2! the luminiferous ether, so that his equations would hold in only a
limited class of Galilean inertial frames, that is, in those coordinate frames at rest
with respect to the ether.

However, all attempts to measure the velocity of the earth with respect to the
ether failed,2? even though the earth has a velocity of 30 km/sec relative to the
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sun, and about 200 km/sec relative to the center of our galaxy. The most important
experiment was that of Albert Abraham Michelson (1852-1931) and E. W.
Morley,?? which showed in 1887 that the velocity of light is the same, within
5 km/sec, for light traveling along the direction of the earth’s orbital motion and
transverse to it. The accuracy of this result has been recently improved to about
1 km/sec.?4

The persistent failure of experimentalists to discover effects of the earth’s
motion through the ether led theorists, including George Francis Fitzgerald?$
(1851-1901), Hendrik Antoon Lorentz?26 (18563-1928), and Jules Henri Poincaré2?
(1854-1912) to suggest reasons why such “ether drift”’ effects should be in principle
unobservable. (See Figure 1.3.) Poincaré in particular seems to have glimpsed the
revolutionary implications that this would have for mechanics, and Whittaker28
gives the credit for special relativity to Poincaré and Lorentz. Without entering
this controversy,2? it is safe to say that a comprehensive solution to the problems

CONSEIL DE PHYSIQUE SOLVAY

BRUXELLES 1911

Phato Caupree. Bruneiles

CQLOsCrHmnr PLANCK RUBLNS LINDEMANN HASENOMAL
NERNST BNLLOUNN SOMMERFELD DE BROGLIE HOSTELET
SOLYAY KNUDSEM HERZEN 1EANS RUTHERFORD
LOKENTZ WARBLRG WIEN ENSTEIN EANGEVIN
FERRIN Modame CURIE POINCARE LAMERLINGH ONNES

Figure 1.3 F ounders of the Special Theory of Relativity, at the INirst Solvay Con-
ference in 1911.
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of relativity in electrodynamics and mechanics was first set out in detail in 1905
by Albert Einstein?° (1879-1955).

Einstein proposed that the Galilean transformation (1.3.2) should be
replaced with a different 10-parameter space-time transformation, called a Lorentz
transformation, that does leave Maxwell’s equations and the speed of light in-
variant. (It is not clear that Einstein was directly influenced by the Michelson-
Morley experiment itself,?! but he specifically refers to ““the unsuccessful attempts
to discover any motion of the earth relative to the ‘light medium’” in his 1905
paper.32) The equations of Newtonian mechanics, such as Eq. (1.3.1), are not
invariant under Lorentz transformations; therefore Einstein was led to modify
the laws of motion so that they would be Lorentz-invariant. The new physics,
consisting of Maxwell’s electrodynamics and Kinstein’s mechanics, then satisfied a
new principle of relativity, the Principle of Special Relativity, which says that all
physical equations must be invariant under Lorentz transformations. These
developments are discussed in detail in the next chapter.

The Lorentz group of transformations is not in any way larger than the
Galileo group, and therefore the principle of relativity was not originated by the
special theory of relativity, but rather restored by it. Before Maxwell, it might have
been supposed that all of physics is invariant under the Galileo group. Maxwell’s
equations were not invariant under this group, and for half a century it appeared
that only mechanics, not electrodynamics, obeys the principle of relativity. After
Einstein, it was clear that the equations of both mechanics and electrodynamics
are invariant, but with respect to Lorentz transformations, not Galileo trans-
formations. The laws of physics in the form given them by Maxwell and Einstein
could still only be true in a limited class of inertial reference frames, and the
question of what determines these inertial frames was as mysterious after 1905
as in 1686.

It remained to construct a relativistic theory of gravitation. A crucial step
toward this goal was taken in 1907, when Einstein introduced the Principle of
Equivalence of Gravitation and Inertia,** and used it to calculate the red shift of
light in a gravitational field. As we shall see in Chapter 3, this principle determines
the effects of gravitation on arbitrary physical systems, but it does not determine
the field equations for gravitation itself. Einstein tried to use the equivalence
principle in 1911 to calculate the deflection of light in the sun’s gravitational
field,34 but the structure of the field was not then correctly understood, and
Einstein’s answer was one-half the ‘“‘correct’ general-relativistic result, derived
here in Chapter 8. A number of attempts were made in 1911-1912 by Einstein,?3
Abraham,3% and Nordstrom*’ to construct relativistic field equations for a single
scalar gravitational field, but Einstein soon became dissatisfied with all such
theories, largely on aesthetic grounds. (The gravitational deflection of light by the
sun had not yet been measured.) A collaboration with the mathematician Marcel
Grossman led Einstein by 1913 to the view?2 that the gravitational field must be
identified with the 10 components of the metric tensor of Riemannian space-time
geometry. As discussed in Chapters 4 and 5, the Principle of Equivalence is
incorporated into this formalism through the requirement that the physical
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equations be invariant under general coordinate transformations, not just Lorentz
transformations, though T do not know to what extent this “‘General Principle of
Relativity” took on in Einstein’s mind a life of its own, apart from the Principle
of Equivalence. During the next two years, Kinstein presented to the Prussian
Academy of Sciences a series of papers?® in which he worked out the ficld equations
for the metric tensor and calculated the gravitational deflection of light and the
precession of the perihelia of Mercury. These magnificent achievements were
finally summarized by Einstein in his 1916 paper, titled “The Foundation of the
General Theory of Relativity.”
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