SECTION-3
The Eulerian and Lagrangian
Equations of Motion
In One Space Dimension

Math-280: A Mathematical Introduction
to
Shock Waves

Blake Temple, UC-Davis
Euler equations as a 1-D system of conservation laws —

(4) \(\frac{\partial}{\partial t} s + (su)_x = 0 \)

(5) \(\frac{\partial}{\partial t} (su^2 + p) + (su^2 + p)_x = 0 \)

(6) \(E_t + [(E+p)u]_x = 0 \)

(7) \(s_t + [su]_x = 0 \)

\[\Rightarrow \quad y_t + f(y)_x = 0 \]

\[y = \begin{pmatrix} s \\ su \end{pmatrix}, \quad f = \begin{pmatrix} 0 \\ E \end{pmatrix} \]

In general:

\[y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} = f(y) \]

Lagrangian Coordinates:

- Assume some reference coordinate \(a \) that names the fluid particle at time \(t=0 \):

\[a = (a_1, a_2, a_3) \]

Can take either one on smooth solutions.

E.g.: we could choose \(a \) to be \(x \)-coordinate of particle at \(t=0 \), say \(x(a,0) = a \). But we can choose \(a \) to be any smooth coordinate defined at \(t=0 \).
Then we still have
\[\frac{\partial x}{\partial t} (a, t) = u \]
\[x(a, 0) = \Phi(a) \]
defines the velocity field, and
\[\dot{f} = \frac{Df}{Dt} = \frac{\partial}{\partial t} f(x(a, t), t) \bigg|_{a = \text{const}} = \nabla f \cdot u + f_t \]
(same formula).
It follows that if \(J = \frac{\partial x}{\partial a} (a, t) \), \(\dot{J} \) is the same as our old \(\dot{J} \), and we still have
\[\dot{J} = \text{div} u, \quad \text{indept of } \Phi(a) \]
\[\Rightarrow \text{all previous derivations go thru unchanged} \]

In particular, we can use \(\text{(MM)} \) to relate the evolution of the density \(\rho \) to the evolution of \(J \):
\[(\text{MM}) \Rightarrow 0 = \rho_t + \text{div} \rho \cdot u = \rho_t + \nabla \rho \cdot u + \rho \text{div} u
\]
\[= \frac{D\rho}{Dt} + \rho \text{div} u \]
\[\Rightarrow -\frac{1}{\rho} \frac{D\rho}{Dt} = \text{div} u \]
\[v = \frac{\rho}{\rho} \]
\[\Rightarrow -v \frac{D(v)}{Dt} = \frac{1}{v} \frac{Dv}{Dt} = \text{div} u \]
and we conclude that
\[\frac{1}{v} \frac{Dv}{Dt} = \frac{1}{J} \frac{DJ}{Dt} \]
which we can integrate as follows:
\[\frac{1}{V} \frac{\partial V}{\partial t} = \frac{\partial}{\partial t} \ln V = \frac{\partial}{\partial t} \ln J(a,t) \]

so

\[\frac{\partial}{\partial t} \ln J(a,t) = \frac{\partial}{\partial t} \ln \psi(a) \]

\[\psi(a) = \ln \left(\frac{\ln V}{\ln J(a,t)} \right) \]

In particular,

\[\psi(a) = \ln \left(\frac{V(a,t)}{J(a,t)} \right) = \ln \left(\frac{\psi(a)}{J(a,t)} \right) \]

\[V(a,t) = e^{\psi(a)} J(a,t) \]

Lagrangian equations in 1-D:

In 1-space dimension we can define the Lagrangian variables \(a \) by choosing

\[\psi(a) = 0 \] so that \(\psi(a) = 0 \Rightarrow \psi(a) = J(a,t) \]

and this simplifies the equation when we take \(a \) as the space variable instead of \(x \).

* Restrict to 1-d so \(a, x \in \mathbb{R} \). By (*), \(\psi(a) = 0 \) if \(V(a,0) = J(a,0) \) or

\[\frac{1}{p(a,0)} = \frac{\partial x}{\partial a} (a,0) = \phi(a) \]

(*)

\[p(a,0) = \frac{\partial a}{\partial x} (x,0) = [\phi^{-1}]'(x) \]

so define

\[a = \int_0^x p(z,0) dz = [\phi^{-1}]'(x) \]
\[a = \int_0^T \mathcal{P}(z,t) \, dt \quad \forall t \]

- Taking \(\xi = 0 \) in \(d \xi \), define the Lagrangian coordinate:

\[\xi = \int_0^t \mathcal{P}(z,t) \, dt \]

This defines a mapping \((s,t) \mapsto (x,t) \) satisfying

\[\frac{\partial x}{\partial t}(s,t) = U \quad \frac{\partial x}{\partial s}(s,t) = \frac{1}{s} \]

and

\[f_x(s,t) = \frac{Df}{Dx} \quad f_x(x,t) = \frac{\partial x}{\partial x} f(s(x,t),t) \]

\[= f_s \frac{\partial s}{\partial x} = f_s \xi \]
Using \((***)\) in \((Ma)\) \(\Rightarrow\)

\[
(Ma): \frac{\partial P_t}{\partial t} + (Pu)_x = s_t + s_x u + s u_x \\
\Rightarrow \frac{Ds}{Dt}
\]

\[
= \frac{\partial}{\partial t} s(s,t) + s \frac{\partial u}{\partial s}(s,t) \cdot \phi
\]

\[
= \frac{\partial}{\partial t} \frac{1}{\nu} + s^2 u \xi = -s^2 v_t + s^2 u \xi
\]

\(\Rightarrow\)

\[
V_t - U_\xi = 0
\]

Using \((***)\) in \((Bu)\) \(\Rightarrow\)

\[
(Bu): \frac{\partial u}{\partial t} = -\nabla P = -p_x \Leftrightarrow \frac{\partial ^2}{\partial t} u(s,t) + s \frac{\partial P_x}{\partial t} = 0
\]

\[
U_t + P_x = 0
\]
Conclude - Euler Equations in Lagrangian coordinates:

\[(M0)_2: V_t - U_x = 0 \quad \chi \leftrightarrow x\]
\[(M0)_2: U_t + P_x = 0 \quad E = \text{specific total energy}\]
\[(E1)_2: E_t + (Eu)_x = 0 \quad s = \text{specific entropy}\]

\[S_t = 0 \quad \text{take either one on smooth solutions}\]

*Note. We say fluid is barotropic if

\[P = P(V), \quad v = \frac{1}{\gamma}\]

and we assume \(P'(v) < 0, \quad P''(v) > 0\). Then

\[(M0)_2 b (M0)_2 \text{ uncouple from } (E1)_2 \text{ and reduce to the so-called } P\text{-system (name coined by Joel Smoller)}\]

\[V_t - U_x = 0\]
\[U_t + P(V)_x = 0\]