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THE EXISTENCE AND LIMIT BEHAVIOR OF THE
ONE-DIMENSIONAL SHOCK LAYER.*

By Davip GiLeage.

Introduction. We consider steady, one-dimensional flows of a viscous,
heat-conducting fluid which approach finite limit values at ¢ = -4 and
x =—oco. Such flows display the character of a shock wave (for small
viscosity, u, and heat conductivity, A), in that they differ sensibly from their
end states at £ = == only in a small interval of rapid transition. In analogy
with the classical boundary layer, and also to distinguish these flows from
the shock waves which belong properly to the theory of ideal fluids, we follow
Weyl [1] in naming such a flow a shock layer. The one-dimensional shock
layer is in certain respects the prototype of all shock phenomena and has
therefore been studied widely, with particular emphasis on the problem of
thickness of the shock front [2,3,5,6,8]. However, basic problems con-
cerning these flows, such as those of existence, and limit behavior for small
A, s, remain open. Their solution, which we consider here, is a step towards
placing on a sound basis the relation between the theories of real and ideal
fluids.

The general problem of existence of the shock layer for a fluid with
given A, p, and with the preassigned end states, has been studied inconclu-
sively by Rayleigh [4] and Weyl [1]. Until now, the existence of the shock
layer seems to have been definitely proved only for an exceptional set of ideal
gases for which a postulated relation between A, n, and the specific heat at
constant pressure,’ permits explicit integration of the equations of motion;
(Becker [2], also [5,6]). We succeed here in obtaining an essentially
complete solution of the existence problem by proving the existence and
uniqueness of the shock layer for the general class of fluids considered by
Weyl, with A, u arbitrary functions of the state, and for arbitrary end states
satisfying the shock relations (Theorem 1). This result, therefore, establishes
for general fluids an exact correspondence between the steady one-dimensional
shock waves and the shock layers.

* Received June 3, 1950; revised November 13, 1950.
Prepared under Navy Contract N6onr-180, Task Order V, with Indiana University.
1 Namely, Prandtl number c,u/N = 3/4.
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THE ONE-DIMENSIONAL SHOCK LAYER. 257

The problem of the limit behavior of the shock layers for small A and
p is that of providing a rigorous proof for the statement, generally accepted
on physical grounds, that any shock wave in an ideal fluid is the limit of the
corresponding shock layers, and, conversely, that the shock layers (with the
same end states) approach a shock wave in the limit as A, u — 0.2 Mathe-
matically, this problem belongs to the class of perturbation problems for
differential equations in which the vanishing of certain parameters, (A, u in
this case), reduces the order of the equations. A complete solution to the
problem is given in Theorems 2 and 5 for the same general fluids as in the
existence theorem. The limit behavior makes apparent the unequal dependence
of the flows on viscosity and heat conductivity in the fact that as A — 0 (with
n fixed), the shock layers converge to a continuous thermally non-conducting
shock layer (Theorem 3), whereas for u—> 0 (with A fixed), they converge
to a (generally) discontinuous non-viscous shock layer (Theorem 4).

We remark that the methods used here provide easily estimated bounds
on the thickness of the shock front, although not the precise determinations
sought by previous writers [2, 3, 5, 6] on this subject.

1. Existence and uniqueness of the shock layer. The equations of
motion for a steady one-dimensional flow of a viscous heat conducting fluid

are:®

(1) pu = constant = ¢, ;

®) pw? ++ p — pu, = constant = ¢,

(3) pu(Fu? 4 e 4+ p/p) — puuy — A, = const. = cs.

These equations express respectively the conservation conditions for mass,
momentum, and energy. The coefficient of viscosity, x (which combines the
two viscosity coefficients appearing in the general Navier-Stokes equations),
and the heat conductivity, A, are in general functions of the thermodynamic
state, and will here be considered in this generality. The other quantities
appearing in the equations are the density p, pressure p, velocity w, internal
energy e per unit mass, and temperature . We assume that the variables 6
and r = 1/p = specific volume, fix uniquely the thermodynamic state of the
fluid, and that A, p, p, and e are sufficiently smooth (e. g. twice differentiable),
functions of these variables.

2 This limit behavior is apparent in the explicit solution obtained by Becker [2];
however, in this case, A and u are connected by the relation, ¢,u/A = 3/4, and do not
approach zero independently. - For discussion of the problem of limit behavior, see, for
example, [7] pp. 135-138, also [8], pp. 218-222.

2 See, for example, [7] p. 134; a complete derivation is contained in [9].
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Eliminating u from equations (1)-(3), we obtain,

A(db/dx) = b[e(r,0) —3b2(r—a)?—c] == L(r,0)
(E)
p(dr/de) = 1/b[p(r,0) + b*(r—a)]=M(x,9),
where,
@ == cz/¢:% b=c, c=cC3/C; — C3%/2¢,%,

and e=e(r,0), p=p(r,0) are (given) equations of state of the fluid.
With certain minor modifications, this is the form of the equations of
motion used by both Weyl [1] and Becker [2].

We enumerate now a set of conditions on the functions L(r, 6), M (=, 6)
which will be sufficient to prove the desired existence and limit theorems.
In Section 3, it will be verified that the corresponding functions for the
general fluids of Weyl, and, in particular, for polytropic gases, satisfy these
conditions. We assume:

The domain of definition is a set of points Z = (=, 8), hereafter called
the Z-plane, forming a simply connected region in the quadrant + > 0, § > 0.
In this region, we have:

(A Ly>0,M,>0.

(B) There are two curves, L and M, on which L(r,) =0 and
M(r,0) =0, respectively, and which intersect in two points, Z, = (o, 6o),
Zy=(11,6:), (ro>71); (70,00) and (r1,6;) are the only simultaneous
solutions of L(7,0) =0 and M(r, ) =0.

(C) Lr>0o0n L for m =1 =1,

(D) L,/Ly<M,/My at Zo; Lr/Lg > M./M, at Z,.

It is an immediate consequence of (A) that I and M are representable
as single valued functions of =, namely, § =1(r), § = m(r), respectively.
By virtue of (C), I(+) is monotonically decreasing in the interval r, =< r < =,
and thus 6; > 6,. From (B) and (D) it follows m (r) > I(r) for 1 < 7 < 7o.

The closed curve formed by the arcs L*CL and M* CM which join Z,
and Z; bounds a simply connected region R of the Z-plane (Fig. 1). We
conclude from (A) that everywhere in R, L(r,0) >0 and M(r,8) <O.

The preceding geometric facts contain all the information that is needed
about the (7,0) phase plane for the proofs which follow. More general
conditions could be obtained, but would be of no interest for the ensuing
applications.

Consider the points Zy(ro, o) and Z; (s, 6,). These satisfy the shock
conditions,
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(4) po + bz‘ro = p]_ + bz‘l']_ = bza/

(5) to— b2/ (1o —a)*=e,—b*/2(r,—a)?=c.

Z, and Z, then represent possible initial and final states, respectively, of a
normal shock wave of an ideal fluid having the same equations of state as the
given fluid. A solution, S(z) = (7(2),0(2)), (—o <z < +w), of equa-~
tions (E), (for given A(r, 8), p(r, 0)), will be called a shock layer if

lim S(z) =2Z,, lim S(z) =Z,.

Z—>— 00 &>~ 0

The corresponding shock layer curve in the Z-plane is the integral curve

]
A

Fie. 1.

represented by the set of “ equivalent *” shock layers, S(z -+ k), (b = constant).
A shock layer will be called parametrized if a particular representative of
this class is designated, and, unless so noted, equivalent shock layers will be
considered identical.

We observe that if an integral of (E) has the limits 7/, Z’; at ¢ = —o0,
-+ 0, respectively, then Z%, Z’;, must satisfy the shock conditions (4), (5).
It is necessary, therefore, to restrict the definition of shock layer, as we have
done, to end states defining a normal shock wave.

We consider first the question of existence and uniqueness of the shock
layer for arbitrary positive A = A(r, 0), p= p(7, 6).
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By condition (B), Z, and Z, are the exclusive singular points of the
system (E).* We prove that Z, is an unstable node and Z, a saddle point
of (E).* For, the characteristic equation of the system (E) at Z, and Z, is

Lg/A—« Lz/\
— My/p Mr/p—«

=«*— (Mr/p+ Lg/N)x + (MgLg/Mp) (M7/Mg— Lr/Ly),

where the values A, u, L,, My, etc., are to be taken at Z, and Z,. The
discriminant of this equation is

[(Mr/p— Lg/N)? 4 4(MoLr/Ap) ) 2-26,2,5

by conditions (A) and (C), My, Ly > 0, so that the discriminant is positive
at both Z, and Z,, and therefore the roots of (6) are real. The constant
terms of (6), is, by conditions (A) and (D), positive at Z,, negative at Z,.
The latter point is therefore a saddle, the former a node, and, since M., Ly > 0
(conditions (A), (C), (D)), an unstable node.

It follows from well-known general considerations that there are exactly
two integral curves of (E) which approach the saddle Z; as ¢ — 40, and
exactly two which approach it as # — —oo, these pairs corresponding to the
negative and positive roots, respectively, of the characteristic equation (6).
The two members of each pair have the same slope at Z,, but approach it
from opposite directions. The slopes are given by

— L/ (Lg— 10) = — (M7 — ) /M,

6) 0

and, in particular, for k < 0 at Z,, this is negative. Hence, by considering
the sign of L(r,0)/M (r,0) in the neighborhood of Z;, it is seen that one
of the solutions converging to Z, as @ — -4-c0 approaches it from the region
R, in which the ratio is negative. Let this solution be designated by S(z).
We establish that S(z) is a shock layer. For, consider the integral curves of
(E) which pass through the points of M* and L*. On M*, M(r,0) =0,
L(r,0) >0, so that all integral curves have vertical tangent vectors, and
are directed outwards from R for increasing z. Similarly, on L¥, all solutions
have zero slope, with L(r,8) =0, M(r,0) < 0, and are directed outwards
from R, since the slope of L* is negative (by conditions (A) and (C)).
Thus, for decreasing x, all integral curves of (I8) passing through L* and M*

4+ This makes clear that the shock transition from Z, to Z, cannot (strictly) occur
in a finite #-interval, since the singular points of (E) can be approached only for
@ == == 00,

5 This is proved by Weyl in the (7,p) plane ([1],Theorem 6),
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are directed into B. In R itself, all integral curves have negative slope and
are traversed for decreasing « in the direction of increasing  and decreasing 6.
Let us now follow S(z) for decreasing #. By virtue of the preceding, S(z)
cannot intersect L* or M* between Z, and Z,. Since there are no other
singular points of (E), and since S(z) is monotonic while in R, and cannot
terminate inside R, it must approach the node Z, as  — —o0. This proves
the existence of a shock layer S(z) = (7 (z), 6(z)).

To prove the uniqueness of the corresponding shock layer curve 8,
we show that no other integral curve of (E) can join Z, and Z,. For Z,,
being an unstable node, which can be approached by an integral curve only
as ¢ — —oo, the only solution other than § which could join Z, and Z,
would have to be the second integral curve, call it §, which enters Z, as
¥ —> 4-co. This is seen to be impossible as follows. If § is also a shock
layer curve, then the arcs S and § form a closed curve bounding a simply
connected region G in the Z-plane. Omne of the two integral curves of (E)
which approach Z; as # —-—oo enters this region. It cannot terminate in
G, since Z, and Z, are the exclusive singular points of (E); nor can it
approach asymptotically a limit cycle in @, for this in turn would have to
contain in its interior a singular point of (E).® The only possibility
remaining ¢ is that the curve intersect S or §, thereby contradicting the
uniqueness of the integral curves of (E). This contradiction completes the
uniqueness proof.

Thus, under assumptions (A)-(D), we can state the following existence
and uniqueness theorem.

TarOREM 1. Let Zy = (7o, 0,) and Zy = (+1, 6,) be states of a fluid which
satisfy the shock conditions, (4), (5); then, for any viscosity uw— p(r,0),
and heat conductivity N = A(7,0), there exists a unique shock layer joining
Zo to Z,.

2. Limit behavior of the shock layer as A—0, »— 0. For given
MZ), n(Z), let the shock layers of the preceding section be designated by
S(z;A p) = (r(x;A, 1), 0(z; A, 1)), and the associated layer curve by S(A, w).
We assume now concerning A(Z) and u(Z) that these coefficients depend on
parameters (independent of r, §) in such a way that A and pu can independently
be made arbitrarily small in R. In the following, when bounds are placed
on A, p, or A/p, these bounds are to be understood as holding throughout
the region R.

¢ Kamke, Differentialgleichungen Reeller Funktionen, Chelsea, New York (reprinted
1947), pp. 216, 220-222.
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It is our chief object in this section to establish that, as A and u
approach zero (in whatever manner), the corresponding shock layers approxi-
mate a shock wave. In a sense, this “justifies ” the usual shock wave theory
by showing it to be the limit case of the corresponding theory of real fluids.
In the details, it is shown that the limits as A, p—> 0 exist in the sense of
function limits. This requires the individual shock layers to be so para-
metrized—since they are fixed only to within an z-translation—that the
appropriate limits exist under this parametrization. We consider first the
double limit, under the same assumptions as in Theorem 1.

TurEOREM 2. Let Z, — (7o, 60) and Z, = (71, 0,) be initial and final states
of the shock wave, Z =2y, —oo< e < & Z=17,, §<x<w. Then, the
corresponding family of shock layers, S(z; A, p), if suitably parametrized,
approaches this shock wave as A — 0 and u—> 0 independently ; that is,

lim S(zs 0 p) =2Zp, —0o <z < §;
A-0
u=0 =7y, E< v <0,
the convergence being um'fohn in every closed interval not contatning x = é&.

Proof." For e >0, let B(e) be the subregion of R outside the circles
of radius e about Zo,Z,. Consider the equations (E) for any integral curve
in R in the form,

(E) d6/dxz = L(r, 0) /A, dr/dx = M (z, 0)/n,
and take the difference,
d(@—r)/de =L(7,0)/x + | M (7, 8)|/n>0
Define n = Max (A, u) in B, and let C'(e) be a constant for which
L(7,0) + | M(r,0)| = C(e) >0, (7,0) e B(e);

such a C(¢) exists, since L(r,6) > 0 on M*, and | M(r,0)| > 0on L* (except
at Zo, Z,), and are also positive in R(e). Then, we have for any integral
curve in E(e),

(%) (0 —r)/de > C(e) /1> 0

Now consider any shock layer S(z;A,p), and let (ru, 0u) and (rm, Om)
designate the value of S(z;A, p) where it intersects the e circles about Z,

7The author is indebted to E. Hopf for this proof, which strengthens and simplifies
the author’s original proof.
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and Z, respectively, with S(zo; A, ) = (*m, Om) and S(z1; A, p) = (7, On).
We have, for z, < z =< z,,

To>7m21'(11;)\,/.c) =Ty > T,

Op < O =0(z; A p) =0y <01
From inequality (7) for S(z;A, ), it follows,
(8) @—ao=19/C()[0u — it — (O — ;)] < 9/C()[01— b6 + 70— 1],
Thus, given e and 8, and S(z; A, n) for which
n=Max(\, p) =38C(€) /(6 — o + 70— 1),
the simultaneous inequalities,
(9 [7(@; 0 p) —m01| >  |0(z;0p) —bo1| >6

can hold only when the values of S(z; A, ») lie in R(e), and therefore in an
interval of length less that x; —z, < 8. In other words, by making heat
conductivity and viscosity sufficiently small, the width of the shock front can
be made arbitrarily small. To complete the proof of the theorem, one need
only observe that the solutions S(z;A, ) can be so parametrized that the
intervals (o, z;) contain z =& The convergence of the S(x;A, n) to the
discontinuous shock is then uniform outside of every open interval containing
r==E¢

We note that with arbitrary parametrization, either the double limit is a
shock wave, as above, or does not exist in an entire interval, or is a constant,
Zy or Z,. Hence, among all parametrizations, the only non-trivial limits of
shock layers, as A, p— 0 independently, are the shock waves.

We note also that (8) gives a (probably very poor) upper bound on the
width of the shock transition in the sense of inequality (9). Similarly, lower
bounds as well can be obtained from reverse inequalities of the type (7).
It is possible that, by taking other linear combinations of the two equations
(E), and thereby obtaining inequalities analogous to (7), more satisfactory
bounds can be achieved.

We turn now to the single limit problems, l)\m% S(z; A, ) and ling S(z; A p),

— =

for fixed u(Z) and A(Z), respectively. First we prove,
Lemma 1. Let G be any open neighborhood of the closed arc L*. Then

for sufficiently small values of A/p, all shock layer curves S(X, p) lie entirely
n G.
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Proof. Let L be an arc of bounded negative slope with endpoints 5% Z,,
Z, on M*, and lying so close to L* that the subregion of R contained between
L* and L contains only points of G. Such a curve L can always be found
by virtue of the monotonicity of L* between Z, and Z,. Let D be the sub-
region of R bounded by-L and M*; D contains the complement of G in R.
On L, L(r,0) =k, >0, | M(r,0)| = k,, and | slope L | = N, where ki, ks,
and N are suitable positive constants. Let now u/A > (k2/k;)N ; then since
the slopes of the corresponding integral curves of (E) satisfy on L the
inequality,

— db/dr = — (p/A) (L(r, 6) /M (7, 0)) = (s/X) (k:/k2) > N,

we have that these integral curves must be directed into D. Thus, any
integral curve of (E) for which u/A > (k2/k:) N and which contains a point
of D cannot intersect L beyond this point (i.e. for increasing z), and hence
cannot pass through Z;. As a consequence, if S(A, ) is a shock layer curve
for which A/p < ki/k.N, S(A, ) must lie entirely in the region G (indeed,
in the smaller region between L* and L).

Similar considerations apply in case of small p/A. An interesting
difference arises from the possibility that M* is not monotonic. If the are
is monotonic, then exactly the same argument as above applies, with but
evident verbal changes. If, however, M* is not monotonic between Z, and Z,,
consider then the arc M * defined by the monotonic function in [ry, 7],

60 =m(r) = Min m(?); n=T=r,
=T
This arc (IFig. 2) joining Z, and Z,® encloses between it and L* a subregion
of B in which, we assert, all shock layer curves must be contained. For,
if =o0(r) is the equation of any shock layer, we have, for every r in
[t1, 70], and some ¢ such that r, =t =,

a(r) =o(t) =m(t) =m(r),

with the inequality, o(r) < m(7), holding provided r=s£7,, .. Hence, all
shock layer curves lie below #* in B. (The same proof shows that i * is the
maximum among all monotonic ares dominated by M*.) Replacing M* by
M*, we find that the same argument as in the case that M* is monotonic
proves that, for sufficiently small u/A, the shock layer curves S(A, n) lie in
any preassigned neighborhood of #£*. Thus we can state,

8 That Z,e M* is clear; for, if not, there is a T, 7. <7 <7, for which I(7) <m (T}
<m(7y)=1(7,), contradicting the monotonic decreasing character of I(7).
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Lemwma 2. Let M* be the arc defined by the function,

06— (r) — Min m(t), (m=r=10)i

and let G be any open neighborhood of M*. Then all shock layer curves
S (A, ), for which /A is sufficiently small, lie entirely in G.

Consider now the reduced systems,

w(dr/dw) = M (r,0) A(db/dx) = L(x, )

1
(102) 0—L(r0) > 10V 0 — M(x, 9).
8,
2,%,,8)
zo(To»Go)
T

F1e. 2.

The former, (10a), are the equations of a viscous, thermally non-conducting
flow, and (10b) of a non-viscous, thermally conducting flow. Let us call
any solution of the reduced system (10a), for 7 in [7i, 7o] and for all @, a
thermally non-conducting shock layer; (the constant solutions, (v(x),6(z))
=7, Z4, are thus included in this definition, chiefly for convenience). Then
we have,

TueorEM 3. Let S(z;p) be a thermally non-conducting shock layer
with viscosity p. Then, the family of shock layers, S(z; A, ), if suitably
parametrized, approaches S(z;p) as A—0; that is,

Lim 8(z; 4, ) = 8(z; ),
A0
the convergence being wniform in x in every finite interval.
Proof. Let ¢ = S(%;p) = (7(Z; ), 0(%;)) be a point on L*, and =z,
values such that z)— Z as A— 0. Choose the parametrization of the shock

layers, S(z; A, p) = (v(z; M 1), 0(z; A, p) ), so that lxim S(zn; A, p) = ¢; this
—0

3



266 DAVID GILBARG.

is possible by virtue of Lemma 1. Also from this lemma, we have for every
shock layer,

(11) 0=1(7) +e(r,A),

where lim e(r, \) = 0 uniformly in 7, =7 =1, and therefore in —w < x
A—0
< -++. Thus,
adr(z; A, p)/de =M (r,1(7) + e(r, A)).

Because of the choice of the r(z;A, a), we have from this equation, that
lim 7(z; A, &) exists uniformly in every finite z-interval and satisfies
A—0

p.dr/da: ==M(T, l(-r)),

that is, satisfies the reduced system (10a). Since there is a unique solution

of the reduced system passing through the point ¢ for & — Z, we conclude
}\im r(z;A ) =7(2;p), and from (11) limé(z; A p) =68(z;p), these
—0 A0

limits, by the above, being uniform in every finite interval.
We observe from the above proof that if the shock layers are so para-
metrized that lim S(z; A, p) exists for a single value of z, then it exists for
A—0

all z and defines a thermally non-conducting shock layer.

For A fixed and w— 0 the limit solution of the reduced system is no
longer continuous in general, as the following Theorem 4 shows. This points
up a basic difference in the effects of viscosity and heat conduction on the
structure of the shock layers.

To simplify considerations, it will be assumed in the following that M*
has only a finite number of minima, so that the arc i * contains at most
a finite number of intervals on which # is constant. We note that Z, cannot
lie in such an interval, while Z; may or may not, in general. In particular,
for an ideal gas, M* is a parabola; if it is not monotonic, i * consists of the
segment of § = 6, intercepted by M* plus the arc of M* joining the segment
to Z,.

Let the function 6 = m(r), (11 =11 = 1,), be constant on the intervals,
[t ¢ ], (1=1,- - -, n), which are ordered so that ;- > #;* > .7, (Fig. R).
We enlarge the notion of solution of the reduced system (10b) by admitting
certain discontinuous solutions, namely, functions 7(z), a(az) satisfying (10b)
for 7 in [ry, 7], except at points # = a;, i =1, - -, n, where 7(2; — 0) =i,
7(z, -+ 0) = t;*; these solutions are uniquely determined in —oo < & < +
up to an a-translation. If n =0, that is, if m(¢) is strictly monotonic, then
the solutions are, of course, continuous. Any solution of (10b) for r in
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[1, 70] and for all z, whether continuous, or discontinuous in the above sense,
we term a mon-viscous shock layer. We now prove,

TaEoREM 4. Let S(z;X) be a non-viscous shock layer with heat con-
ductivity X. Then, the family of shock layers, S(z; X, ), if suitably para-
metrized, approaches S(z; 1) as u—> 0; that s,

lim 8(z;X, p) = S(z;}),

~—>0
the convergence being uniform in x in any closed interval not containing a
point of discontinuity of S(z;X).

Proof. If M* is strictly monotonic, the theorem is proved exactly as
Theorem 3. If, however, this is not the case, we proceed as follows. Let
S(z;X) = 8(z) = (7(z), 8(z)) ; (for notational convenience in the following,
we omit reference to A, since it will be the common value of the heat con-
ductivity for all the shock layers under consideration). Let ¢ — 7(Z), 6(Z))
be a point on M*, (& < &), where Z; is the first point of discontinuity
of 7(z). For any set z,, such that z,— & as p— 0, let the shock layers
S(z;p) = (r(z;p),0(z;)) be so parametrized that hm S(zy; p) =¢.
We have, by Lemma 2,

(12) T=m"(0) + (6, 1),

where m™(0) is the inverse of m(r) for t;" =1 = 7, (6, = 0 = 0 = m(¢,7)),
and lim e(6, ») = 0 uniformly in every closed interval of §, =< 6 < ). For
u—=>0

0(z; n) we therefore have,
(13) A0 (5 ) /dz = L[m™(8) + (0, u), 0]

Since 0 (zy, p) = 0(Z) and z, — & as u —> 0, and 7= m™1 () for , = 6 < 1),
if follows that lim 6(z; p) = 8(z), —o < = < &, and from (12), lim = (z; p)
u—>0 “—>0

=7(z), the convergence in both cases being uniform in every closed interval
to the left of x =;. To prove convergence for x > Z;, consider first the
case that =, 5= ¢;*. By the preceding there are values 2, < Z;, such that
2,V — &y, 7(2, M, n) >4, and (2, Y, p—> 0, as u—> 0. With the same
parametrization of the S(z;un) as chosen above, let &, be values for which
0(&us n) =05 then v(&u;p) >4+ as p—>0 (Lemma 2). We show now
that | & — 2, | >0 with p. For, L(r,§) is bounded away from zero in
the neighborhood of the segment § = 6™ of I*; say L(r,0) >k >0 in
such a neighborhood; and, if u is sufficiently small, the arcs of S(z;pu) for
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r, V) =g =< ¢, lie in this neighborhood (Lemma 2). For these p, we have
from the first member of (E),

(14) [éu—a® [ = Q/B)[0 w) — 02D, )] = A/B)[6D — (2™, W],

which approaches zero as u— 0. Hence &, — %;. We consider equation (12)

and (13) again, where now m~1(6) is the inverse of § = m(r) for t,7 = r = ¢,*,

(W =60=0® =m(%,")), and lime(f, ) = 0 uniformly in every closed
u=0

interval of ") =< 6 < 8®. As before, since 0(&,, p) = ) = 0_(x1) as & —> &,
and 7= m(d) for 4 < § < ¢, and also since the solution of

Xd6/dz — L(m=(8), )

is unique for 4(Z,) — 0™, and § < § < 42, it follows that lim 6(z; u) = 8(z)
u—>0
and lim 7 (¢ ; p) =7 (@) for £ = x < &5, the convergence being uniform in the
u=>0

closed intervals of (&, &:). One proceeds in this way until the arc of M*
containing Z, is reached. If Z, is not contained in one of the intervals of ¥,
then the above process shows the uniform convergence of S(z; 1) to (7(z), 9(z))
in every closed subinterval of the half line &, <z <. If, however, Z,
belongs to one of the intervals of #*, namely § — 6,, then, by definition of the
discontinuous non-viscous shock layer, r; = #,*, and (7(x), 6(z)) = (11, 6:.) = Z,
for all # in &, < < oo. In this case, we prove the convergence, S(z; p) — 7,
for , < o <oo, as follows. For any small § > 0, let R(8) be the sub-
region of R outside the circle of radius § about Z;. Let %(8) be such that
L(r,0) = k(8) > 0 in a neighborhood of 6§ =6, in R(§). If now the values
z, ™ < &, are such that 2, — Z,, 7(2, ", p) = 1,7, and 0(z, ™, p) — o™
= 01, as p— 0, then, for any arguments &, > 2, such that S(&.; r) € B(8),
it follows from the first of equations (E),

| éu—2™ | = X/E@)[0: — (2™ 5 4] >0, a8 p—0;

in other words, those z > Z, for which r(z; ) —r, > 8 lie in an interval
about £, which grows arbitrarily small as p— 0. Since § is arbitrary, this
proves the uniform convergence, 7(z;u) —> 71, 0(z;p) = 6,, in any closed
half line of #, < # < o, and completes the proof of the theorem.

One observes from the above proof that if the shock layers are so para-

metrized that lim S(z; X, n) exists for a single value of z, then it exists for
u—>0

all z and defines a non-viscous shock layer.
To complete discussion of the limit behavior of the shock layers, it
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remains to establish the existence of the iterated limits as A, p— 0, and to
show their equality with the double limit (and therefore with a shock wave).
We require an appropriate parametrization of the shock layers, with respect
to which the double limit and the two iterated limits exist simultaneously.
For this, take a circle of sufficiently small radius e about Z, (it suffices
€ < 7o—t,7) ; this intersects each shock layer curve, S (A, p), at exactly one
point, which we designate by &.,; and let ¢, £, represent the point of inter-
section with M* and L*, respectively. We note that }\nr; Ou =¥, (Lemma 1),
-

and lim &, = & (Lemma 2). For fixed & now let
u—>0

Ty = &— %-SM; T, = £E— %8//0 Th—£&— %SN
where,
= (n/C())[01— b 4 70— 1], 7= Max (), ),

Oy = (MaX,u/O(e)) [0, — 06+ 70 — 7],
o= (Max )\/0(6))[01 — 6, —I" To _7'1]:

C(e) being the same bound as in inequality (7) of Theorem 2. We make
the assignment S(zau; A p) = &y; this will prove to be the desired para-
metrization. From the proof of Theorem 2, we see that, since £ is contained
in all the intervals (@i, @ay + S\u) as n—> 0, it must follow,

Im S(z; A p) =2Zo, —0o< & < €
A0
#—0 =7, << +oo.

Also, since for fixed p,
lint = (Max p/C(€))[0: — o + 70 — 1] = 8y,

we have lim x\, = £ — 48, =7, lim S(@a,; A, p) = €. Therefore as in the
A0 A—0
proof of Theorem 3, lim S(z; A, u) = (7(z; n), 0(z; 1)) where (7(z; p), 0(z; 1))

A—0 -
is the solution of the reduced system (10a) which satisfies (7(Zu;p), 0(Zu; 1))
={,. This, combined with the existence of the double limit, establishes the
existence of the iterated limit, lim (lim S(z; A, x)), and its equality with the
#=>0 A0
double limit. Identical considerations apply to l)‘im (im S(z;A, p). Conse-
—>0 u—>0

quently, we may state,
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THEOREM 5. Let Zy= (7o, 0,), Z1 = (71, 01) be initial and final states
of the shock wave, Z =Z, —o < x < & Z =127, E<z < +w. Then the
shock layers S(x; A, n) can be parametrized so that,

lim S(z; A, p) = lim (lim S(z; A, 1))

A=0 A0 u—0

u—=0

. . Loy, —o0l x < €
—lim (lim S(z;A, p))="" ’
w=>0 ()\—>0 ( ? M)) Zy, E< < +o0.

It is clear, conversely, that the iterated limit, if it exists (for some
parametrization), must be either a constant or a shock wave.

In the case of polytropic gases with A, u taken independent of r and 6,
the convergence of the iterated limits to a shock wave is visible from explicit
formulas for the thermally non-conducting shock layers, lim S(z; A, n), and

A—0

for the non-viscous shock layers, lim S(z; A, u), (presupposing, however, the
il

existence of these single limits; see Becker [2], for example).

The advantages of the (r,0) plane as phase plane should be noted. In
these variables, the right members of equations (E), and therefore the curves
L and M, are independent of A and . This fact makes the proof of Theorem 1
quite simple, and also permits study, with respect to a fixed geometry, of the
dependence of the shock layers on A and p. In contrast, the topologies of
other phase planes, such as the (r,p) plane used by Weyl in [1], are such
as to obscure a satisfactory proof of the existence and limit theorems.

8. Proof of Conditions (A) — (D). It remains to show that con-
ditions (A)-(D) of Section 1 are satisfied for the fluids under consideration.
We examine first the polytropic gases because of their particular importance
and simplicity. For polytropic gases, e(r,§) = af, p(r, ) — B0/, where
a, 8 > 0 are constants of the medium. Thus

L(r,8) — b[af— b2/2(r—a)?—c], M(r,8) =1/b[B6/r + b*(r—a)].

The Z-plane is the quadrant >0, 6 > 0, and the constants a,b,c are
assumed to be such that the parabolas L: L(r,0) =0, and M: M(r,0) =0,
intersect in two points, Zo = (7o, 0o), Z1 = (71, 01), 70 > 71. Conditions (A)-
(D) are now easily seen to hold. (A) My, Ly > 0, since a, 8,0 > 0; (B) the
parabolas L, M have only one component in the Z-plane, and cannot intersect
in more than the two assumed points, Z,, Z,; (C) L, =—b%/2(r—a) >0
for r < @, hence for m =7 =17, < a; (D) follows from the fact that M lies
above L between their points of intersection.
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We turn now to the general class of fluids defined by Weyl. These are
characterized by the following conditions:

L dT/dp)Szconst. < 0, 8§ =entropy;
Ia. Sp(m,p) >0, O,(r,p) > 0;

II. dz‘r/dpz) Seconst, > 0;

III. in the continuous process of adiabatic compression one can raise
pressure arbitrarily high;

IV. the thermodynamic state Z is uniquely specified by pressure p and
specific volume 7, and the points (r, p) representing the possible states Z
in a (r,p) diagram form a convex region.

To these conditions must of course be added the basic thermodynamic
relation,

V. de==10d8 — pdr.

This class of fluids evidently includes the polytropic gases, and, as Weyl
has shown, the theory of shock waves generalizes in entirety to these fluids.

For fluids subject to the above conditions, Weyl proves a number of
important results, among which we need the following.

(a) The Hugoniot contour,
H(Z,Z,) = e(r, p) — €(70, po) — 5(p + po) (ro—7) =0

is a simple curve on which s= (p —po)/ (70— ) grows strictly mono-
tonically from m, =—*—dp/dr) s at Z, to 4o as Z moves on the upper
branch, p > po, T < 7.

(b) If H(Z:,Zo) = 0,7, lying on the upper branch of H(Z,Z,) =0,
then the straight line (p— po)/ (70— 7) = (p1— po) /(7o — 71) = b? inter-
sects the adiabatic § =S, at a point Z =74, Z; lying between Z, and Z4,
and mo < b2 < my — — dp/dr(Z1)| -5,

To prove conditions (A)-(D) of Section 1, consider first the mapping
(m, p) = (7,0) defined by § = 0(r, p), r=r. This mapping is 1-1 as well
as continuous, for, if both (7, p;) and (7., p.) map into the same point (7, ),
then 7, =7 =r,, and, since 6, > 0 in the convex (r,p) plane, it follows
also that p; — p,. Consequently, the mapping is topological and the Z (7, §)
plane is simply connected.
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In the following, let Z, (7o, o), Z1(71, p1), be points for which H(Z,, Z,)
= 0, with P > Po, T1 < To> (either P > Pos T1 < To, OT Py < Pos T1 > To). Let

bM(r,p) =p+b*(r—a), (1/0)L(r,p) =e(r,p) —$b*(r—a)*—oc,
b > 0, a, ¢ being determined by relations (4), (5). The functions M (s, 6),
L(7, 0) are defined in the obvious way:

M(T:O)EM(T’Z)(T’G)): L(T:G)EL(T}Z)(T:G))'

Condition (A) is easily proved, for

bMy(r,0) = py(r,0) >0, (by Ia),
and
(1/b)Lg(r, ) — e (r, 6) = 684(r, 6), (by V)
= Sp (7, P)Po("} ) >0,
so that Ly (7, 8) > 0.

To prove (B), we observe from (a) that Z,(ro, po), Z1(71, p1) are the
only simultaneous solutions of L (7, p) = 0, M (7, p) = 0 (Weyl’s Theorem 7),
and therefore Z,(7o,00), Z1(71,0:) are the only solutions of L(r,6) =0,
M(7,0) =0. Also, M(r,p) =0 only on the straight line M joining Z, and
Z,, and since the (7, p) plane is convex, M consists of only one component.
The set in the (7, §) plane on which M (7, ) — 0 must therefore also consist
of a single curve, namely, the image of M. Letting £ designate the set of
points (7, p) on which L(r, p) =0, it remains only to show that the com-
ponent L C &, which passes through Z, also passes through Z,. Since

(1/6) Ly (s, p) = e9(r, p) — 08, (r, p) >0,
the curve L is representable as a single valued function p = I(r), with slope,
(15)  di(r)/dr =— (er(7, p)—b*(r —a))/es(7; p)
= — (68:(r,0) —p—b*(r—a)) /08 (v, p), ((r,p) eL).
In particular, at Z,, L has the slope,
— /8y (rsy 1) = dp/dr(Z0) | g —=—ma < — D2

Consequently, L, for increasing 7, enters the convex region D contained
between the adiabatic § — 8, and the straight line M (Fig. 3). Since D
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lies below M, p + b*(r —a) < 0 in D, so that, by (15), I(r) is monotonically
decreasing function of = in this region. The curve L cannot terminate in D,
must therefore intersect either M, which can only occur at Z,, or the adiabatic,
S = So.

Fie. 3.
But on S=So,
(l/b) (dL(-r,p)/dT)) 828 de/d-r) 88, bz(r—a)
=[—p—0b3(r—a)] . >0, for 74 < 7 < 70}

hence L(r, p) 720 on 8§ =38, between Z, and Z;. L must therefore pass
through Z, as well as Z,. This proves that condition (B) is satisfied.
For condition (C),

(1/b) Lz (7, 0) = er(r, 0) —b*(r—a) = 85-(r,0) —p —b*(r—a) ;
but from V, we have, S;(r,0) — py(s,6) >0,
S (1/b) Ly (7, 0) = Opy(7,0) —p —b*(r—a) >00n L, for 1 = v =< 0.
(D) follows from the relations,
Mz/My(7,6) — Lr/Lg(r, 0) = [Mr/My(7, p) — Lr/Ly(r, p) 165 (v, p)
= (0> —mo)0,(Z,) >0 atZ,
= (b2 —m1)6,(Z,) <0 at Z,.

This completes the proof that a Weyl fluid satisfies the conditions (A)-
(D) which were assumed in obtaining Theorems 1-5.
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