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It has already been proved (Theorem 2, §1) that the functions
7 (x) —s. (%), v()I—5 (%)
g. From this it follows that the difference

o(x) =f(x)—s()

is a continuous function of finite variation.
The result just obtained can be stated in the following form.
THEOREM 7. Every function of finite variation can be written as the sum of its saitus

function and a continuous function of finite variation.

are continuous and increasin

§ 4. HELLY’S PRINCIPLE OF CHOICE

In this section, we take up a theorem due to E. Helly which has many important

applications. We first prove two lemmas.
Lemma 1. Let an infinite family of functions H={f(x)} be defined on [a.P].

If all the functions of the family are bounded by one and the same number
[f () =<K, oy
then, for any denumerable subset E of la, b, it is possible 10 find a sequence {f, (x)} in

the family H which converges at every point of the set E.
Proof. Let E = {x;}. Consider the set

{f(xx)}

of values taken on by the functions of the family
bounded and, by the Bolzano-Weierstrass Theorem,

from it:

H at the point x,. By (1), this set is
we can select a convergent sequence

1O, A0, ), o lim SR () =4y @)

Now consider the sequence

Wy, fO (), f5 (%) -

of values taken on by the functions of the set { £, (x) } at the point X. This sequence
is also bounded, and we can apply the Bolzano-Weierstrass Theorem to it. This gives

a convergent subsequence

2 @ o

f(lz) (x9), fg,) (x9), [3 ; (X2)y =+» lim fn) (x5) = Ay, (3)
7% —>» oo

selected from { £,V (x) }. Itis essential to note that the relative order of two functions

£.2 and f,,? in the sequence (3) is the same as in the sequence (2). Continuing this

process indefinitely. we construct a denumerable set of convergent sequences:

FO0), O, [P0, <onn lim f3)(x) =Ar
7 >

00, 130 FEHE) o nl_i_)mmf(,f) (x5) = Ay

[ ST S 0 o

FE 0, F8 (5, 9 (xg)y o0 MM o{ﬁi"’(xk)———-Ak-
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where each sequence of numbers is a subsequence of the preceding one, and in which the
order of elements has not been altered. We now form the sequence of diagonal elements
of the infinite matrix just constructed, i.e., the sequence

(13" (%)) (rn=1,123,...).
This sequence converges at every point of the set E. In fact, for every fixed &, the sequence
(72 (xa)) (n=F)

is a subsequence of { £, (x,)} and converges to 4,.
LEMMA 2. Let F={f(x)} be an infinite Jamily of increasing functions, defined on
the segment [a, b). If all functions of the JSamily are bounded by one and the same number,
/)| <K, f€EF.a<x<b,
then there is a sequence of functions {f. (x)} in F which converges to an increasing function
¢ (x) at every point of [a, b).
Proof. Apply Lemma 1 to {f(x) }, taking for the set E the set consisting of all

rational points of [a, 4], together with the point a if it is irrational. We thus find a
sequence of functions of the family F,

Fo={f™(x)}
lim f(®) (x;) 4)
% > co
exists and is finite at every point x, € E.
We now define 2 function ¢ (x) by the following procedure. First, we define

¢ (%) et ™ (x) : (*x€E)

such that

for all x, € E. This defines ¢ (x) only on E, of course. It is easy to see that ¢ (x)
is an increasing function on E, that is, if x;, x, € E and x;, < X;, then

¢ (x1) <Y (x,).
For x € [a, b] — E, we define ¢ (x) by the relation
¢ () =sup {¢(x)} (*x€E).
a:k <z

It is obvious that ¢ (x) is an increasing function on the closed interval [a, ] and that
the set of points Q where ¢ (x) is discontinuous is at most denumerable.
We show next that

!irr; F®)(x0) =1 (%) (5)

n->

at every point x, where ¢ (x) is continuous. Let ¢ be any positive number, and let
Xx and x; be points of E such that

€
<X <X, Y(x) =9 () <5 -
Fixing the points X and x;, select a natural number n, such that for n > My

/™ () =) | <, 1S (x) —¢ (5 |< 5
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It is easy to see that
§ (xp) —e<fM (x) <S™ (25) < & (x0) +-e,
for n > n,. Since
£ (x0) <™ (x0) <™ (),
we have
b (x0) —e <f™ (x0) < & (%) -+,
for n > n,. This proves (5). Thus, the equality
"lim f®) (x):dg (x) (6)
>

can fail only on the finite or denumerable set Q, where ¢ (x) is discontinuous.
We now apply Lemma 1 to the sequence F,, taking for the set E the set of those
points of Q where (6) is not fulfilled. This yields a subsequence

{0}

of Fo, which converges at all points of [a, b] (because at points where the sequence
{f (x) } converges, all subsequences also converge). Setting

¢ (x) =lim f, (x),

we obtain a function which is obviously an increasing function.

Tueorem (HELLY’s FIRST THEOREM). Let an infinite family of functions F = { f )}
be defined on the segment [a, b). If all functions of the family and the total variation of
all functions of the family are bounded by a single number

If WI<K V<K,

then there exists a sequence {f, (x)} in the family F which converges at every point of
[a, b] to some function o (x) of finite variation.
Proof. For every function f(x) of the family F, set

=)=V, (== ©D—F(x).

Both = (x) and v (x) are increasing functions. Furthermore,
=) | <K [v(®)]|<2K.
Applying Lemma 2 to the family { 7 (x) }, we find that there is a convergent sequence

{m () },
lim 7, (x) = a (x)
k->co
in this family. To every function =, (x), there corresponds a function v, (x), extending
it to the function £, (x) of the family F. Applying Lemma 2 to the family { v, (x)},
we find a convergent subsequence { v (x)},
lim v, (x)=(x)
i>oo ¢
of {v, (x)}. Then the sequence of functions

Jr, () ==y, (x)— Vi (%)
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belonging to F, converges to the function
o (x) = (x)—B (x)-

This proves Helly’s theorem.

§5. CONTINUOUS FUNCTIONS OF FINITE VARIATION

THEOREM 1. Let a function f(x) of finite variation be defined on the closed interval
[a, b). If f(x) is continuous at the point X, then the Sfunction

5=V (/)

is also continuous dt x,.

Proof. Suppose that x, < b. We shall show that = (x) is continuous on the right
at the point x,. For this purpose, taking an arbitrary € > 0, we subdivide the segment
[x,, b] by means of the points

Xo L Xy L oo L Xyemb
so that

V=7§1|f(xk+x—f(xk)l>‘bf(f)——s. (1)
K=o 5

Since the sum ¥ only increases when new points are added, we may suppose that

If (1) —F (x0) [ <e.
It follows from (1) that

Vi <e +:§j‘ 1 (eees) —F ()| <2e+:§ () —F () | <2 V()
&, k=0 =1 x,
Hence

V() <2,

and consequently

= (x,) — = (%) < 2e.

This implies that
7 (X0 0) — = (x) < 2e.

Since € is arbitrary, we have
= (g 0) = & ().
It can be shown in like manner that = (x, — 0) = m (x,), i.e., that = (x) is continuous

on the left (if x, > a) at the point x,.
COROLLARY. A continuous function of finite variation can be written as the difference

of two continuous increasing functions.
In fact, if f (x) is a continuous function of finite variation defined on [a, b], then

both of its increasing components

() =V (/) and  (x) == (+) — /()

are continuous,




