26.2) (a) Start with the geometric series
\[\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ for } |x| < 1. \]

Taking the derivative to both sides, we obtain
\[\sum_{n=1}^{\infty} nx^{(n-1)} = \frac{1}{(1-x)^2} \text{ for } |x| < 1. \]

Then, we multiply both sides by \(x \)
\[\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2} \text{ for } |x| < 1 \]
to obtain the desired result.

(b) Notice
\[\sum_{n=1}^{\infty} \frac{n}{2^n} = \sum_{n=1}^{\infty} n \left(\frac{1}{2} \right)^n. \]

Using the formula derived in a for \(x = \frac{1}{2} \), this evaluates to
\[\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}} \right) = 2. \]

(c) Note
\[\sum_{n=1}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} n \left(\frac{1}{3} \right)^n \text{ and } \sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n} = \sum_{n=1}^{\infty} n \left(\frac{-1}{3} \right)^n. \]

Using the formula derived in a for \(x = \frac{1}{3} \) and \(x = -\frac{1}{3} \), this evaluates to
\[\sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{1}{3} \left(\frac{1}{1 - \frac{1}{3}} \right) = \frac{3}{4} \text{ and } \sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n} = \frac{-3}{4} \left(\frac{1}{1 + \frac{1}{3}} \right) = -\frac{3}{16}. \]

26.4) (a) Start with the power series for \(e^x \)
\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \forall x \in \mathbb{R}. \]

Substitution of \(x \) by \((-x^2) \) gives us
\[e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n} \forall x \in \mathbb{R}. \]
(b) Let

\[F(x) = \int_0^x e^{-t^2} \, dt \]

Using the power series obtained in (a) and integrating term-by-term (Theorem 26.4), we arrive at the power series for \(F(x) \)

\[F(x) = \int_0^x e^{-t^2} \, dt = \int_0^x \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} t^{2n} \, dt = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{x^{2n+1}}{2n+1} \]

26.4) Let

\[s(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \text{ and } c(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}. \]

(a) Differentiating \(s(x) \) term-by-term (Theorem 26.5), we have

\[s'(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = c(x). \]

Notice we keep the sum starting at \(n = 0 \) since the 1st term of \(s(x) \) is not a constant.

Differentiating \(c(x) \) term-by-term (Theorem 26.5), we have

\[c'(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k-1)!} x^{2k-1} = -\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} x^{2k-1} = -\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = -s(x), \]

where we reindexed the sum with \(n = k - 1 \).

(b) We can implicitly differentiate to obtain

\[(s^2 + c^2)' = 2ss' + 2cc' = 2sc - 2cs = 0 \quad \forall x \in \mathbb{R}, \]

proving the claim.

(c) Applying the Fundamental Theorem of Calculus to the equation obtained in (a), we have

\[(s^2 + c^2)' = 0 \quad \forall x \in \mathbb{R} \Rightarrow s^2 + c^2 = C \quad \forall x \in \mathbb{R} \]

where \(C \) is a constant of integration. Since it holds for all \(x \in \mathbb{R} \), we let \(x = 0 \), then

\[C = [s(0)]^2 + [c(0)]^2 = 0^2 + 1^2 = 1 \]

Hence, \(C = 1 \) and we have

\[s^2 + c^2 = 1, \]

proving the claim.