1. (pts) Let \(f(x) = \sin \frac{1}{x} \). Use the definition of the limit to prove that \(\lim_{x \to 0} f(x) \) does not exist.

Consider sequence \(\{x_n\} \to 0 \) with \(x_n = \frac{1}{2\pi n} \), so \(f(x_n) = \sin(2\pi n) = 0 \forall n \).

Then \(\lim_{n \to 0} f(x_n) = 0 \).

Consider another sequence \(\{x_k\} \to 0 \) with \(x_k = \frac{1}{2\pi k + \frac{\pi}{2}} \).

So \(f(x_k) = \sin \left(2\pi k + \frac{\pi}{2} \right) = 1 \forall k \).

Then \(\lim_{k \to 0} f(x_k) = 1 \).

Since \(\{x_n\}, \{x_k\} \subseteq (-3,0) \cup (0,2) \) where \(\{x_n\} \to 0 \) and \(\{x_k\} \to 0 \),

\[\lim_{k \to 0} f(x_k) \neq \lim_{n \to 0} f(x_n), \quad x \to 0 f(x) \text{ D.N.E. by definition.} \]

2. (pts) Find the interval of convergence for the following power series.

\[\sum_{n=0}^{\infty} \frac{2^n}{n5^{n+1}}x^n \]

\[B = \lim_{n \to \infty} \sup \left| a_n \right|^{\frac{1}{n}} = \lim_{n \to \infty} \sup \left| \frac{2^n}{n5^{n+1}} \right|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{2}{n^5} \frac{1}{5^{n+1}} = \frac{2}{5}. \]

Thus, radius of convergence \(R = \frac{1}{B} = \frac{5}{2} \).

Check endpoints:
- Let \(x = \frac{5}{2} \Rightarrow \sum \frac{2^n}{n5^{n+1}} \left(\frac{5}{2} \right)^n = \sum \frac{1}{5} \frac{1}{n} = \frac{1}{5} \sum \frac{1}{n} \) which is a divergent \(p \)-series.
- Let \(x = -\frac{5}{2} \Rightarrow \sum \frac{2^n}{n5^{n+1}} \left(-\frac{5}{2} \right)^n = \sum \frac{1}{5} \frac{1}{n} = \frac{1}{5} \sum \frac{1}{n} \).

Let \(a_n = \frac{1}{n} \) which is \(\geq 1 \), and \(\lim_{n \to \infty} a_n = 0 \).

By Alternating Series Test, this is a convergent series.

Therefore, the interval of convergence is \(\left[-\frac{5}{2}, \frac{5}{2} \right] \).
3. (pts) Let the sequence of functions \(\{f_n\} \) be \(f_n(x) = x - x^n \) for \(x \in [0, 1] \).

(a) Find \(f(x) \) such that \(\{f_n\} \to f \) on \([0, 1]\).

\[
\text{For } x = 1, \quad f_n(1) = 0 \quad \forall n \implies \lim_{n \to \infty} f_n(1) = 0
\]

\[
\text{For } x \in [0, 1), \quad \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x - x^n = x
\]

Define \(f(x) = \begin{cases} x & x \in [0, 1) \quad \text{where } \{f_n\} \to f \text{ on } [0, 1] \\ 0 & x = 1 \end{cases} \)

(b) Using the definition, prove \(\{f_n\} \) does not converge uniformly to \(f \) (found in part a) on \([0, 1]\).

Choose \(\varepsilon = \frac{1}{2} \). Let \(N \) be given and let \(N^* = \lceil N \rceil \in \mathbb{N} \).

Choose \(n = N^* + 1 \). For \(x \neq 1 \),

\[
|f_n(x) - f(x)| = |x - x^n - x| = x^n \geq \frac{1}{2} \quad (\Rightarrow) \quad x \geq \sqrt[2]{\frac{1}{2}}.
\]

Choose \(x = \sqrt[2]{\frac{1}{2}} \) where we chose \(n = \lceil N \rceil + 1 > N \), and we have \(|f_n(x) - f(x)| \geq \frac{1}{2} = \varepsilon \).

Thus, \(\{f_n\} \) does not converge uniformly to \(f \) on \([0, 1]\).
4. (pts) Let the sequence of functions \(\{f_n\} \) be \(f_n(x) = \frac{1}{1 + nx} \) for \(x \in [2, \infty) \). Let \(f(x) = 0 \) for \(x \in [2, \infty) \). Using the definition, prove \(\{f_n\} \) converges uniformly to \(f \) on \(x \in [2, \infty) \).

Let \(\varepsilon > 0 \) be given.

Notice \(|f_n(x) - f(x)| = \left| \frac{1}{1 + nx} - 0 \right| = \frac{1}{1 + nx} < \frac{1}{1 + 2n} \)

since \(x \geq 2 \).

Then, \(|f_n(x) - f(x)| < \varepsilon \iff \frac{1}{1 + 2n} < \varepsilon \iff n > \frac{1}{2}(\frac{1}{\varepsilon} - 1) \).

Choose \(N = \frac{1}{2}(\frac{1}{\varepsilon} - 1) \). Then, we have

\(\forall x \in [2, \infty), \forall n > N \implies |f_n(x) - f(x)| < \varepsilon. \)

Therefore, \(\{f_n\} \Rightarrow f \) on \([2, \infty) \).
5. (pts) For \(x \in [0, 1] \), we have the following power series

\[
\sqrt{1 + x} = \sum_{n=0}^{\infty} \frac{(-1)^n(2n)!}{(1-2n)(n!)^2(4^n)} x^n.
\]

Use this fact to build a power series for \(\frac{1}{\sqrt{1-x^2}} \).

Start with

\[
\sqrt{1+x} = \sum_{n=0}^{\infty} \frac{(-1)^n(2n)!}{(1-2n)(n!)^2(4^n)} x^n
\]

Differentiating both sides, we get

\[
\frac{1}{2\sqrt{1+x}} = \sum_{n=1}^{\infty} \frac{(-1)^n(2n)!}{(1-2n)(n!)^2(4^n)} x^{n-1}
\]

Substituting \(-x^2 \) for \(x \) & multiplying by 2, we have

\[
\frac{1}{\sqrt{1-x^2}} = \sum_{n=1}^{\infty} \frac{(-1)^n(2n)!}{(1-2n)(n!)^2(4^n)} (-x^2)^{n-1}
\]

6. (pts) Prove the following series converges uniformly on \(\mathbb{R} \) to a continuous function

\[
\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx
\]

Consider the sequence \(\{a_n\} \) where \(a_n = \frac{1}{n^2} \). All the terms are nonnegative and \(\sum \frac{1}{n^2} < \infty \) since it's a convergent p-series. Notice

\[
\left| \frac{1}{n^2} \cos nx \right| \leq \frac{1}{n^2} \quad \forall x \in \mathbb{R}
\]

Thus, the series \(\sum \frac{1}{n^2} \cos nx \) converges uniformly on \(\mathbb{R} \). Also, the limit is continuous since each partial sum is continuous (addition preserves continuity).
7. (pts) Use the definition of the derivative to prove the Quotient Rule.

Let \(f, g \) be differentiable at \(a \) where \(g(a) \neq 0 \).

Since \(g(a) \neq 0 \) and \(g \) is continuous at \(a \) (from differentiability of \(g \)), there exist an open interval \(I \) with \(a \in I \) such that \(g(x) \neq 0 \) \(\forall x \in I \). For \(x \in I \), we have

\[
(f/g)'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f(x)g(a) - f(a)g(x)}{(x-a) \cdot g(x)g(a)}
\]

\[
= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) + f(a)g(a) - f(a)g(x)}{(x-a) \cdot g(x)g(a)}
\]

\[
= \lim_{x \to a} \left[g(a) \frac{f(x) - f(a)}{x-a} - f(a) \cdot \frac{g(x) - g(a)}{x-a} \right] \frac{1}{g(x)g(a)} = \frac{g(a)f'(a) - f(a)g'(a)}{[g(a)]^2}
\]

Therefore, \(f/g \) is differentiable at \(a \).

8. (pts) Use the definition of the derivative to show \(f(x) = |x| + |x+1| \) is not differentiable at \(x = -1 \).

Notice by definition of \(|x| \),

\(f(x) = \begin{cases}
-2x-1 & x \leq -1 \\
1 & -1 < x \leq 0 \\
2x+1 & x > 0
\end{cases} \).

So

\[
\lim_{x \to -1^-} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^-} \frac{-2x-1-1}{x + 1} = \lim_{x \to -1^-} \frac{-2(x+1)}{x+1} = -2
\]

and

\[
\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^+} \frac{1-1}{x + 1} = 0
\]

Since

\[
\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x + 1} \neq \lim_{x \to -1^-} \frac{f(x) - f(-1)}{x + 1}
\]

\(f'(-1) := \lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1} \) does not exist.

Thus, \(f \) is not differentiable at \(x = -1 \).
9. (pts) Let the sequence of functions \(\{f_n\} \) be \(f_n(x) = \frac{nx}{1+n^2x^2} \) for \(x \in [0, 1] \). Let \(f(x) = 0 \) for \(x \in [0, 1] \). Prove \(\{f_n\} \) does not converge uniformly to \(f \) on \(x \in [0, 1] \).

For fixed \(n \in \mathbb{N} \), consider
\[
\sup \left\{ |f_n(x) - f(x)| : x \in [0, 1] \right\} = \sup \left\{ \frac{nx}{1+n^2x^2} : x \in [0, 1] \right\}
\]

We need to find max value for \(g(x) = \frac{nx}{1+n^2x^2} \),

\[
\frac{d}{dx} g(x) = \frac{n(1+n^2x^2)-nx(2n^2x)}{(1+n^2x^2)^2} = \frac{n(1-n^2x^2)}{(1+n^2x^2)^2} = 0
\]

\[\Rightarrow x = \pm \frac{1}{n}\]

\[
\begin{array}{c|c|c}
& 0 & 0 \\
\hline
x = -\frac{1}{n} & + & 0\
x = \frac{1}{n} & - & \rightarrow
\end{array}
\]

Thus, max occurs at \(x = \frac{1}{n} \in [0, 1] \) and we have
\[
\sup \left\{ |f_n(x) - f(x)| : x \in [0, 1] \right\} = \frac{n}{1+n^2\left(\frac{1}{n}\right)^2} = \frac{1}{2}.
\]

So \(\lim_{n \to \infty} \sup \left\{ |f_n(x) - f(x)| : x \in [0, 1] \right\} = \frac{1}{2} \neq 0 \).

Therefore, \(\{f_n\} \) does not converge uniformly to \(f \) on \([0, 1] \).