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Show your work on every problem. Correct answers with no supporting work
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Problem #1 (20pts): Definitions:

(a) State the definition of the limit of a sequence of real numbers, z,, — .
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(b) State the definition of a Cauchy sequence of real numbers z,.
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(c) State the e-d definition for a function f: R — R to be continuous at x.
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(d) State the e-§ definition for a function to be uniformly continuous on a set S C R.
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(e) State the e-d definition of a uniformly Cauchy sequence of functions f, : R — R.
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(f) State the definition for a sequence of functions fnt R — R to converge pointwise on a
set S C R.
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(g) State the definition for a sequence of functions f, : R — R to converge uniformly to a
function f on a set S C R.
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(h) State what it means for a sequence of functions f, : R — R to NOT converge uniformly
to a function f on a set S C R.
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(i) State the Bolzano-Weierstrass Theorem in R, and state the most general sets to which
this theorem applies.
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Problem #2 (30pts):

(a) Assume f'(z) and g'(z) exist at = = zo. Prove that L f(z)g(x) = f'(z)g(x) + f(z)g'(x)
at T = xg.
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(b) Prove that if a real valued function is differentiable at a point xy, then it is continuous
at xg.
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(c) Give an example of a function f : (=1,1) — [—1,1] such that f is differentiable on
(—1,1), but f is discontinuous at x = 0. Justify your claims.
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Problem #3 (25pts): Assume that f,(z) — f(z) for each x € [0, 1], and assume that each
fr is continuous on [0, 1]. Give a careful proof that if f, — f uniformly, then f is continuous
at each x.
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Problem #4 (20pts): (a) Assume f : [0,1] — [0, 1] is continuous. Prove that f must have
a fixed point x where f(x) = z. (You may use any of the theorems we proved.)

Lot %0\\ = FR ~x (\‘)v\*. WQW Aoy = ~¥(5\ >0
and g0y < 3Q)-) €0 By the TuT AT
a(xy=0 = Hry=X.

(b) Prove that between any two roots of a polynomial p(z) there exists a root of p/(x).
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Problem #5 (25pts): Ass ssutne > reolax| < co. Use this to prove that the sequence of
partial sums S,(z) = Y p_,axz" is a unf rmly convergent sequence ffuntn on [— 11]
(Hint: You may use that a unf rmly Cauchy sequence of functions is uniformly convergent.)
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Problem #6 (25pts): Let (S, d) be a metric space.

(a) State the three conditions on d for it to be a metric.
A%, 8 20 § Ay =0 W xey
C) & \Q\“M%JXB
A X ,2) € dRRYY A% )

(b) Give the definition of Cauchy sequence z, € S.
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(c) State the additional condition required of a metric space to make it complete.
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Problem #7 (25pts): Let (S,d) be a metric space.

(a) Give the e-§ definition for a functio f8—>8tb ontinuous at a point z; € S.
Ved §s1 Vx M%‘\)W“\\%
c\&x)xga

(b)P thtff atisfies the conditio thtthp e-image of open sets are open, then f
contin at each £y € S in th €-0 se

Asiome (@\ OFN \' ngw n X

Frv eso. We Bd § < A, %\ < T
wphet 4 (REY, My < € BT B (HeaN
open = T (Be (BU)) RN D 39 5T

sy = ¥ (Be (30D Qmﬁ B ¢

)
o s BT S (8 gy

al i)



Problem #8 (25pts): Let (S,d) be a metric space. Recall that a compact set E C § is
one such that every open covering admits a finite subcover. Prove that if £ C S is compact,
then E satisfies the Bolzano-Weierstrass property: Every subsequence z, in E contains a
convergent subsequence z, — xo, where z, € E.
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