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Problem #1 (20pts): Definitions:

(a) State the definition of the limit of a sequence of real numbers, xn → x0.

(b) State the definition of a Cauchy sequence of real numbers xn.

(c) State the ǫ-δ definition for a function f : R → R to be continuous at x0.

(d) State the ǫ-δ definition for a function to be uniformly continuous on a set S ⊂ R.

(e) State the ǫ-δ definition of a uniformly Cauchy sequence of functions fn : R → R.

2



(f) State the definition for a sequence of functions fn : R → R to converge pointwise on a
set S ⊂ R.

(g) State the definition for a sequence of functions fn : R → R to converge uniformly to a
function f on a set S ⊂ R.

(h) State what it means for a sequence of functions fn : R → R to NOT converge uniformly

to a function f on a set S ⊂ R.

(i) State the Bolzano-Weierstrass Theorem in R, and state the most general sets to which
this theorem applies.
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Problem #2 (25pts):
(a) Assume f ′(x) and g′(x) exist at x = x0. Prove that d

dx
(fg)(x) = f ′(x)g(x) + f(x)g′(x)

at x = x0.
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(b) Prove that if a real valued function f is differentiable at a point x0, then it is continuous
at x0.
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(c) Give an example of a function f : (−1, 1) → [−1, 1] such that f is differentiable on
(−1, 1), but f ′ is discontinuous at x = 0. Justify your claims.
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Problem #3 (25pts): Assume that fn(x) → f(x) for each x ∈ [0, 1], and assume that each
fn is continuous on [0, 1]. Give a careful proof that if fn → f uniformly, then f is continuous
at each x0.
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Problem #4 (25pts): (a) Assume f : [0, 1] → [0, 1] is continuous. Prove that f must have
a fixed point x where f(x) = x. (You may use any of the theorems we proved.)

(b) Prove that between any two roots of a polynomial p(x) there exists a root of p′(x).
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Problem #5 (25pts): Assume
∑

∞

k=0
|ak| < ∞. Use this to prove that the sequence of

partial sums Sn(x) =
∑

n

k=0
akx

k is a uniformly Cauchy sequence of functions for x ∈ [−1, 1].
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Problem #6 (25pts): Let (S, d) be a metric space.

(a) State the three conditions on d for it to be a metric.

(b) Give the definition of Cauchy sequence xn ∈ S.

(c) State the additional condition required of a metric space (S, d) to make it complete.

(d) Define an open set in (S, d).

(e) Define a closed set in (S, d).
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Problem #7 (25pts): Let (S, d) be a metric space.
(a) Give the ǫ-δ definition for a function f : S → S to be continuous at a point x0 ∈ S.

(b) Prove that if f satisfies the condition that the pre-image of open sets are open, then f

is continuous at each x0 ∈ S in the ǫ-δ sense.
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Problem #8 (25pts): Let (S, d) be a metric space. Recall that a compact set E ⊂ S is
one such that every open covering admits a finite subcover. Prove that if E ⊂ S is compact,
then E satisfies the Bolzano-Weierstrass property: Every subsequence xn in E contains a
convergent subsequence xnk

→ x0, where x0 ∈ E.
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