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ABSTRACT

The observational behavior of spherically symmetric inhomogeneous cosmological models is studied,
which consist of inner and outer homogeneous regions connected by a shell or an intermediate self-
similar region. It is assumed that the present matter density parameter in the inner region is smaller than
that in the outer region, and the present Hubble parameter in the inner region is larger than that in the
outer region. Then, galaxies in the inner voidlike region can be seen to have a bulk motion relative to
matter in the outer region, when we observe them at a point O deviated from the center C of the inner
region. Their velocity v, in the CD direction is equal to the difference of two Hubble parameters multi-
plied by the distance between C and O. It is also found that the velocity v; corresponding to cosmic
microwave background dipole anisotropy observed at O is by a factor of ~10 small compared with v,.
This behavior of v, and v, may explain the puzzling situation of the cosmic flow of cluster galaxies,
when the radius of the inner region and the distance CD are about 200 and 40 h~! Mpc, respectively
(Hy=100 h~! km s~* Mpc~'), and when the gaps of density and Hubble parameters are ~0.5 and

18%, respectively.

Subject headings: cosmic microwave background — cosmology: theory —

large-scale structure of universe

1. INTRODUCTION

The dipole moment in the cosmic microwave background
(CMB) radiation is thought to come mainly from the
Doppler shift due to the motion of the Local Group (LG),
relative to the cosmic homogeneous expansion. As the main
gravitational source which brings the velocity vector of LG,
the existence of the Great Attractor (GA) was found by
Lynden-Bell et al. (1988) and Dressler et al. (1987). It has the
position at a redshift of 4300 km s~!. On the other hand,
the motion of LG in the inertial frame consisting of many
clusters on larger scales was studied observationally by
several groups: a bulk flow of ~700 km s~ ! was found by
Lauer & Postman (1994), Postman & Lauer (1995), and
Colless (1995) as the motion of the Abell cluster inertial
frame relative to the LG in the region with redshift greater
than 15,000 km s~ !, but in the other approach a different
result was derived by Giovanelli et al. (1998), Dale, Giova-
nelli, & Haynes (1999), and Riess et al. (1997) in the regions
with similar redshifts. Lauver & Postman’s (1994) and
Postman & Lauer’s (1995) work is based on the assumption
that the brightest cluster galaxies as standard candles and
the Hoessel relation can be used, but at present these
assumptions are regarded as questionable or unreliable.

Independently of these works, the motion of cluster
frames relative to the CMB was measured by Hudson et al.
(1999, 1997) and Willick (1999) with the global Hubble
formula using the Tully-Fisher distances of clusters and
their redshifts with respect to the CMB, and the flow veloc-
ity vector was derived in the region with about 150 h~*
Mpc (H, = 100 h~! km s~ ! Mpc~1!). The remarkable and
puzzling properties of these flows are that the flow velocity
reaches a large value of ~700 km s~ ! on a large scale, while
the dipole velocity (not due to the GA) determined in the
form of CMB dipole anisotropy seems to be much smaller
compared with the above flow velocity.

If the observed large-scale matter motion is caused by the
attraction from an overdensity region containing super-
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clusters, the corresponding velocity must be as large as the
large-scale flow velocity and it must be reflected in the form
of CMB dipole anisotropy. If this motion is caused in the
spherical voidlike region, however, the situation is different,
because CMB dipole anisotropy near the center can be rela-
tively small in spite of the large-scale flow, as was shown in
our previous paper (Tomita 1996). In our previous paper,
an inhomogeneous model on superhorizon scale was con-
sidered to explain the number evolution of QSOs (Tomita
1995), but the relative smallness of the dipole anisotropy
can be found independently of the scale of inhomogeneities.
The local void region was studied independently by Zehavi
et al. (1998) as the local Hubble bubble, which has the scale
~70 h~! Mpc and is bordered by dense walls. They
analyzed the statistical relation between the distances and
the local Hubble constants derived from the data of super-
novae (SNe) Ia, and found the existence of a void region
with a local Hubble constant larger than the global Hubble
constant. The relation to the SN Ia data on larger scales will
be discussed from our standpoint in a subsequent paper.

In the present paper, we consider more realistic inhomo-
geneous models on the subhorizon scale, corresponding to
matter flows of ~150 h~! Mpc, which may be associated
with large-scale structures or excess powers observed by
Broadhurst et al. (1990), Landy et al. (1996), and Einasto et
al. (1997). In § 2, we treat a spherically symmetric inhomoge-
neous model, which consists of inner and outer homoge-
neous regions connected by a shell, as a singular layer and
study the behavior of large-scale motions caused in the
inner region, where the present inner density parameter is
smaller than the present outer density parameter and the
present Hubble parameter in the inner region is larger than
that in the outer region (a bulk motion in the voidlike
region was discussed also by Nakao et al. 1995). In this
section, we treat the single-shell case. The double-shell case
and a model with an intermediate self-similar region are
treated in Appendixes A and B, respectively. In § 3, we
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consider light rays which are emitted at the last scattering
surface and reach an observer situated at a point O deviated
from the center C, and CMB dipole and quadrupole aniso-
tropies are analyzed. The peculiar velocity of the above
large-scale motions and the velocity corresponding to the
CMB dipole anisotropy are compared. In § 4, a naive expla-
nation about why CMB dipole anisotropy is small around
the center C is shown. In § 5, the consistency of the present
models with several recent observations of bulk flows is
discussed, and in § 6, concluding remarks are presented.

2. INHOMOGENEOUS MODELS AND BULK MOTION

In this section, we consider spherically symmetric inho-
mogeneous cosmological models which have two homoge-
neous regions connected with a spherical shell, as shown in
Figure 1.

The line elements in the inner region V! and the outer
region V" are described as

ds* = gl (dxIy(dx)’
= —cX(d)* + [@())*{d(¢)* + [f()12dQ%} , (1)
where j (=1 or II) represents the regions; f/(y’) = sin x/, x/,
and sinh ' for kK =1, 0,—1, respectively; and

dQ? = dO? + sin? O¢>. The shell is a timelike hypersurface
T givenas y' = ¥} and " = ¥

2.1. Cosmological Models

The Finstein equations are divided into the equations in
the two regions and the jump conditions at the shell. The
general formulation of the jump condition at the singular
surface was derived by Israel (1966) and the concrete expres-
sions of conditions were derived by Maeda (1986) and

rec

F1G. 1.—Model with a single shell. z and Z are the redshifts for obser-
vers at O and C.

F1G. 2.—Schematic diagram of Hubble and density parameters. Solid
and dotted lines denote H, and Q,, respectively.

Sakai, Maeda, & Sato (1993). Here the expressions by Sakai
et al. are shown using the circumferential radius of the shell
R, the velocity of the shell ¢/, the Lorentz factor 7/, and the
Hubble expansion parameter H’ in V7 (j = I and II), defined
by

o dy
R =df"' = a"f", vanjd_}th’
J\ 2 J /At
NIy 1_<”_>, = 20 @)
C a

The FEinstein equations for the pressureless matter in the
two regions are

(H)? + Kc/(@l)? = % P A, 3)

where p’ is the mass density of matter [ oc1/(a’)*].
The equations for the surface density ¢ and the velocity
o™ of the shell are expressed as

y"d(4nR?q)/dt" = [4nR>*y*vp]™!, 4)
d(,yllvll)/dtll — _,))IIUIIHII + 21Go — ['))2172[)][[/0' , (5)

where [@]"! = ®" — @". The conditions of continuity of the

metric (dt? = —ds?) and the common velocity dR/dt reduce
to

dat'jat" = y'jy", (6)

,yl(frlvl + HIR) — ’))H(flnl)n + HHR) , (7)

where [ = df i(y’)/dy’.
Another important component of jump conditions
playing the role of a constraint equation is

[y(f" + vHR)]™ = —4nGoR . ®)

Solving equations (4) and (5), we can obtain the time evolu-
tion of ¢ and vy; in the shell, and ' is derived using equation
(7). These values of o, v', and v" satisfy equation (8). The
initial condition is given as a form of (HY); = (HY), at an
initial epoch (¢/); such as the recombination epoch.
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The background models in V' and V" are rewritten using

v =dla)y, v=Hit, M=- ACZ/(H )%
. 8nG
0 = 3757 o) » ®)

yvhe;re 0 denotes the present epoch (see Fig. 2). Equation (3)
is given as
dy’jdd’ = ()PP (), (10)
where
Py) = [Q) + () + (1 — Qb — )y 12, (11)

and (a,) is given by

(agHoY = 1/ /1 — Q) — A . (12)
The conformal times 7’ are defined by
yi
1-0f - %J dy/[y'?P'(y)] - (13)

The solution of equation (10) in the case of k' = k! =
and A = 0 are expressed as

. Ql ;
o hn —1 14
Y =gy ©osh T = 1), (14
. Qi . : .
J = = a J — J . 1
T 20— Qi) (sinh ' — ') (15)
In the case of nonzero A, equation (10) is solved numeri-

cally.

Equations (4) and (5) were solved by Sakai et al. (1993),
and it was shown in the case of Q; ~ 1 that the present value
of v"' at a/a; > 100 is less than 100 km s~ !, as long as the
shell starts with the vanishing initial velocity (1), = 0.

Here the initial condition (H"); = (H"), at initial epoch
¥ = (%), is expressed as

Ho(y)7>2[Q + 60D + (1 — Q6 — Ao)yil'?
— HAOM 732008 + 2801 + (1 — QB — y12, (16)
where we have
QII Hl 2 I HI 2
G _ro(Ho) A _ (Mo (17)
Q% o \Hp Ao Hg

from equation (9). If we eliminate Qf, Af from equation (16)
using equation (17), we obtain

pII II 3 yll 2
o (o o [ (2o
0 i
HH 2 ? 3
|Gy -G pro o
0 i
~ 1073 (<1),we assume

11 I\ 3
’; 0 <yy ) 1 +e), (19)
0 i

where € ~ 1. Then we get from equation (18)
HII 2 I 3 1 2 I 3
(- L))
Hy Vi Vi Vi

x [1 —(1+¢ )%]Q{) . (20)

i

Since y} ~ yI
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If we give Qf, 15, €, and y!'/)}, we can obtain Hy/Hj, for
equation (20) and derive pi/pl, from equation (20) and
QY/QL and A5/AL from equatlon (17). From equations (17),
(19), and (20), we find that Hy/H}y < 1 and QJ/QF > 1 if

1\ 2
1>y—‘>1+|:1 <y,1> ](y,) I
yl Vi yl
1
yi 1

In the case A = 0, we have an example for Qf = 0.2:
Qf =0.56, Hu/Hf =0.80, pi/ph =138,
Viyi=12, e=41. (22)

In the case A # 0, we have the example

A =0672, B=043, Q) =03, QF=0.563,
HY/HY, =0.80, €=0.64, (23)
so that
Qb + AL =0.872, QI+ Al =0.993 . (24

2.2. Bulk Motion

Now let us consider the velocity field around an observer
O in V! at the point with [, = (ay), < (ay),. Since I, is much
smaller than the curvature radius, we can approximately
neglect the spatial curvature around him. Then he has the
relative velocity

Avy = (Ho — Ho)lo (25)
to matter in the outer region in the direction of the X-axis.
If Hy, =100 h km s~! Mpc~*!, Hy = 0.82H}, and [, = 40
h~! Mpc, we have Av, = 720 km s~ 1.

Here consider a galaxy G with the radius coordinate y

and angle ¢. Then the relative velocity of G to matter in the
outer region is

Avg = (Ho — Ho)ao 1) (26)

in the radial direction from the center C of the inner region
(Fig. 3).

(Ve s

Av

F1G. 3.—Components of the bulk velocity
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This velocity can be divided into the X component (Avg)x
and the line-of-sight component (Avg); ¢ With respect to the
observer O as follows, noticing that the angle /7 GOX (=¢)
satisfies the relation

sin ¢ = y sin @/(x* + x5 — 2220 cos 9)'”,
cot ¢ = (cos @ — xo/x)/sin ¢ . (27
Their values are
(Avg)x = Avg sin (¢ — @)/sin ¢ = A, , (28)
(AUG)LS = AUG Sin qo/Sil‘l ¢

= Avg[1 — 2(x0/%) c0s @ + (xo/x)*1'"*
~ Avg . (29)

That is, the X component (Avg)y is constant and equal to
Av,, and another component, which is in the line-of-sight
direction from the observer, is nearly equal to Av;. Because
the first component (Avg)y is independent of the position, it
can be interpreted as the peculiar velocity v, of galaxies
which represents the bulk motion:

v, = (Avg)y = Avy . (30)

3. REDSHIFT FORMULA AND THE CMB ANISOTROPY

The wavevector k* in the inner and outer regions in the
plane of 8 = n/2 is obtained by solving a null geodesic equa-
tion and is expressed as

J
(k%) = dtf/di = % wi (31)
o aiw] I
Xy = J = - et D —
(WY = dpjdi = + (a’) |:1 <a{) sinh y/ > (32)
(k%Y = do/di. = di/(@ sinh 1) , (33)

where j = I and I1, and A is an affine parameter.

3.1. Light Paths

In the inner region V!, it is assumed that at the present
epoch (¢ = t}) all rays reach an observer at the point O with
L= Xo» 0 =m/2, and ¢ =0 in the X-axis, and the angle
between the rays and the X-axis is ¢. Then we have

p=¢1, T—¢y, (34
where
e
¢, = sin <a}) Sinh XB) (<m/2). (35)

For ¢ = ¢, the rays are expressed as

_, (cosh ! _, {cosh xt
G(x") = cosh ™! <h—‘0> —cosh™! <TOO

=no—1', (36)

=l 7

' is defined by equations (13) and (14), and #}, is equal to #'
at present epoch (! = 1).

where
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For ¢ = — ¢,, we have

G()= —nb + 1", forny>n'>n,,

= —n'"—no + 2n,, forq' <n,, (38)
where
h |
#,, = 1 — cosh ™! <C°ShI x°> . (39)
0

In the latter case, ! has the minimum value (i.e., k* = 0) at
1

= Nm-:
At the boundary, #' =#" and y' =y}, therefore, we
obtain

h ! %
ny =no & cosh™! <7cos XO) — cosh™! <—COShI Xl) (40)

o
¢:(n—¢>1)’

respectively. In the outer region VY, we have
h 11 h 1T
G(Y"™ = cosh™! <coshg X > —cosh™! <coshg X1>
=n—n, (41)

where # is given by equations (13) and (14), and #" and "
are the values at the shell. At the recombination epoch we

have
h 1T
=t = cosn " (50

(0]

h 11
+ cosh ™! <coshg X 1) . (42)
The junction of wavevectors at the boundary is expressed as
(k)" = (k)" (43)
W9 k) = (/9 K", (44)
(V900 k' = (/oo k)" - (45)

Equations (43) and (45) give

1 I
<@> W = (“—) W (46)
d=d", @7)

respectively, where we used the relation R = (af)! = (af )™
The conditions given by equations (43) and (45) are evi-
dently consistent with equation (44), since k* is a null vector.

3.2. Redshift Formula

Now let us derive the redshift formula for rays which are
emitted at the recombination epoch. Here this epoch is
defined as the time of the radiation temperature T, =
10%(T;), in the region V", where (T;), is the present tem-
perature (~2.7 K). The total redshift factor (1 + z,,,) is cal-
culated as the product of two redshift factors which are
caused in the two regions V' and V.

First, we assume that the shell is comoving, and later the
correction due to the motion of the shell is examined. If we
consider a virtual observer at the center C (y = 0), a light
ray which is received by him at 7! = 77} is expressed as

flo—f =2, flo—1=1x1 (48)



30 TOMITA Vol. 529

TABLE 1
DIPOLE AND QUADRUPOLE MOMENTS AND THE VELOCITY v, IN SINGLE-SHELL MODELS

D 0 v,
Qf oY % A6 n KR (x10%) (x10%) (km s~ 1)
02...... 056 0.0 0.0 0.7 0.82 5.56 —2.87 81.8*
02...... 0.88 00 0.0 0.7 0.82 8.27 —4.27 121.5*
02...... 056 0.0 0.0 0.7 0.90 5.38 —-2.79 79.12
02...... 0.88 0.0 0.0 0.7 0.90 821 —4.23 120.7*
03...... 0.56 00 0.0 0.7 0.82 3.90 —2.04 57.3*
03...... 0.88 00 0.0 0.7 0.82 6.66 —3.39 97.9*
02...... 0.56 0672 043 0.7 0.82 7.92 —3.74 111.4*
02...... 056 0.0 0.0 0.7 0.82 5.55 —1.91 81.6°
02...... 0.88 00 0.0 0.7 0.82 8.21 —2.68 120.7°
02...... 056 0.0 0.0 0.7 0.82 8.07 —6.35 118.6°
02...... 0.88 00 0.0 0.7 0.82 1231 —9.62 181.0°
02...... 056 0.0 0.0 0.7 0.82 5.57 —2.87 81.8¢
02...... 0.88 00 0.0 0.7 0.82 8.27 —4.27 121.6¢

a 1 = 0067, I, = 40 (W)~ 1.
b 2 = 0.1, I, = 40 (W)~ L.
¢ 3 = 0.067, I, = 60 ()~ L.

4 74 =0.067, I, = 40 (W), and the shell velocity is 200 km s 1.

in V'and
free = 1" = Xree = X' flree = M1 = Yree — X1 (49)
in V', when the ray is emitted at the recombination epoch.
The redshift factors are

a 1
{47 ="% 1 (50)
YA Y
in V! and
1+20, a6 Y6 (51)

V(e
in VI, The junction condition in equation (6) gives z} = z
for o' = v = 0, so that

SI I ~I0
1 + Z a (nrec

Here we specify the value of z} as z} = 0.067 ~ 0.1. Then i}
and ¥} are determined from equations (48) and (50), and 77}
and y! are determined using the relations

ao y'(ify) sinh xy = ag y"(if}) sinh 2} (53)

and
ml n1ll
ao L Y(n"dn' = a‘o‘L y(n"ydn" (54)

which are obtained from equations (2) and (6). If zI._ is
moreover specified (in the following we take the value
1 =10% — 1), ¥(7,..) OT 7],.. is determined using equation
(52).

Next we consider the observer at O (with y' = x, and
@ = 0). The above-determined xi(j =1 and II) and #Q

11 =11 _ . A rec
1ot =7 (1) (52) (=1h.) are used also for rays reaching this observer, to
i i identi e position of the shell an e recombination
el (e T (] dentify the posit f the shell and th binat
TABLE 2
DIPOLE AND QUADRUPOLE MOMENTS AND THE VELOCITY v; IN DOUBLE-SHELL
MODELS IN THE CASE OF A} = 0 AND [, = 40 (h')~!
D [0} v,
Q) of o n WYt h/n! (x10% (x10%) (km s~
02...... 0.36 0.56 0.7 0.92 0.82 5.55 —2.37 81.6*
02...... 0.36 0.56 0.7 092 0.82 5.52 —1.44 81.1°
2 78 =0.067, 21 = 0.1.
v =012"=02
TABLE 3
D1POLE AND QUADRUPOLE MOMENTS AND THE VELOCITY v, IN THE MODEL WITH A
SELF-SIMILAR REGION IN THE CASE OF 4} = 0 AND [, = 40 (h")"!
D 0 7]
Q o H /Rt (x10% (x10%) (km s~ 1Y)
02, cciiinnnn. 0.89 0.7 0.81 8.40 —4.41 123.4*
02..ciinenne. 0.72 0.7 0.83 7.40 —2.61 108.8°
03, i, 0.91 0.7 0.84 8.08 —4.11 118.8*
03 . iiiiinennes 0.80 0.7 0.86 6.94 —2.25 102.0°

®

728 =0.067, 21 = 0.1.
2 =01,z21=02

o
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epoch. It should be noted that #'L, depends only on the
temperature at the recombination epoch and is independent
of the existence of the inner region V'

In V' we have the redshift

PP S (55)
A = =
YA Y’
and in V" we have
1+z,  d'(n) Y0 (56)

L+2]  d'ed) V(o)
For a given y!, we obtain n' by solving equation (40) and
obtain z} from equation (55). The junction condition in
equation (6) gives z} = zU, and #{ is related to 5} using the
relations given in equations (53) and (54). Then the product
of equations (55) and (56) reduces to

U
YD)y nree)
which is given as a function of angle ¢.

Now let us consider the case when the shell is not com-
oving, ie., o' #0, v # 0. As was shown by Sakai et al.
(1993), the velocities are greater than 200 km s~ and
(v'/c)* <1077 for j = I and II. Accordingly, we can assume
9/ =1 for j =1 and I, so that the condition z} =z and

equation (54) hold. In order to take the shell motion into
account, we assume the relation

x= (XI1)¢:0 + 'y — (’111)45:0] (58)
in equation (40) for arbitrary ¢, where (y}),-o and (1}),-o
are their values for the ray incident in the direction of ¢ = 0.
Subsequent calculations are the same as the calculations for
v'=0.
The derivations of zl., in the case of double shells and in
the inhomogeneous model with an intermediate self-similar
region are shown in Appendixes A and B.

3.3. CMB Anisotropy

The values of z, are numerically calculated for
0 < ¢ < 7, and their dipole and quadrupole moments are
derived. When z,. [ =z% (¢)] is given, the temperature T(¢)
of the cosmic background radiation is proportional to
1/1 + z,.), and the dipole moment D and quadrupole

moment Q are defined as

1428 =

rec —

, (57)

D= f "fz"(l T 2,0 Yoo sin ¢dbdop ‘ / CETRY
o (59)
0= f T"(l + 2100 Yag sin gdipde ’ / W4z,
o (60)

where () means the average value taken over the whole sky

and
3
Yio(9) = /E cos ¢,
[5 (3 1
Y,0(¢) = % <§ cos? ¢ — 5) ) (61)

The Doppler velocity v, corresponding to D is given by
v, = c[(3/4m)'?D] . (62)

BULK FLOWS AND CMB DIPOLE ANISOTROPY 31

Assuming [o( = a, y,) = 40 (')~ Mpc mainly, D, Q, and v,
were derived for various model parameters. Their values in
models with a single shell and double shells are shown in
Tables 1 and 2, respectively. The values in models with an
intermediate self-similar region are shown in Table 3. In
Table 1 the values in the case with a moving shell are
shown.

It is found from Table 1 that (1) v,/v, is smaller than 0.17
in all cases, (2) v, is approximately proportional to [, (as
well as v,), (3) v, is smaller for smaller (Qf — Q) and
(Wt — W), (4) the positive cosmological constant plays a role
of increasing v,, and (5) the influence of the shell motion on
D, Q, and v, is negligibly small.

If we compare two lines in Table 2 with the correspond-
ing ones (the first line and eighth line) in Table 1, the results
in the models with a single shell and double shells are found
to be quite consistent. Moreover, if we compare four lines in
Table 3 with the corresponding ones (the second, fourth,
and sixth lines) in Table 1, the results in the models with a
single shell and a self-similar region are found to be simi-
larly consistent. Accordingly, v,/v, is ~0.1 in all models we
treated here.

4. NAIVE DERIVATION OF REDSHIFT FACTORS

For the dipole anisotropy the maximum difference of
temperatures and redshifts can be seen in a direction (¢ =
¢,) and the inverse direction (¢ = m — ¢;). Here let us
compare the redshifts in the directions ¢ = 0 and = appear-
ing in the model with a single shell. The spatial curvature is
neglected for simplicity. In the X-axis we consider six points
O, A, B, C, D, and E, for which X = y,, %1, X1 + 2X0> O,

— x1,and — x; + 2x,, as shown in Figure 4.

Points B and D have the equal distance from the obser-
ver’s point O.

The redshifts z,.(0) and z,.(n) of the rays from other
points P and P’ at the recombination epoch to the observer
at O in the directions ¢ = 0 and = are divided into three
steps:(P>B,B>A,A—->O)and (P’ > D,D - E,E —»
O),respectively. That is,

1+ 2,.(0) = (1 + zpp)(1 + zal(1 + Za0),
1+ zo(m) = (1 + zpp)(1 + zppl(1 + zgo) - (63)

Among these three steps, the first and third have equal
redshifts evidently: zpg = zpp, Zao = Zro- In the processes
(B » A) and (D — E), we have the redshifts due to the

F16. 4—Diagram for the naive derivation
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cosmic expansion, the Doppler shift, and the gravitational
redshift. The expansion redshift factors in V" and V' are

[1+ HGRag x0/0)], [1 4+ Hy(2a0 x0/0)] , (64)

respectively. The Doppler shifts at A and D due to the
relative velocity between V' and V" frames are

1
|:1 - E (H{) - Hg)ao(h - Xo):|,

1
[1 — ~ (Hy — Haolz: + xo)] : (65)

respectively. The gravitational redshifts are represented by
potentials {5, and Y, given by

4o, = dnla)’ [1 Ph(x)’ +PIOI(X1+X0)2X°:|, (66)

4 31+ % X1+ Xo
_ 4nGao)® [ 1 po(x)®  po(xs — %0)*%o
YpE = 3 — . (67)
4 321+ % X1 — Xo

Accordingly, the total redshift factors are
1+ zga = [1 + H{(2a0 x0/0)]

1
X |:1 2 (Ho — Hy)ao(xy — XO):|
X [1 + Ypal

a
=1 == (Ho — Ho)s
a
+ :0 (H%) + Hg)%o + Ypa

_ <%>2H3(H{, — HYxolts — x0) + - > (68)
1+ zpp = [1 + Ho(24a0 10/c)

y [1 _ % (HY — Hb)ao(xy + xo)}

x [1 4 ¥pel

a
=1—=(Hy— Ho
a
+ :0 (H{) + Hg)%o + YpE

2
a
- <?0> H{)(HB - HIOI)XO(XI + %0) + ... . (69)
The difference of these factors reduces to
Zrec(o) - Zrec(n) =~ Zga — Zpg
) 2 1 11
~ Ypa — Ypg + - (Ho — Ho)xo
x [(Hy + Ho)xo + (Ho — Ho)x,1 . (70)

That is, the main terms in (1 + zg,) and (1 + zpg) cancel.
The ratio # of [z,..(0) — z...(n)] to the relative velocity
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between V' and Vis

Zrec(o) — Zrec(n) ~ é
(H{) - Hg)ao Xo/c 4
— Q4(HO) (X1 — %0)1/(Ho — Hg)

+ 2(Ho + Ho)xo/c + 2Ho — Ho)xs/c,  (T1)

where we used equation (9) for pj. This ratio is the counter-
part of the ratio of the velocity v, (corresponding to the
dipole moment) to the relative (peculiar) velocity v,, and
these two ratios have comparable values.

R =

[Q6(H) (%1 + xo)

5. CONSISTENCY WITH THE OBSERVED LARGE-SCALE
BULK FLOWS

As was shown in § 2.2, the bulk velocities in all positions
within the region I are equal in the present models, so that
the relative velocity (v.g) of LG to the cluster frame is only
the peculiar velocity of LG caused by GA and the nearby
superclusters. Moreover, as was shown in § 3.3, the dipole
velocity v, corresponding to the bulk velocity v, is ~0.1v,,
and so the total dipole velocity v,y of LG to CMB is v,y =
v + v ~ 0.1v,) = vy 6.

These conclusions are consistent as follows: (1) the
observed velocities (v g) of LG with respect to the cluster
frames by Giovanelli et al. (1998), Dale et al. (1999), and
Riess et al. (1997), which are nearly equal to the total dipole
velocity (v,4) with respect to the CMB, and (2) the bulk
velocities (v,) in the Streaming Motions of Abell Clusters
observation (Hudson et al. 1999, 1997) and the LP10k
observation (Willick 1999) are ~700 km s~ ! in the nearly
same directions.

According to Dale et al. (1999), we have v, g = 565 + 113
km s~ ! and (I, b) = (267°, 26°) + 10°. On the other hand,
Vg = 627 + 22 km s~ ! and (I, b) = (276°, 30°) (Kogut et al.
1993). Since both directions are nearly equal, the velocity
difference is about 60 km s~ . This value is comparable with
v4(~0.1v,), in the consistent manner with the result in the
present models.

However, they are inconsistent with the observations of
Lauer & Postman (1994), Postman & Lauer (1995), and
Colless (1995), in which v,; and v, are in quite different
directions. At present, these observations seem to have been
ruled out (cf. Proceedings of the International Conference
on Cosmic Flows; Courteau et al. 1999).

6. CONCLUDING REMARKS

In this paper we considered the behaviors of galaxies and
light rays in spherically symmetric inhomogeneous models
consisting of inner and outer homogeneous regions V' and
VT with Qf and Qf(>Q}) and H}, and Hy(< H}), respec-
tively, connected by a single shell. In Appendixes A and B
we treat also the models with double shells and an interme-
diate self-similar region. It was shown that when we observe
the motion of galaxies at the point O deviated from the
center C in V', a constant peculiar velocity component v,
appears in the direction from the center to the observer
(C - O). Moreover, it was shown that the velocity v, corre-
sponding to the dipole anisotropy of CMB radiation is by a
factor ~10 small compared with v,. This result may fit for
the observed situation of the cosmic flow of cluster galaxies,
when the scale of the inner region and the distance CO
are about 200 and 40 (h")~' Mpc, respectively, and when
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(QF — Q) is ~0.5and (Hy) — HY)is ~18 K" km ™' s~ ! Mpc
(or K"/h' ~ 0.82), respectively. This difference of the Hubble
parameters may be consistent with their recent values due
to nearby and remote observations, because short- and
long-distance scales give the Hubble constant of H, > 70
and H, ~ 55, respectively (Branch 1998; Freedman 1997,
Sandage & Tammann 1997; Blandford & Kundi¢ 1997). A
model with multishells in the region of 100 ~ 300 Mpc in
which the parameters change stepwise will be better to
reproduce the observed distribution of the Hubble constant.

It was shown that the present models are consistent with
the current observations of large-scale flows (Giovanelli et
al. 1998; Dale et al. 1999; Riess et al. 1997; Hudson et al.
1999, 1997; Willick 1999), but inconsistent with other obser-
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vations (Lauer & Postman 1994; Postman & Lauer 1995;
Colless 1995), which may have been ruled out.

It is interesting and important to study the influences of
the above inhomogeneity on the cosmological observations
such as the magnitude-redshift relation of SNe Ia, the
number count of galaxies, the time delay for lensed QSOs,
and so on. They will be quantitatively analyzed and shown
in the near future.

In this paper the motion of the LG due to the GA and
superclusters in similar distances was not treated, while
spherical matter distributions on such scales were analyzed
by Humphreys et al. (1997). But the approximation of
spherical symmetry may not be accurate because of their
small-scale matter distribution.

APPENDIX A

MODELS WITH DOUBLE SHELLS

The spacetime is divided into three homogeneous regions V', V&, and V', as shown in Figure 5. The cosmological
parameters in V? are shown as Q}), 1}, and so on, where j = 1, II, III (see Fig. 6).

Equations (1)+3) and (9)«(15) hold in region III as well as in regions I and II. The junction condition at the second
boundary between V! and V! have similar expressions to those at the first boundary:

R = gl = gy (A1)
YUd(4nR?e)/de™ = [4R>y2op]H (A2)
dy™MpMydem = —yTAH 4 27Go — [5%0%p] Vo (A3)
e =y, (a9

M 4 HIR) = Y 4 FUR) (49)
[y(f" + vHR)]"™" = —4znGoR , (A6)

Where [(D]III,II = (I)III _ (I)H,

Fi1G. 5—Model with double shells
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F16. 6.—Schematic diagram of Hubble and density parameters in a model with double shells. Solid and dotted lines denote H,, and Q,, respectively.

Similar to equations (20) and (21), moreover, we have

111 I 3

p Vi

p—?l = <W) 1 +ey), (A7)
0 i

HIII 2 y!II 3 yEII 2 y?l 3 y}I
() = Ce) + -G8 ] S L -vo e 4
where € ~ 1.

As for light rays, the equations in V' and V" are same as those in § 3, and equations in V™ are common with those in V™. At

the second boundary (1 = #,, x = x»), we have
I it
<@> Wl = <@> Wi, (49)
a a,

dII — dIII , ( AIO)

where a, = a(n,).
Under the assumption that the shells are comoving (i.e., v! = v" = v = 0), we obtain the following redshift formulas:

1
142 = J M (A11)

and in V" we have
1+23 _ y'(m
L4270 ylnz)’

(A12)

Loy AL
Cr ol ™ Yty

From equations (6) and (A4) we have two equations: z} = z¥ and 2z = z. Moreover, (44, ¥¥) are related to (r}, y}) using

equations (53) and (54), and (175", x3) are related to (5, x3) using the similar equations

ag y'(nz) sinh 23 = ag' y"'(n3) sinh 13", (A14)

n2ll 72111
ag J yH(VIH)dTIH — agl J ylll(nlll)drllll . (Als)
0 0
First we consider the virtual observer in the center (y = 0). Then we have

1
1+7 =—— (A16)
At
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1 +z —II yll(ﬁl)ll
1+ Zlf ~Ya)"
1+ 2 _ y()" (A18)
1 + ZIII yln(ﬁrec)nl 4
~III

where 7, — iy = ¥} and 773 — 7§ = ¥ — x". Accordingly, we can determine ', x5, and 7', by specifying his redshifts z}, zJ,
and z% (= 10° —1),asin§ 3.

rec

For an observer at O (with n = n, and y = x,), we obtain

(A17)

14728 = yn(nlll)ym(ﬂlzn) (A19)
Y W)Y )y (e
where 71, 14, 11‘2“, and n'%. depend on the angle ¢, contrary to those in equation (A18). When we fix zl, Z3 and z% and

determine y', x5, and iy, the final redshift z'o. can be obtained as a function of angle ¢ for n™%. = #jie.. It is to be noted that

n™ is independent of the existence of the two shells.

APPENDIX B
MODELS WITH AN INTERMEDIATE SELF-SIMILAR REGION

The line element is expressed in the form (Tomita 1995, 1996)

ds? = —c2de® + S, r)[% i + erQZ] , (B1)
where
ar)/ag = 1/(ry)?, 1/, 1/(r,)? (B2)

for the inner homogeneous region V', the self-similar region V', and the outer homogeneous region VI, respectively, which
are shown in Figure 7 (see also Fig. 8). Assuming the matter pressure free and comoving, the solutions are described using the
Tolman solution. The two boundaries r = r; and r, are exactly comoving. The scale factor S in the case A = 0 is given by

Qo
S/S, = 2(1 Q) (coshn —1), (B3)

Qo =(cHo '/So)*,  Ho = [(0S/01)/S], - (B4)

4
rec

self-similar region

VII

F1G. 7.—Model with the self-similar region
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Fi1G. 8—Schematic diagram of Hubble and density parameters in a model with the self-similar region. Solid and dotted lines denote H, and Q,,
respectively.

The time variable ¢ is in the inner, self-similar, and outer regions expressed as

Qo .
Hot_Z(I—QO)m (sinh n —1#), (BS)
et _cHy'r) 0
é = r = 2(1 _ 90)3/2 (Slnh n— ’1) > (B6)
Q
Hot =2 0 (sinhn — 1), (B7)

T 20— Q)]

respectively. The constant o, and r, are given by

_4/1-0, Q, } Q _
\/070_4%(1”1)[1 Qo+2(1+zl)+<2 1>4/1+Qozl:|, (B8)

r1 = [Qo)"*/(1 — Qo)'*1 /et - (B9)
If we define the local Hubble parameter H (in the transverse direction) in the ¢t = ¢, hypersurface as
H = (8/8),=y, = [(1/1)ES ¢/S];=s, » (B10)

H in V'is equal to H, and we have in V' and V"

__ sinh y(sinh 7 — 77)

Hto == oshi— 17 ° (B1D)
where i = 1, -,, satisfies
Hyt, = <1 , r—2> 0 (sinh fj — 7) (B12)
) 21— Qo)

for VI, VI respectively. Present matter densities in the three regions are

_3H3Q [ L (Y (Y
P = "8nG [1’3<r><1_fs‘/s> <r>] (1)

for j = [1, II, III], respectively, and Q,; is defined as

3 2
Qo = Po,‘(%)/(%) . (B14)

The behavior of light rays and redshift formulas were derived in the previous paper (Tomita 1996). If we specify the redshifts
Z,,Z,,and z,.(=10° — 1), the radii 7, and r, of the two boundaries and the value of 5,..(=1,..) are determined, and we can
calculate z, as a function of ¢, which is the angle between the incident direction and the X-axis.
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In the following, we present additional explanations and corrections for the formulas in Appendix A of the previous paper

(Tomita 1996). In V' and V™, we have

k= £(So/SHIL + aolr/ry)*1L(wy)* — d*/(Sor) 112, (B15)
k= —(So/SPHIL + ao(r/r2)*1L(w,)* — d*/(Sor)* 132, (B16)
respectively. The second ray in V! has
hy = cosh™* {[1 + (/o ro/r1)12/ho} + [(n — No) — (1 — 21, + 10)] (B17)
for {n = n,,, # < 1n,,}, respectively. In this paper, the incoming angle is
§ = sin”" <§/ T)(sqsl), 1. B18)
o070
Auxiliary functions V™" are expressed as
1 2| NE - ||
M) = NE (Mo)* —2d* | d& —37 {88+ ¢[1 + oy + SS .- — (8.)°1} , (B19)
(©) u S
() =NON/1+a¢), (B20)
M 2(1—-9Qp) coshn—1 M,
d  QyS, 2(1—coshn)+nsinhy ( d 21) ’ (B21)
¢ \/070 2(1 — cosh ) + # sinh 5 (B22)

/1 +a, (cosh n— Isinh n —1) °

The constants w, and w, are connected using the junction conditions (k°)! = (k)" at 7 = r, and (k) = (k"M atr = r,.
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