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ABSTRACT
The observational behavior of spherically symmetric inhomogeneous cosmological models is studied,

which consist of inner and outer homogeneous regions connected by a shell or an intermediate self-
similar region. It is assumed that the present matter density parameter in the inner region is smaller than
that in the outer region, and the present Hubble parameter in the inner region is larger than that in the
outer region. Then, galaxies in the inner voidlike region can be seen to have a bulk motion relative to
matter in the outer region, when we observe them at a point O deviated from the center C of the inner
region. Their velocity in the CD direction is equal to the di†erence of two Hubble parameters multi-v

pplied by the distance between C and O. It is also found that the velocity corresponding to cosmicv
dmicrowave background dipole anisotropy observed at O is by a factor of B10 small compared with v

p
.

This behavior of and may explain the puzzling situation of the cosmic Ñow of cluster galaxies,v
d

v
pwhen the radius of the inner region and the distance CD are about 200 and 40 h~1 Mpc, respectively

h~1 km s~1 Mpc~1), and when the gaps of density and Hubble parameters are B0.5 and(H0\ 100
18%, respectively.
Subject headings : cosmic microwave background È cosmology : theory È

large-scale structure of universe

1. INTRODUCTION

The dipole moment in the cosmic microwave background
(CMB) radiation is thought to come mainly from the
Doppler shift due to the motion of the Local Group (LG),
relative to the cosmic homogeneous expansion. As the main
gravitational source which brings the velocity vector of LG,
the existence of the Great Attractor (GA) was found by
Lynden-Bell et al. (1988) and Dressler et al. (1987). It has the
position at a redshift of 4300 km s~1. On the other hand,
the motion of LG in the inertial frame consisting of many
clusters on larger scales was studied observationally by
several groups : a bulk Ñow of D700 km s~1 was found by
Lauer & Postman (1994), Postman & Lauer (1995), and
Colless (1995) as the motion of the Abell cluster inertial
frame relative to the LG in the region with redshift greater
than 15,000 km s~1, but in the other approach a di†erent
result was derived by Giovanelli et al. (1998), Dale, Giova-
nelli, & Haynes (1999), and Riess et al. (1997) in the regions
with similar redshifts. Lauer & PostmanÏs (1994) and
Postman & LauerÏs (1995) work is based on the assumption
that the brightest cluster galaxies as standard candles and
the Hoessel relation can be used, but at present these
assumptions are regarded as questionable or unreliable.

Independently of these works, the motion of cluster
frames relative to the CMB was measured by Hudson et al.
(1999, 1997) and Willick (1999) with the global Hubble
formula using the Tully-Fisher distances of clusters and
their redshifts with respect to the CMB, and the Ñow veloc-
ity vector was derived in the region with about 150 h~1
Mpc h~1 km s~1 Mpc~1). The remarkable and(H0\ 100
puzzling properties of these Ñows are that the Ñow velocity
reaches a large value of D700 km s~1 on a large scale, while
the dipole velocity (not due to the GA) determined in the
form of CMB dipole anisotropy seems to be much smaller
compared with the above Ñow velocity.

If the observed large-scale matter motion is caused by the
attraction from an overdensity region containing super-

clusters, the corresponding velocity must be as large as the
large-scale Ñow velocity and it must be reÑected in the form
of CMB dipole anisotropy. If this motion is caused in the
spherical voidlike region, however, the situation is di†erent,
because CMB dipole anisotropy near the center can be rela-
tively small in spite of the large-scale Ñow, as was shown in
our previous paper (Tomita 1996). In our previous paper,
an inhomogeneous model on superhorizon scale was con-
sidered to explain the number evolution of QSOs (Tomita
1995), but the relative smallness of the dipole anisotropy
can be found independently of the scale of inhomogeneities.
The local void region was studied independently by Zehavi
et al. (1998) as the local Hubble bubble, which has the scale
D70 h~1 Mpc and is bordered by dense walls. They
analyzed the statistical relation between the distances and
the local Hubble constants derived from the data of super-
novae (SNe) Ia, and found the existence of a void region
with a local Hubble constant larger than the global Hubble
constant. The relation to the SN Ia data on larger scales will
be discussed from our standpoint in a subsequent paper.

In the present paper, we consider more realistic inhomo-
geneous models on the subhorizon scale, corresponding to
matter Ñows of D150 h~1 Mpc, which may be associated
with large-scale structures or excess powers observed by
Broadhurst et al. (1990), Landy et al. (1996), and Einasto et
al. (1997). In ° 2, we treat a spherically symmetric inhomoge-
neous model, which consists of inner and outer homoge-
neous regions connected by a shell, as a singular layer and
study the behavior of large-scale motions caused in the
inner region, where the present inner density parameter is
smaller than the present outer density parameter and the
present Hubble parameter in the inner region is larger than
that in the outer region (a bulk motion in the voidlike
region was discussed also by Nakao et al. 1995). In this
section, we treat the single-shell case. The double-shell case
and a model with an intermediate self-similar region are
treated in Appendixes A and B, respectively. In ° 3, we
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consider light rays which are emitted at the last scattering
surface and reach an observer situated at a point O deviated
from the center C, and CMB dipole and quadrupole aniso-
tropies are analyzed. The peculiar velocity of the above
large-scale motions and the velocity corresponding to the
CMB dipole anisotropy are compared. In ° 4, a naive expla-
nation about why CMB dipole anisotropy is small around
the center C is shown. In ° 5, the consistency of the present
models with several recent observations of bulk Ñows is
discussed, and in ° 6, concluding remarks are presented.

2. INHOMOGENEOUS MODELS AND BULK MOTION

In this section, we consider spherically symmetric inho-
mogeneous cosmological models which have two homoge-
neous regions connected with a spherical shell, as shown in
Figure 1.

The line elements in the inner region VI and the outer
region VII are described as

ds2\ gklj (dxj)k(dxj)l

\ [c2(dtj)2] [aj(tj)]2Md(sj)2] [ f j(sj)]2d)2N , (1)

where j (\I or II) represents the regions ; f j(sj)\ sin sj, sj,
and sinh sj for kj\ 1, 0,[ 1, respectively ; and
d)2\ dh2] sin2 hr2. The shell is a timelike hypersurface
& given as andsI \ s1I sII\ s1II.

2.1. Cosmological Models
The Einstein equations are divided into the equations in

the two regions and the jump conditions at the shell. The
general formulation of the jump condition at the singular
surface was derived by Israel (1966) and the concrete expres-
sions of conditions were derived by Maeda (1986) and

FIG. 1.ÈModel with a single shell. z and are the redshifts for obser-z6
vers at O and C.

FIG. 2.ÈSchematic diagram of Hubble and density parameters. Solid
and dotted lines denote and respectively.H0 )0,

Sakai, Maeda, & Sato (1993). Here the expressions by Sakai
et al. are shown using the circumferential radius of the shell
R, the velocity of the shell vj, the Lorentz factor cj, and the
Hubble expansion parameter Hj in V j ( j \ I and II), deÐned
by

R4 aIf I\ aIIf II, vj 4 a
j
dsj

dtj
,

cj 4 1/
S

1 [
Avj

c
B2

, Hj 4
daj/dtj

aj
. (2)

The Einstein equations for the pressureless matter in the
two regions are

(Hj)2] kjc2/(aj)2\ 8nG
3

oj ] 1
3

"c2 , (3)

where oj is the mass density of matter [P1/(aj)3].
The equations for the surface density p and the velocity

vII of the shell are expressed as

cIId(4nR2p)/dtII\ [4nR2c2vo]II,I , (4)

d(cIIvII)/dtII\ [cIIvIIHII] 2nGp [ [c2v2o]II/p , (5)

where [']II,I4 'II[ 'I. The conditions of continuity of the
metric (dq2 \ [ds2) and the common velocity dR/dq reduce
to

dtI/dtII\ cI/cII , (6)

cI( f @IvI] HIR) \ cII( f @IIvII] HIIR) , (7)

where f @j \ df j(sj)/dsj.
Another important component of jump conditions

playing the role of a constraint equation is

[c( f @] vHR)]II,I\ [4nGpR . (8)

Solving equations (4) and (5), we can obtain the time evolu-
tion of p and in the shell, and vI is derived using equationvII(7). These values of p, vI, and vII satisfy equation (8). The
initial condition is given as a form of at an(HI)

i
\ (HII)

iinitial epoch such as the recombination epoch.(tj)
i
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The background models in VI and VII are rewritten using

yj 4 aj/(a0)j, qj 4 H0j tj, j0j 4
1
3

"c2/(H0j )2,

)0j 4
8nG

3(H0j )2
(o0)j , (9)

where 0 denotes the present epoch (see Fig. 2). Equation (3)
is given as

dyj/dqj \ (yj)~1@2P
j
(yj) , (10)

where

P
j
(yj)4 [)0j ] j0j (yj)3] (1[ )0j [ j0j )yj]1@2 , (11)

and is given by(a0)j
(a0H0)j \ 1/J1 [ )0j [ j0j . (12)

The conformal times gj are deÐned by

gj 4 J1 [ )0j [ j0j
P
0

yj
dy/[y1@2Pj(y)] . (13)

The solution of equation (10) in the case of kI\ kII\ [1
and "\ 0 are expressed as

yj \ )0j
2(1[ )0j )

(cosh gj [ 1) , (14)

qj \ )0j
2(1[ )0j )3@2

(sinh gj [ gj) . (15)

In the case of nonzero ", equation (10) is solved numeri-
cally.

Equations (4) and (5) were solved by Sakai et al. (1993),
and it was shown in the case of that the present value)

i
^ 1

of vII at is less than 100 km s~1, as long as thea/a
i
[ 100

shell starts with the vanishing initial velocity (vj)
i
\ 0.

Here the initial condition at initial epoch(HI)
i
\ (HII)

iis expressed asyj\ (yj)
i

H0I (yi
I)~3@2[)0I ] j0I (yi

I)3] (1[ )0I [ j0I )yi
I]1@2

\H0II(yi
II)~3@2[)0II] j0II(yi

II)3 ] (1[ )0II[ j0II)yi
II]1@2 , (16)

where we have

)0II
)0I

\ o0II
o0I
AH0I
H0II
B2

,
j0II
j0I

\
AH0I
H0II
B2

(17)

from equation (9). If we eliminate from equation (16))0II, j0IIusing equation (17), we obtain

Co0II
o0I

(1[ y
i
II)[

Ay
i
II

y
i
I
B3

(1[ y
i
I)
D
)0I [

C
1 [

Ay
i
II

y
i

B2D
y
i
II j0I

]
CAH0II

H0I
B2[

Ay
i
II

y
i
I
B3D

y
i
II\ 0 . (18)

Since (>1) ,we assumey
i
I D y

i
IID 10~3

o0II
o0I

\
Ay

i
II

y
i
I
B3

(1] vy
i
I) , (19)

where vB 1. Then we get from equation (18)

AH0II
H0I
B2\

Ay
i
II

y
i
I
B3]

C
1 [

Ay
i
II

y
i
I
B2D

j0I ]
Ay

i
II

y
i
I
B3

]
C
1 [ (1] v)

y
i
I

y
i
II
D
)0I . (20)

If we give and we can obtain for)0I , j0I , v, y
i
II/y

i
I, H0II/H0Iequation (20) and derive from equation (20) ando0II/o0Iand from equation (17). From equations (17),)0II/)0I j0II/j0I(19), and (20), we Ðnd that and ifH0II/H0I \ 1 )0II/)0I [ 1

1 [
y
i
II

y
i
I [ 1 ]

C
1 [

Ay
i
II

y
i
I
B2DAy

i
I

y
i
II
B3

j0I

]
C
1 [ (1] v)

y
i
I

y
i
II
D
)0I . (21)

In the case "\ 0, we have an example for )0I \ 0.2 :

)0II\ 0.56, H0II/H0I \ 0.80, o0II/o0I \ 1.8,

y
i
II/y

i
I \ 1.2, v\ 4.1 . (22)

In the case we have the example"D 0,

j0I \ 0.672, j0II\ 0.43, )0I \ 0.3, )0II\ 0.563,

H0II/H0I \ 0.80, v\ 0.64 , (23)

so that

)0I ] j0I \ 0.872, )0II] j0II\ 0.993 . (24)

2.2. Bulk Motion
Now let us consider the velocity Ðeld around an observer

O in VI at the point with Since is muchl04 (as)0> (as)1. l0smaller than the curvature radius, we can approximately
neglect the spatial curvature around him. Then he has the
relative velocity

*v0\ (H0I [ H0II)l0 (25)

to matter in the outer region in the direction of the X-axis.
If h km s~1 Mpc~1, andH0I \ 100 H0II\ 0.82H0I , l0\ 40
h~1 Mpc, we have km s~1.*v0\ 720

Here consider a galaxy G with the radius coordinate s
and angle r. Then the relative velocity of G to matter in the
outer region is

*v
G

\ (H0I [ H0II)(a0 s) (26)

in the radial direction from the center C of the inner region
(Fig. 3).

FIG. 3.ÈComponents of the bulk velocity
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This velocity can be divided into the X component (*v
G
)
Xand the line-of-sight component with respect to the(*v

G
)LSobserver O as follows, noticing that the angle (\/)nGOX

satisÐes the relation

sin /\ s sin r/(s2] s02[ 2ss0 cos r)1@2,
cot /\ (cos r[ s0/s)/sin r . (27)

Their values are

(*v
G
)
X

\ *v
G

sin (/[ r)/sin /\ *v0 , (28)

(*v
G
)LS \ *v

G
sin r/sin /

\ *v
G
[1[ 2(s0/s) cos r] (s0/s)2]1@2

^ *v
G

. (29)

That is, the X component is constant and equal to(*v
G
)
Xand another component, which is in the line-of-sight*v0,direction from the observer, is nearly equal to Because*v

G
.

the Ðrst component is independent of the position, it(*v
G
)
Xcan be interpreted as the peculiar velocity of galaxiesv

pwhich represents the bulk motion :

v
p
\ (*v

G
)
X

\ *v0 . (30)

3. REDSHIFT FORMULA AND THE CMB ANISOTROPY

The wavevector kk in the inner and outer regions in the
plane of h \ n/2 is obtained by solving a null geodesic equa-
tion and is expressed as

(k0)j\ dtj/dj \ a0j
aj

w1j , (31)

(ks)j \ dsj/dj \ ^ a0j w1j
(aj)2

C
1 [

A dj/w1j
a0j sinh sj

B2D1@2
, (32)

(kr)j \ dr/dj \ dj/(aj sinh sj)2 , (33)

where j\ I and II, and j is an affine parameter.

3.1. L ight Paths
In the inner region VI, it is assumed that at the present

epoch all rays reach an observer at the point O with(tI\ t0I )h \ n/2, and r\ 0 in the X-axis, and the angles \ s0,between the rays and the X-axis is /. Then we have

/\ /1 , n [ /1 , (34)

where

/14 sin~1
A dI/w1I
a0I sinh s0I

B
(\n/2) . (35)

For the rays are expressed as/\ /1,

G(sI)4 cosh~1
Acosh sI

h0I
B

[ cosh~1
Acosh s0I

h0I
B

\ g0I [ gI , (36)

where

h0j 4
G
1 ]

Cdj/w1j
(a0)j

D2H1@2
, (37)

gI is deÐned by equations (13) and (14), and is equal to gIg0Iat present epoch (yI\ 1).

For we have/\ n[ /1,
G(sI) \ [g0I ] gI, for g0I º gI[ g

m
,

\ [gI[ g0I ] 2g
m
, for gI ¹ g

m
, (38)

where

g
m

4 g0I [ cosh~1
Acosh s0I

h0I
B

. (39)

In the latter case, sI has the minimum value (i.e., ks \ 0) at
gI\ g

m
.

At the boundary, and therefore, wegI\ g1I sI\ s1I ,obtain

g1I \ g0I ^ cosh~1
Acosh s0I

h0I
B

[ cosh~1
Acosh s1I

h0I
B

(40)

for

/\(
t
:

/1
n [ /1

)
t
;

,

respectively. In the outer region VII, we have

G(sII) 4 cosh~1
Acosh sII

h0II
B

[ cosh~1
Acosh s1II

h0II
B

\ g1II[ gII , (41)

where gII is given by equations (13) and (14), and andg1II s1IIare the values at the shell. At the recombination epoch we
have

grecII \ g1II[ cosh~1
Acosh srecII

h0II
B

] cosh~1
Acosh s1II

h0II
B

. (42)

The junction of wavevectors at the boundary is expressed as

(k0)I \ (k0)II , (43)

(Jgss ks)I \ (Jgss ks)II , (44)

(Jgrr kr)I \ (Jgrr kr)II . (45)

Equations (43) and (45) give

Aa0
a1

BI
w1I \

Aa0
a1

BII
w1II , (46)

dI \ dII , (47)

respectively, where we used the relation R\ (af )I\ (af )II.
The conditions given by equations (43) and (45) are evi-
dently consistent with equation (44), since kk is a null vector.

3.2. Redshift Formula
Now let us derive the redshift formula for rays which are

emitted at the recombination epoch. Here this epoch is
deÐned as the time of the radiation temperature T

r
\

in the region VII, where is the present tem-103(T
r
)0 (T

r
)0perature (^2.7 K). The total redshift factor is cal-(1 ] zrec)culated as the product of two redshift factors which are

caused in the two regions VI and VII.
First, we assume that the shell is comoving, and later the

correction due to the motion of the shell is examined. If we
consider a virtual observer at the center C (s \ 0), a light
ray which is received by him at is expressed asg6 I\ g6 0I

g6 0I [ g6 I\ sI, g6 0I [ g6 1I \ s1I (48)
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TABLE 1

DIPOLE AND QUADRUPOLE MOMENTS AND THE VELOCITY IN SINGLE-SHELL MODELSv
d

D Q v
d)0I )0II j0I j0II hI hII/hI (]104) (]105) (km s~1)

0.2 . . . . . . 0.56 0.0 0.0 0.7 0.82 5.56 [2.87 81.8a
0.2 . . . . . . 0.88 0.0 0.0 0.7 0.82 8.27 [4.27 121.5a
0.2 . . . . . . 0.56 0.0 0.0 0.7 0.90 5.38 [2.79 79.1a
0.2 . . . . . . 0.88 0.0 0.0 0.7 0.90 8.21 [4.23 120.7a
0.3 . . . . . . 0.56 0.0 0.0 0.7 0.82 3.90 [2.04 57.3a
0.3 . . . . . . 0.88 0.0 0.0 0.7 0.82 6.66 [3.39 97.9a
0.2 . . . . . . 0.56 0.672 0.43 0.7 0.82 7.92 [3.74 111.4a
0.2 . . . . . . 0.56 0.0 0.0 0.7 0.82 5.55 [1.91 81.6b
0.2 . . . . . . 0.88 0.0 0.0 0.7 0.82 8.21 [2.68 120.7b
0.2 . . . . . . 0.56 0.0 0.0 0.7 0.82 8.07 [6.35 118.6c
0.2 . . . . . . 0.88 0.0 0.0 0.7 0.82 12.31 [9.62 181.0c
0.2 . . . . . . 0.56 0.0 0.0 0.7 0.82 5.57 [2.87 81.8d
0.2 . . . . . . 0.88 0.0 0.0 0.7 0.82 8.27 [4.27 121.6d

a z6 1I \ 0.067, l0\ 40 (hI)~1.
b z6 1I \ 0.1, l0\ 40 (hI)~1.
c z6 1I \ 0.067, l0\ 60 (hI)~1.
d and the shell velocity is 200 km s~1.z6 1I \ 0.067, l0\ 40 (hI)~1,

in VI and

g6 recII [ g6 II\ s
rec
II [ sII, g6 recII [ g6 1II\ srecII [ s1II (49)

in VII, when the ray is emitted at the recombination epoch.
The redshift factors are

1 ] z6 1I \ a0I
aI(g6 1I )

\ 1
yI(g6 1I )

(50)

in VI, and

1 ] z6 recII
1 ] z6 1II

\ aII(g6 1II)
aII(g6 recII )

\ yII(g6 1II)
yII(g6 recII )

(51)

in VII. The junction condition in equation (6) gives z6 1I \ z6 1IIfor vI\ vII\ 0, so that

1 ] z6 recII \ yII(g6 1II)
yII(g6 recII )yI(g6 1I )

. (52)

Here we specify the value of as Thenz6 1I z6 1I \ 0.067D 0.1. g6 1Iand are determined from equations (48) and (50), ands1I g6 1IIand are determined using the relationss1II

a0I yI(g6 1I ) sinh s1I \ a0II yII(g6 1II) sinh s1II (53)

and

a0I
P
0

g6 1I
yI(gI)dgI\ a0II

P
0

g6 1II
yII(gII)dgII , (54)

which are obtained from equations (2) and (6). If isz6 recII
moreover speciÐed (in the following we take the value

or is determined using equationz6 recII \ 103 [ 1), y(g6 rec) g6 rec(52).
Next we consider the observer at O (with andsI\ s0Ir\ 0). The above-determined and II) ands1j ( j \ I grecII

are used also for rays reaching this observer, to(\g6 recII )
identify the position of the shell and the recombination

TABLE 2

DIPOLE AND QUADRUPOLE MOMENTS AND THE VELOCITY IN DOUBLE-SHELLv
dMODELS IN THE CASE OF ANDj0j \ 0 l0\ 40 (hI )~1

D Q v
d)0I )0II )0III hI hII/hI hIII/hI (]104) (]105) (km s~1)

0.2 . . . . . . 0.36 0.56 0.7 0.92 0.82 5.55 [2.37 81.6a
0.2 . . . . . . 0.36 0.56 0.7 0.92 0.82 5.52 [1.44 81.1b

a z6 1I \ 0.067, z6 1II\ 0.1.
b z6 1I \ 0.1, z6 1II \ 0.2.

TABLE 3

DIPOLE AND QUADRUPOLE MOMENTS AND THE VELOCITY IN THE MODEL WITH Av
dSELF-SIMILAR REGION IN THE CASE OF ANDj0j \ 0 l0\ 40 (hI )~1

D Q v
d)0I )0III hI hIII/hI (]104) (]105) (km s~1)

0.2 . . . . . . . . . . . . . . . 0.89 0.7 0.81 8.40 [4.41 123.4a
0.2 . . . . . . . . . . . . . . . 0.72 0.7 0.83 7.40 [2.61 108.8b
0.3 . . . . . . . . . . . . . . . 0.91 0.7 0.84 8.08 [4.11 118.8a
0.3 . . . . . . . . . . . . . . . 0.80 0.7 0.86 6.94 [2.25 102.0b

a z6 1I \ 0.067, z6 1II\ 0.1.
b z6 1I \ 0.1, z6 1II\ 0.2.
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epoch. It should be noted that depends only on thegrecII
temperature at the recombination epoch and is independent
of the existence of the inner region VI.

In VI we have the redshift

1 ] z1I \ a0I
aI(g1I )

\ 1
yI(g1I )

, (55)

and in VII we have

1 ] zrecII
1 ] z1II

\ aII(g1II)
aII(grecII )

\ yII(g1II)
yII(grecII )

. (56)

For a given we obtain by solving equation (40) ands1I , g1Iobtain from equation (55). The junction condition inz1Iequation (6) gives and is related to using thez1I \ z1II, g1II g1Irelations given in equations (53) and (54). Then the product
of equations (55) and (56) reduces to

1 ] zrecII \ yII(g1II)
yI(g1I )yII(grecII )

, (57)

which is given as a function of angle /.
Now let us consider the case when the shell is not com-

oving, i.e., As was shown by Sakai et al.vI D 0, vIID 0.
(1993), the velocities are greater than 200 km s~1, and
(vj/c)2\ 10~7 for j \ I and II. Accordingly, we can assume
cj\ 1 for j\ I and II, so that the condition andz1I \ z1IIequation (54) hold. In order to take the shell motion into
account, we assume the relation

s1I \ (s1I )Õ/0 ] vI[g1I [ (g1I )Õ/0] (58)

in equation (40) for arbitrary /, where and(s1I )Õ/0 (g1I )Õ/0are their values for the ray incident in the direction of /\ 0.
Subsequent calculations are the same as the calculations for
vI\ 0.

The derivations of in the case of double shells and inzrecII
the inhomogeneous model with an intermediate self-similar
region are shown in Appendixes A and B.

3.3. CMB Anisotropy
The values of are numerically calculated forzrecII

0 \ /\ n, and their dipole and quadrupole moments are
derived. When is given, the temperature T (/)zrec[\zrecII (/)]
of the cosmic background radiation is proportional to

and the dipole moment D and quadrupole1/(1] zrec),moment Q are deÐned as

D4
K P

0

nP
0

2n
(1] zrec)~1Y10 sin /d/dr

K N
S(1] zrec)~1T ,

(59)

Q4
K P

0

nP
0

2n
(1] zrec)~1Y20 sin /d/dr

K N
S(1] zrec)~1T ,

(60)

where ST means the average value taken over the whole sky
and

Y10(/)\
S 3

4n
cos / ,

Y20(/)\
S 5

4n
A3
2

cos2 /[ 1
2
B

. (61)

The Doppler velocity corresponding to D is given byv
d

v
d
4 c[(3/4n)1@2D] . (62)

Assuming (hI)~1 Mpc mainly, D, Q, andl0( 4 a0 s0) \ 40 v
dwere derived for various model parameters. Their values in

models with a single shell and double shells are shown in
Tables 1 and 2, respectively. The values in models with an
intermediate self-similar region are shown in Table 3. In
Table 1 the values in the case with a moving shell are
shown.

It is found from Table 1 that (1) is smaller than 0.17v
d
/v

pin all cases, (2) is approximately proportional to (asv
d

l0well as (3) is smaller for smaller andv
p
), v

d
()0II [)0I )(hI[ hII), (4) the positive cosmological constant plays a role

of increasing and (5) the inÑuence of the shell motion onv
d
,

D, Q, and is negligibly small.v
dIf we compare two lines in Table 2 with the correspond-

ing ones (the Ðrst line and eighth line) in Table 1, the results
in the models with a single shell and double shells are found
to be quite consistent. Moreover, if we compare four lines in
Table 3 with the corresponding ones (the second, fourth,
and sixth lines) in Table 1, the results in the models with a
single shell and a self-similar region are found to be simi-
larly consistent. Accordingly, is B0.1 in all models wev

d
/v

ptreated here.

4. NAIVE DERIVATION OF REDSHIFT FACTORS

For the dipole anisotropy the maximum di†erence of
temperatures and redshifts can be seen in a direction (/\

and the inverse direction Here let us/1) (/\ n[ /1).compare the redshifts in the directions /\ 0 and n appear-
ing in the model with a single shell. The spatial curvature is
neglected for simplicity. In the X-axis we consider six points
O, A, B, C, D, and E, for which 0,X \ s0, s1, s1] 2s0,and as shown in Figure 4.[ s1, [ s1] 2s0,Points B and D have the equal distance from the obser-
verÏs point O.

The redshifts and of the rays from otherzrec(0) zrec(n)
points P and P@ at the recombination epoch to the observer
at O in the directions /\ 0 and n are divided into three
steps : (P ] B, B ] A, A ] O) and (P@ ] D, D ] E, E ]
O),respectively. That is,

1 ] zrec(0)\ (1] zPB)(1] zBA)(1] zAO),

1 ] zrec(n) \ (1] zP{D)(1] zDE)(1] zEO) . (63)

Among these three steps, the Ðrst and third have equal
redshifts evidently : In the processeszPB \ zP{D, zAO \ zEO.
(B ] A) and (D ] E), we have the redshifts due to the

FIG. 4.ÈDiagram for the naive derivation
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cosmic expansion, the Doppler shift, and the gravitational
redshift. The expansion redshift factors in VII and VI are

[1] H0II(2a0 s0/c)], [1] H0I (2a0 s0/c)] , (64)

respectively. The Doppler shifts at A and D due to the
relative velocity between VI and VII frames are

C
1 [ 1

c
(H0I [ H0II)a0(s1[ s0)

D
,

C
1 [ 1

c
(H0I [ H0II)a0(s1] s0)

D
, (65)

respectively. The gravitational redshifts are represented by
potentials and given bytBA tDE,

tBA4
4nG(a0)3

c2
C1
3

o0I (s1)3
s1] s0

]o0II(s1] s0)2s0
s1] s0

D
, (66)

tDE4
4nG(a0)3

c2
C1
3

o0I (s1)3
s1] s0

[o0II(s1[ s0)2s0
s1[ s0

D
. (67)

Accordingly, the total redshift factors are

1 ] zBA \ [1] H0II(2a0 s0/c)]

]
C
1 [ 1

c
(H0I [ H0II)a0(s1[ s0)

D

] [1 ] tBA]

\ 1 [ a0
c

(H0I [ H0II)s1

] a0
c

(H0I ] H0II)s0] tBA

[
Aa0

c
B2

H0II(H0I [ H0II)s0(s1[ s0)] . . . , (68)

1 ] zDE\ [1] H0I (2a0 s0/c)

]
C
1 [ 1

c
(H0I [ H0II)a0(s1] s0)

D

] [1 ] tDE]

\ 1 [ a0
c

(H0I [ H0II)s1

] a0
c

(H0I ] H0II)s0] tDE

[
Aa0

c
B2

H0I (H0I [ H0II)s0(s1] s0)] . . . . (69)

The di†erence of these factors reduces to

zrec(0)[ zrec(n)^ zBA [ zDE

^ tBA [ tDE]
Aa0

c
B2

(H0I [ H0II)s0

] [(H0I ] H0II)s0] (H0I [ H0II)s1] . (70)

That is, the main terms in and cancel.(1 ] zBA) (1 ] zDE)The ratio R of to the relative velocity[zrec(0)[ zrec(n)]

between VI and VII is

R4
zrec(0)[ zrec(n)

(H0I [ H0II)a0 s0/c
^

3
4

[)0II(H0II)2(s1] s0)

[ )0I (H0I )2(s1[ s0)]/(H0I [ H0II)
] 2(H0I ] H0II)s0/c] 2(H0I [ H0II)s1/c , (71)

where we used equation (9) for This ratio is the counter-o0j .part of the ratio of the velocity (corresponding to thev
ddipole moment) to the relative (peculiar) velocity andv

p
,

these two ratios have comparable values.

5. CONSISTENCY WITH THE OBSERVED LARGE-SCALE

BULK FLOWS

As was shown in ° 2.2, the bulk velocities in all positions
within the region I are equal in the present models, so that
the relative velocity of LG to the cluster frame is only(vLG)
the peculiar velocity of LG caused by GA and the nearby
superclusters. Moreover, as was shown in ° 3.3, the dipole
velocity corresponding to the bulk velocity isv

d
v
p

D0.1v
p
,

and so the total dipole velocity of LG to CMB isvtd vtd\
vLG] v

d
( D 0.1v

p
) + vLG.

These conclusions are consistent as follows : (1) the
observed velocities of LG with respect to the cluster(vLG)
frames by Giovanelli et al. (1998), Dale et al. (1999), and
Riess et al. (1997), which are nearly equal to the total dipole
velocity with respect to the CMB, and (2) the bulk(vtd)velocities in the Streaming Motions of Abell Clusters(v

p
)

observation (Hudson et al. 1999, 1997) and the LP10k
observation (Willick 1999) are D700 km s~1 in the nearly
same directions.

According to Dale et al. (1999), we have vLG\ 565 ^ 113
km s~1 and (l, b) \ (267¡, 26¡) ^ 10¡. On the other hand,

km s~1 and (l, b) \ (276¡, 30¡) (Kogut et al.vtd\ 627 ^ 22
1993). Since both directions are nearly equal, the velocity
di†erence is about 60 km s~1. This value is comparable with

in the consistent manner with the result in thev
d
(D0.1v

p
),

present models.
However, they are inconsistent with the observations of

Lauer & Postman (1994), Postman & Lauer (1995), and
Colless (1995), in which and are in quite di†erentv

td
vLGdirections. At present, these observations seem to have been

ruled out (cf. Proceedings of the International Conference
on Cosmic Flows ; Courteau et al. 1999).

6. CONCLUDING REMARKS

In this paper we considered the behaviors of galaxies and
light rays in spherically symmetric inhomogeneous models
consisting of inner and outer homogeneous regions VI and
VII with and and and respec-)0I )0II([)0I ) H0I H0II(\H0I ),tively, connected by a single shell. In Appendixes A and B
we treat also the models with double shells and an interme-
diate self-similar region. It was shown that when we observe
the motion of galaxies at the point O deviated from the
center C in VI, a constant peculiar velocity component v

pappears in the direction from the center to the observer
(C] O). Moreover, it was shown that the velocity corre-v

dsponding to the dipole anisotropy of CMB radiation is by a
factor B10 small compared with This result may Ðt forv

p
.

the observed situation of the cosmic Ñow of cluster galaxies,
when the scale of the inner region and the distance CO
are about 200 and 40 (hI)~1 Mpc, respectively, and when
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is B0.5 and is B18 hI km~1 s~1 Mpc()0II[ )0I ) (H0I [ H0II)(or hII/hI B 0.82), respectively. This di†erence of the Hubble
parameters may be consistent with their recent values due
to nearby and remote observations, because short- and
long-distance scales give the Hubble constant of H0º 70
and respectively (Branch 1998 ; Freedman 1997 ;H0D 55,
Sandage & Tammann 1997 ; Blandford & 1997). AKundic�
model with multishells in the region of 100D 300 Mpc in
which the parameters change stepwise will be better to
reproduce the observed distribution of the Hubble constant.

It was shown that the present models are consistent with
the current observations of large-scale Ñows (Giovanelli et
al. 1998 ; Dale et al. 1999 ; Riess et al. 1997 ; Hudson et al.
1999, 1997 ; Willick 1999), but inconsistent with other obser-

vations (Lauer & Postman 1994 ; Postman & Lauer 1995 ;
Colless 1995), which may have been ruled out.

It is interesting and important to study the inÑuences of
the above inhomogeneity on the cosmological observations
such as the magnitude-redshift relation of SNe Ia, the
number count of galaxies, the time delay for lensed QSOs,
and so on. They will be quantitatively analyzed and shown
in the near future.

In this paper the motion of the LG due to the GA and
superclusters in similar distances was not treated, while
spherical matter distributions on such scales were analyzed
by Humphreys et al. (1997). But the approximation of
spherical symmetry may not be accurate because of their
small-scale matter distribution.

APPENDIX A

MODELS WITH DOUBLE SHELLS

The spacetime is divided into three homogeneous regions VI, VII, and VIII, as shown in Figure 5. The cosmological
parameters in Vj are shown as and so on, where j \ I, II, III (see Fig. 6).)0j , j0j ,Equations (1)È(3) and (9)È(15) hold in region III as well as in regions I and II. The junction condition at the second
boundary between VII and VIII have similar expressions to those at the Ðrst boundary :

R4 aIIf II\ aIIIf III , (A1)

cIIId(4nR2p)/dtIII\ [4nR2c2vo]III,II , (A2)

d(cIIIvIII)/dtIII\ [cIIIvIIIHIII] 2nGp [ [c2v2o]III/p , (A3)

dtII/dtIII\ cII/cIII , (A4)

cII( f @IIvII] HIIR) \ cIII( f @IIIvIII]HIIIR) , (A5)

[c( f @] vHR)]III,II\ [4nGpR , (A6)

where [']III,II4 'III[ 'II.

FIG. 5.ÈModel with double shells
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FIG. 6.ÈSchematic diagram of Hubble and density parameters in a model with double shells. Solid and dotted lines denote and respectively.H0 )0,

Similar to equations (20) and (21), moreover, we have

o0III
o0II

\
Ay

i
III

y
i
II
B3

(1] vy
i
II) , (A7)

AH0III
H0II
B2\

Ay
i
III

y
i
II
B3] j0II

C
1 [

Ay
i
III

y
i
II
B2D] y

i
III

y
i
II
B3C

1 [ (1] v)
y
i
II

y
i
III
D
)0II , (A8)

where vB 1.
As for light rays, the equations in VI and VII are same as those in ° 3, and equations in VIII are common with those in VII. At

the second boundary we have(g \ g2, s \ s2),

Aa0
a2

BII
w2II\

Aa0
a1

BIII
w2III , (A9)

dII\ dIII , (A10)

where a2\ a(g2).Under the assumption that the shells are comoving (i.e., vI\ vII\ vIII\ 0), we obtain the following redshift formulas :

1 ] z1I \ 1
yI (g1I ) , (A11)

and in VII we have

1 ] z2II
1 ] z1II

\ yII(g1II)
yII(g2II)

, (A12)

1 ] zrecIII
1 ] z2III

\ yIII(g2III)
yIII(grecIII ) . (A13)

From equations (6) and (A4) we have two equations : and Moreover, are related to usingz1I \ z1II z2II\ z2III. (g1II, s1II) (g1I , s1I )equations (53) and (54), and are related to using the similar equations(g2III, s2III) (g2II, s2II)

a0II yII(g2II) sinh s2II\ a0III yIII(g2III) sinh s2III , (A14)

a0II
P
0

g2II
yII(gII)dgII\ a0III

P
0

g2III
yIII(gIII)dgIII . (A15)

First we consider the virtual observer in the center (s \ 0). Then we have

1 ] z6 1I \ 1
yI(g6 1I )

, (A16)



φ

= 0.2

= 0.067

 - 1

I

II

III

V

V

V

C

O

z
2

z 1

z
rec

r = r r = rz = 0

z
2

-

z
rec

= 10
3-

21

z
1

-
light ray

self-similar region

No. 1, 2000 BULK FLOWS AND CMB DIPOLE ANISOTROPY 35

1 ] z6 2II
1 ] z6 1II

\ yII(g6 1)II
yII(g6 2)II

, (A17)

1 ] z6 recIII
1 ] z6 2III

\ yIII(g6 2)III
yIII(g6 rec)III

, (A18)

where and Accordingly, we can determine and by specifying his redshiftsg6 0I [ g6 1I \ s1I g6 2II[ g6 1II \ s2II[ s1II. s1I , s2II, g6 recIII z6 1I , z6 2II,and ( \ 103[ 1), as in ° 3.z6 recIII
For an observer at O (with and we obtaing \ g0 s \ s0),

1 ] zrecIII \ yII(g1II)yIII(g2III)
yI(g1I )yII(g2II)yIII(grecIII )

, (A19)

where and depend on the angle /, contrary to those in equation (A18). When we Ðx and andg1II, g2II, g2III, grecIII z6 1I , z6 2II, z6 recIII
determine and the Ðnal redshift can be obtained as a function of angle / for It is to be noted thats1I , s2II, g6 recIII , zrecIII grecIII \ g6 recIII .

is independent of the existence of the two shells.grecIII

APPENDIX B

MODELS WITH AN INTERMEDIATE SELF-SIMILAR REGION

The line element is expressed in the form (Tomita 1995, 1996)

ds2 \ [c2dt2] S2(t, r)
C(1] rS@/S)2

1 [ ka(r)r2 dr2] r2d)2
D

, (B1)

where

a(r)/a0\ 1/(r1)2, 1/r2, 1/(r2)2 (B2)

for the inner homogeneous region VI, the self-similar region VII, and the outer homogeneous region VIII, respectively, which
are shown in Figure 7 (see also Fig. 8). Assuming the matter pressure free and comoving, the solutions are described using the
Tolman solution. The two boundaries and are exactly comoving. The scale factor S in the case "\ 0 is given byr \ r1 r2

S/S0\ )0
2(1[ )0)

(cosh g [ 1) , (B3)

)0\ (cH0~1/S0)3, H04 [(LS/Lt)/S]0 . (B4)

FIG. 7.ÈModel with the self-similar region
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FIG. 8.ÈSchematic diagram of Hubble and density parameters in a model with the self-similar region. Solid and dotted lines denote andH0 )0,respectively.

The time variable t is in the inner, self-similar, and outer regions expressed as

H0 t \ )0
2(1[ )0)3@2

(sinh g [ g) , (B5)

m 4
ct
r

\ cH0~1(r1)~1)0
2(1[ )0)3@2

(sinh g [ g) , (B6)

H0 t \ r2
r1

)0
[2(1[ )0)3@2]

(sinh g [ g) , (B7)

respectively. The constant and are given bya0 r1

Ja0\ 4J1 [ )0
)02(1] z6 1)

C
1 [ )0] )0

2
(1] z6 1) ]

A)0
2

[ 1
B
J1 ] )0 z6 1

D
, (B8)

r1\ [()0)1@3/(1 [ )0)1@2]Ja0 . (B9)

If we deÐne the local Hubble parameter H (in the transverse direction) in the hypersurface ast \ t0
H 4 (S0 /S)

t/t0
\ [(1/t)mS,m/S]

t/t0
, (B10)

H in VI is equal to and we have in VII and VIH0

Ht0\ sinh g(sinh g6 [ g6 )
(cosh g6 [ 1)2 , (B11)

where satisÐesg6 4 g
t/t0

H0 t0\
A r
r1

,
r2
r1

B )0
[2(1[ )0)3@2]

(sinh g6 [ g6 ) (B12)

for VII, VIII, respectively. Present matter densities in the three regions are

o0j \
3H02 )0
8nG

C
1,

1
3
Ar1

r
B2A

1 [ mS,m/S
B~1

,
Ar1
r2

B2D
(B13)

for j\ [I, II, III], respectively, and is deÐned as)0j

)0j 4 o0j(t0)
NA3H2

8nG
B

. (B14)

The behavior of light rays and redshift formulas were derived in the previous paper (Tomita 1996). If we specify the redshifts
and the radii and of the two boundaries and the value of are determined, and we canz6 1, z6 2, z6 rec(\103[ 1), r1 r2 grec(\g6 rec)calculate as a function of /, which is the angle between the incident direction and the X-axis.zrec
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In the following, we present additional explanations and corrections for the formulas in Appendix A of the previous paper
(Tomita 1996). In VI and VIII, we have

kr \ ^(S0/S2)M[1 ] a0(r/r1)2][(w1)2[ d2/(S0 r)2]N1@2 , (B15)

kr \ [(S0/S2)M[1 ] a0(r/r2)2][(w2)2[ d2/(S0 r)2]N1@2 , (B16)

respectively. The second ray in VI has

h1\ cosh~1 M[1] (Ja0 r0/r1)2]1@2/h0N] [(g [ g0),[ (g [ 2g
m

] g0)] (B17)

for respectively. In this paper, the incoming angle isMg º g
m
, g ¹ g

m
N,

/\ sin~1
Ad/w1
S0 r0

B
(4/1), n [ /1 . (B18)

Auxiliary functions VIII are expressed as

M(m)4
1

N(m)
CC

(M0)2[ 2d2
P
m1

m
dm

N(m)
S3 MSS,m ] m[1] a0] SS,mm [ (S,m)2]N

DD1@2
, (B19)

f(m) 4 N(f)/(J1 ] a0 m) , (B20)

M
d

\ 2(1 [ )0)
)0 S0

cosh g [ 1
2(1[ cosh g) ] g sinh g

AM0
d

[ 2I
B

, (B21)

f\ Ja0
J1 ] a0

2(1[ cosh g) ] g sinh g
(cosh g [ 1)(sinh g [ g)

. (B22)

The constants and are connected using the junction conditions (k0)I\ (k0)II at and (k0)II\ (k0)III atw1 w2 r \ r1 r \ r2.
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