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Abstract. We extend the authors’ prior theory of the RT-equations
from the setting of affine connections, to the general setting of connec-
tions defined on vector bundles over arbitrary manifolds, including Yang-
Mills connections over Lorentzian manifolds in Physics. By this, our
theory of the RT-equations extends optimal regularity and Uhlenbeck
compactness from the case of vector bundles over Riemannian manifolds
with compact Lie group, to vector bundles over arbitrary manifolds, al-
lowing for both compact and non-compact Lie groups. Our results here
apply to Lp connections, p > n.
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1. Introduction

In prior work [11, 12, 13, 14] the authors derived the RT-equations, a
Poisson-type nonlinear elliptic system of PDE’s whose solutions determine
coordinate transformations which lift a non-optimal affine connection Γ,
(one for which the connection components are no more regular than the
leading order term dΓ in its Riemann curvature tensor Riem(Γ)), to op-
timal regularity. Our prior results for the RT-equations [13, 14] based on
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the theory of elliptic regularity in Lp spaces then extend the theorems of
Kazdan-DeTurck [1] and Uhlenbeck [18] on optimal regularity and Uhlen-
beck compactness from the case of vector bundles with compact Lie group
over positive definite Riemannian manifolds, to the case of general affine
connections, i.e., arbitrary connections Γ defined on the tangent bundle of
an arbitrary manifold (no metric required), including the Lorentzian met-
ric connections of General Relativity– but our prior work was not general
enough to handle the case of connections A on vector bundles. The existence
theory for the case (Γ, dΓ) ∈Wm,p, m ≥ 1, p > n, was accomplished in [12],
and existence for the case (Γ, dΓ) ∈ L∞ was accomplished in [14]. Although
the case of L∞ affine connections Γ was general enough to resolve the au-
thors’ original problem of establishing the optimal regularity of shock wave
solutions of the Einstein equations in General Relativity1 [4, 6, 8, 9, 10, 16],
the vector bundle setting of Uhlenbeck’s original work [18],with its numer-
ous applications [2, 17, 19], naturally begs the question as to whether the
theory of the RT-equations, including the optimal regularity and Uhlenbeck
compactness they imply, might extend from the case of affine connections
on an arbitrary manifold, to the case of connections A on vector bundles
over such arbitrary manifolds.

In this paper we accomplish this extension of our theory to the case of
vector bundles with non-optimal connections in Lp, p > n, (an improvement
over L∞). The theory is general enough to establish optimal regularity and
Uhlenbeck compactness for connections on vector bundles associated with
both compact and non-compact Lie groups, over arbitrary manifolds–a set-
ting general enough to incorporate Yang Mills connections over Lorentzian
manifolds of relativistic Physics.2 Taken together with our earlier results,
this establishes optimal regularity for connections A ∈ Lp on the fibres, and
Γ ∈ L∞ on the base manifold.

We accomplish this by deriving a vector bundle version of the RT-equations
whose solutions produce gauge transformations which lift the regularity of
non-optimal connections up to optimal regularity, and by the extra deriva-
tive obtained, extend Uhlenbeck compactness to the general setting of con-
nections A on vector bundles, with (A, dA) ∈ Lp, p > n. That is, by
proving an existence theorem based on elliptic regularity in Lp-spaces for
the vector bundle version of the RT-equations, analogous to our theory in
[13, 14], we establish the existence of gauge transformations which lift con-

nections of non-optimal regularity to optimal regularity3 A ∈ W 1,p/2. The

1I.e., the case of general Lipschitz continuous metrics which solve the Einstein equations
in the sense of distributions.

2To be concrete we restrict our attention here to vector bundles with compact and non-
compact gauge groups SO(r, s), r, s ≥ 0. Our results extend to complex vector bundles
with Lie groups U(r, s) and SU(r, s), i.e. to the Lie groups important in Physics, by the
same argument. Our methods of proof can be extended to more general matrix Lie groups.

3By optimal regularity, we mean that the connection components have one full deriv-
ative of regularity above the curvature tensor. Our result is sharp in the following sense.
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RT-equations in the vector bundle case are actually simpler in the sense that
they do not couple to a first order Cauchy-Riemann type equation required
in [13, 14] to impose integrability of Jacobians to coordinates. Thus the
reader trying to understand the theory of the RT-equations in detail might
do well to consider the vector bundle case here first.

In contrast to [18], our method does not require compactness of the Lie
group, nor positive definiteness of a metric on the base manifold. No metric
structure at all, just an affine connection, need to be assumed on the base
manifold; and while Uhlenbeck’s argument is based on geometric objects,
our argument is coordinate based.

Our proof in the case of non-compact Lie groups requires an interesting
new twist to the analysis. A modification of the basic ideas for the existence
theory already set out in [12] and [14] are sufficient to establish the existence
of matrix valued solutions of the RT-equations in the vector bundle case.
But we show the condition that the equations actually produce solutions
which lie within the Lie group, requires proving that solutions generated by
our iteration scheme produce only the trivial (zero) solution of an auxiliary
elliptic equation in an auxiliary variable w = UT ηU − η, i.e., w = 0 imposes
the condition that solutions U of the RT-equations lie within the Lie group
SO(r, s), (c.f. equations (2.1), (2.2) below).

The interesting point here is that, even though we were unable to prove
w → 0 by estimates based on the iteration scheme alone, we were able
to derive w = 0 on the limit by an auxiliary elliptic equation which w
only satisfies in the limit. In the case when the Lie group is compact, we
show the auxiliary equation for w is strongly elliptic, and from this it is
straightforward to prove that w = 0 is the only solution, implying that
solutions of the RT-equations generated by our iteration scheme always lie
within the Lie group SO(N). But in the case of non-compact Lie groups
SO(r, s), the auxiliary equation for w needn’t be strongly elliptic, and can
have an associated non-trivial spectrum with non-zero eigenfunctions for
special non-optimal connections A on the vector bundle. So one cannot
guarantee directly from the auxiliary equation for w, that w = 0 is the
only solution. We circumvent this problem by introducing an additional
spectral parameter λ, and prove (by Fredholm’s alternative) that the auxiliary
equation for w has only the trivial solution w = 0 for almost every λ. We
then argue that the uniform convergence of our iteration scheme by which we
generate solutions of the RT-equations, implies the continuity of solutions
w of the auxiliary equation with respect to λ. Thus, by continuity of w with
respect to λ, we can extend w = 0 from almost every λ, to w = 0 for all λ.

If (A, dA) ∈ Lp, the Hölder inequality applied to the commutator term in the curvature

2-form places the curvature of A in Lp/2; and since the coordinate transformation to op-
timal regularity puts A ∈ W 1,p/2 in the new gauge, while preserving the regularity of
the curvature, it follows that the transformed connection is precisely one Sobolev deriv-
ative more regular than its curvature in the transformed gauge. Note, interestingly, the
curvature enters our argument in this paper only through dA.
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We thereby conclude that the iteration scheme used to obtain existence of
solutions to the RT-equations, always produces solutions w = 0, for every
connection A on the underlying vector bundle. By this we establish that
solutions of the RT-equations generated by our iteration scheme always lie
within the Lie group, even when the Lie group is non-compact and the
auxiliary equation in w admits non-trivial solutions.

Most interesting to us is that the RT-equations reproduce a fundamental
cancellation observed in [11] in the case of affine connections, namely, the
cancellation of the terms dδA on the right hand side of the first RT-equation
(2.5), the “bad terms” which lie at a regularity too low for the Laplacian to
lift them to optimal regularity. In the setting of vector bundles, this can-
cellation is due to an interesting interplay between the Lie group and Lie
algebra of the fibres as expressed through the RT-equations. Said differently,
that the assumed bound on dA alone is sufficient to dominate the uncon-
trolled derivatives δA appears to be a principle built into the RT-equations
through the geometry of connections. Also, surprisingly, to get to the low
level of L∞ regularity in the case of affine connections [14], we needed to use
the invariance transformations of the RT-equations to decouple the equation
for the Jacobian from the equation for the regularized connection. Here, no
such group of invariances for the RT-equation is required, and the equation
for the regularizing gauge transformation almost automatically de-couples
from the equation for the regularized connection. Another aspect to point
out is that, in the vector bundle case here, we do not require an additional
condition to impose the requirement that solutions of the RT-equations lie
in the gauge group, (recall that in the affine connection case, we needed an
auxiliary equation to impose the integrability of the Jacobians, [12, 13, 14]),
but rather we build this into the RT-equations themselves by solving an
equation for the value of a free parameter associated with the invariance
transformations of the equations, (i.e., the choice of α in (4.7)). Finally,
and also interestingly, note that we have no simple new derivation of the
RT-equations for the vector bundle case addressed here, but obtained the
equations purely by analogy with the RT-equations for affine connections.
Our derivation of the RT-equations for affine connections is based on the
Riemann-flat condition, [10].

2. Statement of Results

The problem of optimal regularity and Uhlenbeck compactness for con-
nection components associated with the fibres of a vector bundle, uncouples
from the problem of optimal regularity for affine connections on the base
manifold. Both arguments are based on the Euclidean metric in an arbi-
trary but fixed coordinate system, and this auxiliary Riemannian structure
acts independently of the affine connection on the base manifold.4 For this

4The restriction A of a connection on a vector bundle to its fibres, and the affine
connection Γ on the base manifold, are coupled through the curvature, [5].
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reason, to extend our results to vector bundles, without loss of general-
ity, it suffices to assume the base manifold is Euclidean. The extension to
non-trivial non-optimal affine connections on the base manifold is then a
straightforward application of our results in [14]. In the first subsection
we state our results for vector bundles in the case of Euclidean base mani-
fold, and in the second subsection we incorporate our earlier results on the
optimal regularity of affine connections in [14] into the statements of the
theorems.

2.1. Connections on the fibre of a vector bundle. Let AVM denote a
given connection on a vector bundle VM of a n-dimensional differentiable
base manifold M with N -dimensional real valued fibres on which the Lie
group SO(r, s) acts as the gauge group, r + s = N . Since our problem is
local and can be considered in any fixed coordinate system onM, we assume
without loss of generality the vector bundle is trivial,

VM' RN × Ω,

for some Ω ⊂ Rn open and bounded with smooth boundary. (One can
view Ω as the image of a coordinate patch (x,U) of M, i.e., Ω = x(U)
with resulting Cartesian coordinates x on Ω.) The gauge group SO(r, s) is
defined by the condition that an N ×N matrix U is an element of SO(r, s)
if and only if

UT ηU = η and det(U) = 1, (2.1)

where η is the diagonal matrix

η = diag(1, ..., 1,−1, ...,−1), (2.2)

with r entries 1 and s entries −1, for non-negative integers r and s, r+s = N .
We denote withAa the connection components ofAVM on VM with respect
to a choice of frame a on VM, a so-called gauge, i.e. a assigns a basis of
RN at each point of Ω. Assume now b is another frame of VM resulting
from a by a gauge transformation

U : Ω→ SO(r, s), (2.3)

that is, b = U · a in the sense of pointwise matrix multiplication with each
basis vector in a. The components of AVM in the new frame b are related
to Aa by the connection transformation law

Aa = U−1dU + U−1AbU, (2.4)

where d denotes the exterior derivative on the matrix valued differential 0-
form U , i.e., dU = ∂U

∂xi
dxi and we use Einstein’s convention that we always

sum over repeated upper and lower indices. An abstract connection AVM,
by definition, assigns connection components Aa to every frame a such that
(2.4) holds, (c.f. [5, 7] for an introduction to vector bundles and [17, 19] for
more background on Uhlenbeck compactness).

We now fix an arbitrary gauge a and assume the connection components
Aa of AVM are non-optimal, i.e., Aa ∈ Lp(Ω) and dAa ∈ Lp(Ω) in the
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sense that the components of Aa have this regularity with respect to fixed
Cartesian coordinates on Ω, which we view as the coordinates resulting from
a coordinate patch (x,U) on the base manifoldM such that Ω = x(U). The
goal is then to find a gauge transformation

U : Ω→ SO(r, s)

such that the connection components Ab in the resulting gauge b = U ·a ex-
hibit optimal regularity, by which we mean Ab ∈W 1,q(Ω) and dAb ∈ Lp(Ω)
for some q ≥ 1. Here we establish optimal regularity with q = p

2 whenever

p > n.5 We subsequently always denote the connection components Aa

in the fixed incoming gauge a simply by A, and refer to the collection of
connection components A simply as a connection.

In this paper, we begin by deriving the following system of elliptic, Poisson
type PDE’s for the gauge transformations U in SO(r, s) which transform a
non-optimal connection A ≡ Aa to a connection Ab of optimal regularity6:

∆Ã = δdA− δ
(
dU−1 ∧ dU

)
(2.5)

∆U = UδA− (UT η)−1〈dUT ; ηdU〉. (2.6)

We interpret equations (2.5) - (2.6) as the vector bundle version of the
RT-equations introduced in [11], and refer to them here again as the RT-

equations. The unknowns in equations (2.5) - (2.6) are (Ã, U), where Ã is
a matrix valued 1-form associated to Ab, and U is the sought after gauge
transformation interpreted as a matrix valued 0-form. Equations (2.5) - (2.6)
are elliptic, with ∆ being the standard Laplacian in Rn acting component-
wise, ∆ ≡ dδ + δd = ∂2

x1 + ... + ∂2
xn , and d is the exterior derivative and δ

its co-derivative based on the Euclidean metric in Cartesian x-coordinates.
The matrix valued “inner product” 〈· ; ·〉 is introduced in (3.7) in Section 3
below. Equation (2.6) is what we interpret as the vector bundle version of the
reduced RT-equations, an equation decoupled from (2.5), for which solutions
U are the gauge transformations in SO(r, s) which map the connection A
to optimal regularity.

That is, starting with a non-optimal connection A, solutions of the re-
duced RT-equations (2.6) with Dirichlet boundary data U = U0 on ∂Ω
for some U0 in SO(r, s), yield a gauge transformation U in SO(r, s), i.e.
U(x) ∈ SO(r, s) for every x ∈ Ω. We prove below that a solution U of the
reduced RT-equations then gives rise to a solution of (2.5), defined by

Ã′ = A− U−1dU, (2.7)

that is, Ã′ satisfies

∆Ã′ = δdA− δ(dU−1 ∧ dU). (2.8)

5 Our main concern here is the gain of one derivative, not the precise value of the
exponent q. However, the result for q = p/2 is sharp because it places Ab precisely
one full Sobolev derivative above the regularity of its curvature F ≡ dA + A ∧ A, i.e.,
Ab ∈W 1,p/2, and the curvature F ∈ Lp/2 in both the a and b gauges, c.f. [5, 7].

6By U in SO(r, s) we mean U(x) ∈ SO(r, s) pointwise for every x ∈ Ω.
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The connection of optimal regularity in the gauge b = U ·a is then given by

Ab = UÃ′U−1. (2.9)

Since the right hand side of (2.8) has regularity just one derivative below

A, elliptic regularity will imply that Ã′, and then by (2.9) also Ab, are one
derivative of regularity above A, thus establishing the optimal regularity of
the connection Ab in the resulting gauge b = U · a. Thus the role of (2.5)

is to raise the regularity of Ã′, and hence Ab, by one derivative, to optimal
regularity. This result is stated precisely in the following theorem. The idea
of proof together with the derivation of the RT-equations (2.5) - (2.6) is the
subject of Section 4.

Theorem 2.1. Let A ≡ Aa be the connection components in a gauge a of
a connection AVM on an SO(r, s) vector bundle VM with base manifold
M≡ Ω ⊂ Rn open and bounded. Assume A ∈ Lp(Ω) with dA ∈ Lp(Ω), for
p > n with p <∞.7 Then the following equivalence holds:

(i) If there exists a solution U ∈W 1,p(Ω) pointwise in SO(r, s) of the reduced
RT-equations (2.6), then the gauge transformed connection Ab in (2.4) has

optimal regularity Ab ∈W 1,p/2(Ω).

(ii) Conversely, if there exists a gauge transformation U ∈ W 1,p(Ω) point-
wise in SO(r, s), such that the gauge transformed connection Ab in (2.4)

has optimal regularity Ab ∈ W 1,p/2(Ω), then Ã ≡ U−1AbU ∈ W 1,p/2 and U
solve the RT-equations (2.5) and (2.6), respectively.

Theorem 2.1 also applies at higher levels of non-optimal regularityA, dA ∈
Wm,p, m ≥ 1, p > n, p <∞, in which case it gives the equivalence between
the existence of SO(r, s) gauge transformations U ∈Wm+1,p which smooth
a connection to optimal regularity Ab ∈Wm+1,p, and the existence of solu-
tions (U, Ã) ∈Wm+1,p of the RT-equations. Theorem 2.1 reduces the proof
of our main results on optimal regularity and Uhlenbeck compactness, The-
orems 2.3 and 2.4 below, to the following existence theorem, whose proof is
the main technical effort of this paper.

Theorem 2.2. Assume A, dA ∈ Lp(Ω), n < p < ∞, as in Theorem 2.1,
and let M > 0 be a constant such that

‖(A, dA)‖Lp(Ω) ≡ ‖A‖Lp(Ω) + ‖dA‖Lp(Ω) ≤ M. (2.10)

Then for any point in Ω there exists a neighborhood Ω′ ⊂ Ω of that point,
(depending only on Ω, p, n and M), and there exists a solution U ∈W 1,p(Ω′)
of the reduced RT-equations (2.6), such that U(x) ∈ SO(r, s) for any x ∈ Ω′

and such that U satisfies

‖U‖W 1,p(Ω′) ≤ C(M) ‖(A, dA)‖Lp(Ω′), (2.11)

7Note that since Ω is bounded, L∞(Ω) ⊂ Lp(Ω) for every p < ∞, and when p = ∞,
Theorem 2.1 asserts optimal regularity W 1,q for any q <∞. This is the result we obtained
in our prior work [14] for affine connections. The more general regularity p <∞ was not
addressed in [14].
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for some constant C(M) > 0 depending only on Ω′, p, n and M .

The existence result of Theorem 2.2 also applies at higher levels of non-
optimal regularity A, dA ∈ Wm,p, m ≥ 1, n < p < ∞, yielding a solution
U ∈Wm+1,p(Ω) in SO(r, s) of the RT-equation satisfying the estimate

‖U‖Wm+1,p(Ω′) ≤ C(M) ‖(A, dA)‖Wm,p(Ω′), (2.12)

under the assumption

‖(A, dA)‖Wm,p(Ω) ≡ ‖A‖Lp(Ω) + ‖dA‖Lp(Ω) ≤ M. (2.13)

Note, interestingly, that Theorem 2.2, which only addresses the reduced
RT-equation (2.6), actually holds without assuming the bound on ‖dA‖Lp
in (2.10), (and we could omit ‖dA‖Lp on the right hand side of (2.11)).
But our result on optimal regularity is based on applying Theorem 2.2 to
construct a solution of the first RT-equation (2.5), and this argument does
require the bound on ‖dA‖Lp . Thus for simplicity, we assume the bound
(2.10) from the start.

By the existence result in Theorem 2.2, in combination with part (i)
of Theorem 2.1, we obtain our first main conclusion which gives optimal
regularity of connections on SO(r, s) vector bundles.

Theorem 2.3. Assume A, dA ∈ Lp(Ω), n < p < ∞, as in Theorem 2.1,
satisfies the bound (2.10). Then for any point in Ω there exists a neighbor-
hood Ω′ ⊂ Ω of that point, (depending only on Ω, p, n and M), and there
exists a gauge transformation U ∈ W 1,p(Ω′) in SO(r, s), such that the con-
nection components Ab of the resulting gauge b = U ·a in (2.4) have optimal
regularity

Ab ∈W 1,p/2(Ω′′) (2.14)

on every open set Ω′′ compactly contained in Ω′, and

‖Ab‖W 1,p/2(Ω′′) ≤ C(M) ‖(A, dA)‖Lp(Ω′) (2.15)

for some constant C(M) > 0 depending only on Ω′′,Ω′, p, n and M .

Theorem 2.3 establishes the existence of local gauge transformations which
transform non-optimal connections to optimal regularity in a neighborhood
of each point in Ω, that is, Ab is one Sobolev derivative more regular than
dAb (and dA) in Ω′′, but measured with respect to the larger space Lp/2, the
regularity of the curvature, c.f. Footnotes 3 and 5. Estimate (2.15) implies

‖Ab‖W 1,p/2(Ω′′) ≤ C(M)‖(A, dA)‖Lp(Ω) ≤ C(M)M, (2.16)

which provides the uniform bound required to prove Uhlenbeck compactness.
That is, the extra full derivative of regularity for the connection provided
by the bound (2.16) on Ab, together with the bound (2.11) on U , implies
the following version of Uhlenbeck compactness:
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Theorem 2.4. Let (Ai)i∈N be a sequence of connections on VM in fixed
gauge a, satisfying the uniform bound

‖(Ai, dAi)‖Lp(Ω) ≡ ‖Ai‖Lp(Ω) + ‖dAi‖Lp(Ω) ≤ M (2.17)

for some constant M > 0. Then for any point in Ω there exists a neigh-
borhood Ω′′ ⊂ Ω of that point, (any Ω′′ characterized in Theorem 2.3), such
that the following holds:

(i) There exists for each Ai a gauge transformation Ui ∈W 1,p(Ω′′, SO(r, s))
to a gauge bi = Ui · a, such that the components Abi of Ai in the gauge bi
have optimal regularity Abi ∈W 1,p/2(Ω′′), with uniform bound

‖Abi‖W 1,p/2(Ω′′) ≤ C(M)M, (2.18)

for some constant C(M) > 0 depending only on Ω′′,Ω, p, n and M .

(ii) The sequence of gauge transformations Ui is uniformly bounded in W 1,p(Ω′′)
by (2.11), and a subsequence of this sequence converges weakly in W 1,p to
some U ∈W 1,p(Ω′′) in SO(r, s).

(iii) Main Conclusion: There exists a subsequence of Ai, (denoted again
by Ai), such that the components of Abi converge to some Ab weakly in

W 1,p/2(Ω′′), strongly in Lp/2(Ω′′), and Ab are the connection coefficients of
A in the gauge b = U ·a, where A is the weak limit of Ai in Lp(Ω′′) in fixed
gauge a.

The weak convergence in W 1,p/2(Ω′′) asserted by Theorem 2.4 actually im-

plies strong convergence in Lp/2(Ω′′), and this is convergence strong enough
to pass limits through non-linear products, a property inherently useful for
non-linear analysis. Theorem 2.4 is our version of Uhlenbeck compactness
which follows from the curvature bound (2.17) alone.

To make the connection with our previous work in [14] which applies
to non-optimal affine connections in L∞, the following corollary states the
conclusions of Theorems 2.3 and 2.4 for L∞ connections on vector bundles.

Corollary 2.5. (i) Assume A, dA ∈ L∞(Ω). Then in a neighborhood of
every point in Ω there exists a local gauge transformation U which lifts the
connection to optimal regularity W 1,q, any 1 < q <∞.
(ii) Assume a given sequence of connections Ai satisfies the uniform bound
(2.17) with p = ∞. Then for any 1 < q < ∞, assertions (i) - (iii) of
Theorem 2.4 hold with p/2 replaced by q.

Note, finally, that at higher regularities A, dA ∈ Wm,p, m ≥ 1, p >
n, p < ∞, the method of Theorem 2.3 establishes optimal regularity in
Wm+1,p; and the method of Theorem 2.4 establishes the compactness of
sequences of connections Ai weakly in Wm+1,p, strongly in Wm,p. The
proofs of Theorems 2.1 - 2.4 are given in Sections 5 - 7. The (simpler)
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proofs8 for the more regular case A, dA ∈Wm,p follow by a modification of
the methods in [12], and are omitted.

2.2. Incorporating non-trivial affine connections Γ into the base
manifold. Using our results on affine connections Γ on the tangent bun-
dle of arbitrary base manifolds M, established in prior publications [14],
Theorems 2.3 and 2.4 on optimal regularity and Uhlenbeck compactness for
vector bundles VM extend directly to the case of non-trivial Γ defined on
the base manifold M. For example, assume Γ is a non-optimal affine con-
nection on M of an SO(r, s) vector bundle VM with connection A on the
fibres, and assume (2.10) holds together with the following L∞ bound on Γ
assumed in [14],

‖Γ, dΓ‖L∞ = ‖Γ‖L∞ + ‖dΓ‖L∞ < M. (2.19)

Now by the results in [14], there exist coordinate transformations x → y
which locally lift the regularity of the components of Γ to optimal regularity,
Γ ∈W 1,p, any p <∞. But the Jacobians which accomplish this are regular
enough so that in y-coordinates, the estimate (2.10) on the components of A
continues to hold in y-coordinates with a modified upper bound M . Thus,
since the arguments establishing Theorems 2.3 and 2.4 in the prior subsec-
tion are based on the (auxilliary) Euclidean coordinate metric, we can apply
the same arguments in y-coordinates to conclude the existence of a gauge
transformations U : a → b = U · a, such that, in the transformed gauge b,
the connection A has optimal regularity, A ∈ W 1,p. Since the gauge trans-
formation U does not affect the connection Γ, Theorems 2.3 and 2.4 extend
in a straightforward way to arbitrary non-optimal affine connections Γ on
the base manifold M which satisfy the L∞ bound (2.19), and to sequences
of non-optimal connections on M in the case of Uhlenbeck compactness.
Since the Theorems in [14] regarding affine connections Γ, and Theorems
2.3 and 2.4 regarding connections A on the fibres, act independently in this
sense, it is straightforward to combine them into a single general theorem,
and it suffices to state them separately.

3. Preliminaries

We now introduce the Cartan Calculus for matrix valued differential forms
on the vector bundle required to formulate the RT-equations, which we intro-
duced in [11, Sec. 3] for tangent bundles. We again consider a trivialization
of a vector bundle VM' RN ×Ω with N -dimensional fibres and base space
Ω ⊂ Rn open and bounded. We continue to assume fixed Cartesian coordi-
nates x on Ω. By a matrix valued differential k-form ω on VM we mean a
k-form over Ω with (N ×N)-matrix components,

ω = ω[i1...ik]dx
i1 ∧ ... ∧ dxik ≡

∑
i1<...<ik

ωi1...ikdx
i1 ∧ ... ∧ dxik , (3.1)

8“Simpler” essentially because W 1,p is closed under nonlinear products by Morrey’s
inequality.
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for (N × N)-matrices ωi1...ik such that total anti-symmetry holds in the
indices i1, ..., ik ∈ {1, ..., n}, and we follow Einstein’s convention of summing
over repeated upper and lower indices, (but we never “raise” or “lower”
indices). We define the wedge product of a matrix valued k-form ω with a
matrix valued l-form u = uj1...jldx

j1 ∧ ... ∧ dxjl as

ω ∧ u ≡ 1

l!k!
ωi1...ik · uj1...jl dx

i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl , (3.2)

where “·” denotes matrix multiplication, (so ω ∧ ω 6= 0 is possible).
The exterior derivative d is defined component-wise on matrix compo-

nents,

dω ≡ ∂lω[i1...ik]dx
l ∧ dxi1 ∧ ... ∧ dxik , (3.3)

and we define the co-derivative δ on a matrix valued k-form ω as

δω ≡ (−1)(k+1)(n−k) ∗ d ∗ ω,

where ∗ is the Hodge star introduced in terms of the Euclidean metric in
x-coordinates on Ω ⊂ Rn. Both d and δ act component-wise on matrix
components, and all properties of d and δ for scalar valued differential forms
carry over to matrix valued forms. Note, d requires no metric, while δ is
defined via the Euclidean metric in x-coordinates. As a result, the Laplacian
∆ ≡ dδ + δd is given by the standard Euclidean Laplacian

∆ = ∂2
x1 + ...+ ∂2

xn ,

is hence elliptic, and acts component-wise on matrix components and differ-
ential form components.

The exterior derivative satisfies the product rule

d(ω ∧ u) = dω ∧ u+ (−1)kω ∧ du, (3.4)

where ω ∈ W 1,p(Ω) is a matrix valued k-form and u ∈ W 1,p(Ω) is a matrix
valued j-form, and if p > n, then the right hand side of (3.4) lies in W 1,p(Ω).
For invertible matrix valued 0-forms U ∈ W 1,p(Ω), using dU−1 = −U−1 ·
dU · U−1, (3.4) implies

d
(
U−1 · dU

)
= d(U−1) ∧ dU = −U−1dU ∧ U−1dU ∈W 1,p(Ω). (3.5)

The co-derivative δ satisfies the product rule

δ(U ·w) = U ·δw + 〈dU ;w〉, (3.6)

where U ∈ W 1,p(Ω) is a matrix valued 0-form and w ∈ W 1,p(Ω) a matrix
valued 1-form, and if p > n, then the right hand side of (3.6) lies in W 1,p(Ω).
Here 〈· ; ·〉 is the matrix valued inner product defined on matrix valued k-
forms ω and u by

〈ω ;u〉µν ≡
n∑
σ=1

∑
i1<...<ik

ωµσ i1...iku
σ
ν i1...ik

. (3.7)
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Note, 〈ω ;u〉 converts two matrix valued k-forms into a matrix valued 0-
form, and 〈ω ;u〉 satisfies

U ·〈ω ;u〉 = 〈U ·ω ;u〉, 〈ω·U ;u〉 = 〈ω ;U ·u〉, 〈ω ;u·U〉 = 〈ω ;u〉·U, (3.8)

for multiplication by matrix valued 0-forms U ; see [11, Sec. 3] for further
details and proofs in the case of tangent bundles (when N = n), which all
extend to the setting of vector bundles here in a straightforward way.

We define the L2-inner product on matrix valued differential forms by

〈ω, u〉L2 ≡
∫

Ω
tr〈ωT ;u〉dx =

N∑
ν,σ=1

∑
i1<...<ik

∫
Ω
ωνσ i1...iku

ν
σ i1...ik

dx, (3.9)

where dx is the Lebesgue measure on Rn and tr denotes the matrix trace. By
the method of proof of Lemma 8.1 in [14], one can easily show the following
integration by parts formula,

〈du, ω〉L2 + 〈u, δω〉L2 = 0, (3.10)

where u is a matrix valued k-form and ω a matrix valued (k+1)-form, k ≥ 0,
such that u ∈ W 1,p(Ω) and ω ∈ W 1,p∗(Ω), where 1

p + 1
p∗ = 1, and where we

assume either u or ω vanishes on the boundary ∂Ω. As in [14], all Sobolev
norms are taken component-wise on matrix valued differential forms, using
mostly the notation ‖ · ‖m,p ≡ ‖ · ‖Wm,p(Ω), where m ≥ −1.

4. The RT-equations associated to vector bundles

The RT-equations associated to vector bundles (2.5) - (2.6) lie at the heart
of our proof of the main results, Theorems 2.3 and 2.4. Recall, we fix an
arbitrary gauge a and assume the connection components A ≡ Aa of AVM
in this gauge are non-optimal, i.e. A ∈ Lp(Ω) and dA ∈ Lp(Ω). In this
section we first derive the RT-equations (2.5) - (2.6) from the assumption
that a gauge transformation U ∈W 1,p(Ω) exists which maps the connection

to optimal regularity W 1,p/2(Ω). We then prove that solutions U of the
reduced RT-equation (2.6) yields connections of optimal regularity and lie
in SO(r, s). The computations in this section are presented in a formal
manner, and a discussion of the weak formalism required to differentiate
connections in Lp is postponed to Section 6.

4.1. Derivation of the RT-equations. Our strategy for deriving the RT-
equations associated to connections on vector bundles parallels the one for
affine connections in [11, Ch. 3 - 5], (see also [13, Ch. 5]). To begin,
assume there exists a gauge transformation U ∈ W 1,p(Ω) in SO(r, s) which

maps A ≡ Aa to a connection Ab which has optimal regularity W 1,p/2(Ω),

b = U · a. Define the matrix valued 1-form Ã by

Ã ≡ U−1AbU ∈ W 1,p/2(Ω), (4.1)

then the connection transformation law (2.4) reads

A = U−1dU + Ã. (4.2)
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Starting from the transformation law (4.2), we now derive solvable elliptic

equations in U and Ã. Taking the exterior derivative d of (4.2) yields

dÃ = dA− dU−1 ∧ dU, (4.3)

where the last term follows by the Leibnitz rule (3.5). On the other hand,
multiplying (4.2) by U and taking the co-derivative yields

∆U = U ·
(
δA− δÃ

)
+ 〈dU ;A− Ã〉, (4.4)

where we used that ∆U = δdU for the matrix valued 0-form U , (δU = 0
for all 0-forms), and the Leibnitz-rule (3.6) for δ to derive the right hand
side. The matrix valued “inner product” 〈· ; ·〉 was defined in (3.7). Observe

now that the connection transformation law (4.2) leaves the co-derivative δÃ
undetermined, so we are free to choose a matrix valued 0-form α ∈ Lp/2(Ω)
and set

δÃ = U−1α. (4.5)

System (4.3) and (4.5) is of Cauchy-Riemann type and would in principal

determine Ã, but in analogy to [11], we prefer to write this system as the
Poisson type equation

∆Ã = δdA− δ
(
dU−1 ∧ dU

)
+ d(U−1α), (4.6)

which results from taking d of (4.5) and δ of (4.3), adding the resulting

equations, and using ∆ = dδ + δd. Moreover, substituting (4.5) for δÃ in
(4.4), we obtain

∆U = UδA+ 〈dU ;A− Ã〉 − α. (4.7)

Note, it will turn out that the loss of information in going from the first order
system (4.3) and (4.5) to the Poisson type equation (4.6) is not relevant
for our method of establishing optimal regularity, c.f. Lemma 4.1 below.
The coupled system formed by (4.6) and (4.7) is what we take to be the
preliminary version of the RT-equations. From these we can now derive the
final version (2.5), (2.6), equations which, surprisingly, decouple. At this
stage α is some matrix valued 0-form which is free to be chosen.

To continue the derivation, note that solutions of (4.6) - (4.7) could in
general allow for arbitrary matrix valued solutions. The critical step now is
to obtain solutions of (4.6) - (4.7) for which the solutions determine gauge
transformations U which actually lie pointwise in SO(r, s). That is, to show
that solutions satisfy UT ·η·U = η and det(U) = 1. The condition det(U) = 1
is met by solving the RT-equation with U close to the identity 11, and can
therefore be neglected throughout this section. To arrange for UT ηU = η
we now derive an equation for α. To begin, define

w ≡ UT ηU − η, (4.8)

so w = 0 is equivalent to U ∈ SO(r, s) pointwise. We now assume w = 0,
which implies ∆w = 0. Then applying the Leibnitz rule to ∆w = 0 gives

0 = ∆w = ∆
(
UT ηU

)
= (∆U)T ηU + 2〈dUT ; ηdU〉+ UT η ∆U, (4.9)
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and substituting (4.7) for ∆U , we obtain

αT · ηU + UT η · α = (δA)T · UT ηU + UT ηU · δA+ 2〈dUT ; ηdU〉
+〈dU ;A− Ã〉T · ηU + UT η · 〈dU ;A− Ã〉.(4.10)

Using that δA lies pointwise in the Lie algebra of SO(r, s), (the linear space
of anti-symmetric matricesX with respect to η, i.e. XT η+ηX = 0), together
with UT ηU = η, we obtain the cancellation

(δA)T · UT ηU + UT ηU · δA = 0. (4.11)

This cancellation is crucial for the regularities in the RT-equations to close
and for the whole strategy to work out. From (4.11) we now conclude with

αT · ηU +UT η · α = 2〈dUT ; ηdU〉+
(
UT η〈dU ;A− Ã〉

)T
+UT η〈dU ;A− Ã〉

(4.12)
as the sought after equation for α. Since 〈dUT ; ηdU〉T = 〈dUT ; ηdU〉 and
ηT = η, the solutions of (4.12) are given by

α ≡ (UT η)−1〈dUT ; ηdU〉+ 〈dU ;A− Ã〉+ UX, (4.13)

where X can be any element in the Lie algebra with the same regularity as
A. Substitution of (4.13) into the preliminary version (4.6) - (4.7) of the
RT-equations concludes the derivation as follows.

Substituting the expression (4.13) for α back into (4.7), we obtain

∆U = UδA− (UT η)−1〈dUT ; ηdU〉 − UX, (4.14)

the sought after RT-equation (2.6). The Lie algebra element X is free to
be chosen and for our purposes here one can set X = 0. For U ∈ SO(r, s)
we have (UT η)−1 = UT η, however, this substituting must not be made in
(4.14), because the matching to (UT η)−1 instead of UT η in (4.14) appears
to be an essential part of what guarantees solutions U of (4.14) to actually
lie in SO(r, s). In Section 4.3 below we show that solutions U to the RT-
equations (4.14) always lie in SO(r, s), as long that they lie in SO(r, s) on
the boundary of Ω.

To complete the derivation of the RT-equation in Ã, (2.5), we substitute
the expression for α in (4.13) into equation (4.6), and assume UT ηU = η, (so
U−1 = η−1UT η)—anticipating that solutions U of (4.14) will lie in SO(r, s).
This substitution leads to the equation

∆Ã = δdA− δ
(
dUT ∧ dU

)
+ d
〈
dUT ; dU − U · (A− Ã)

〉
+ dX, (4.15)

which, by the connection transformation law (4.2), simplifies to the sought
after RT-equation

∆Ã = δdA− δ
(
dUT ∧ dU

)
+ dX. (4.16)

Subsequently we set X = 0, as this simplification is wholly sufficient for our
theory.
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4.2. How the RT-equations yield optimal regularity. A solution U
to the reduced RT-equation (2.6) gives rise to a solution Ã′ of the first RT-

equation (2.5), as shown in the next lemma. By this, Ã′ gains one derivative
of regularity, from which optimal regularity will be proven for the connection

Ab = UÃ′U−1 (4.17)

in gauge b = U · a in Section 7.1 below, (c.f. (2.7) - (2.9) above).

Lemma 4.1. Assume U solves the reduced RT-equation (2.6) such that U
in SO(r, s) pointwise, then

Ã′ ≡ A− U−1dU (4.18)

solves the first RT-equation (2.5) with Ã replaced by Ã′.

Proof. From ∆ = dδ+ δd, a direct computation using the product rule (3.5)
gives us

∆Ã′ = ∆A−∆(U−1dU)

= δdA− δ(dU−1 ∧ dU) + d
(
δA− δ(U−1dU)

)
. (4.19)

Since U satisfies UT ηU = η and since η−1 = η, we have U−1 = η−1UT η.
Employing this, we find from the product rule (3.6) that

δ(U−1dU) = η−1〈dUT ; ηdU〉+ η−1UT η ·∆U, (4.20)

where we used that and ∆U ≡ dδU since δU = 0 for 0-forms. Then, substi-
tuting the RT-equation (2.6) for ∆U , i.e. ∆U = UδA−(UT η)−1〈dUT ; ηdU〉,
and using UT ηU = η, we find that the last term in (4.19) vanishes,

δA− δ(U−1dU) = 0. (4.21)

Substitution of (4.21) into (4.19) then gives

∆Ã′ = δdA− δ(dU−1 ∧ dU), (4.22)

which is the sought after RT-equation (2.5). This completes the proof. �

We prove in Section 7.1 below, that elliptic regularity theory implies that
Ã′ is two derivatives more regular than the right hand side of (2.5), which

lies in W−1,p/2(Ω) for a non-optimal connection A, dA ∈ Lp(Ω). This gives,
after establishing the above lemma at the weak level to account for the low
regularity in Section 6, the sought after optimal regularity W 1,p/2 for the
connection Ab = UÃ′U−1 in the new gauge b = U · a, and this forms the
basis of the proof of Theorems 2.1 and 2.2, once existence of solutions to
the RT-equations is shown.
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4.3. How the RT-equations yield solutions in SO(r, s). We now show
that a solution U to (4.14) always lies in SO(r, s), as long that it lies in
SO(r, s) on the boundary of Ω. We will see that the argument for compact
groups SO(N) is significantly simpler than the case for non-compact groups
SO(r, s), when r > 0 and s > 0.

For this recall that U ∈ SO(r, s) is equivalent to w = 0, because w ≡
UT ηU − η. We now derive an equation w satisfies whenever U is a solution
of the reduced RT-equation (2.6). As in (4.9) the Leibnitz rule gives

∆w = (∆U)T ηU + 2〈dUT ; ηdU〉+ UT η ∆U, (4.23)

and substitution of the RT-equation (2.6), ∆U = UδA−(UT η)−1〈dUT ; ηdU〉,
for ∆U and (∆U)T yields

∆w = (δA)T · UT ηU + UT ηU · δA, (4.24)

using the symmetry 〈dUT ; ηdU〉T = 〈dUT ; ηdU〉. Since δA is Lie algebra
valued, we have δAT · η + η · δA = 0, and subtraction of this equation from
the right hand side of (4.24) gives

∆w = (δA)T · w + w · δA, (4.25)

which is the sought after equation in w. Equation (4.25) is a linear system of
elliptic PDE’s, and since w vanishes on ∂Ω by assumption, we conclude that
w = 0 is a solution of (4.25) in Ω. But to prove that U ∈ SO(r, s), we have
to show that w = 0 is the only solution to (4.25) with zero boundary data,
a non-trivial problem in view of the Fredholm alternative. We establish the
desired uniqueness in the case of the compact group SO(N) in the following
lemma which is based on the fact that the effect of the right hand side of
(4.25) cancels in the bilinear form associated with the elliptic equation (4.25)
when η = id. A more subtle argument is developed below the Lemma to
establish w = 0 in the case of non-compact groups SO(r, s). This is done
rigorously in Section 5.3.

Lemma 4.2. Assume U ∈W 1,p(Ω) is a solution of (4.14) such that U lies
in SO(N) on the boundary ∂Ω. Then U(x) ∈ SO(N) for any x ∈ Ω.

Proof. We here address the special case η = 11. Define the bilinear functional
B(·, ·) on matrix valued 0-forms w, v ∈ H1(Ω) as

B(w, v) ≡
∫

Ω
tr〈dwT ; dv〉dx+

∫
Ω

tr
(
wT δA v + (wδA)T v

)
dx. (4.26)

By integration by parts, it follows that B vanishes on solutions w of (4.25)
for any test form v ∈ H1(Ω). Thus, for any symmetric solution w of (4.25),
using cyclic commutativity of the trace, we find that

0 = B(w,w) = ‖dw‖L2 +

∫
Ω

tr
(
(δA+ δAT )w2

)
dx

= ‖dw‖L2 , (4.27)
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where we used that δA+ δAT = 0 for the last inequality. Applying next the
Poincaré inequality, using that w = 0 on ∂Ω, gives

0 = B(w,w) ≥ c‖w‖H1 , (4.28)

which implies that any symmetric w solving (4.25) is the trivial solution
w = 0. (Note, the proof applies to the regularity δA ∈ W−1,p(Ω) by use of
a standard mollification of δA.) This completes the proof. �

Note that for η 6= 11, the cancellation in (4.27) does not take place and
one gets the expression δA + δAT = δA − η · δA · η which is nonzero in
general. So a more subtle argument is required to handle the non-compact
case SO(r, s).

We now develop a different, more general argument sufficient to handle
the case of non-compact groups SO(r, s). The complication in the non-
compact case over the compact case is that the spectrum associated with
equation (4.25) can be non-trivial, allowing for non-zero eigenfunctions, for
special A. To prove that solutions U of (2.6) lie pointwise in SO(r, s) in
Ω assuming U ∈ SO(r, s) on ∂Ω for every A, we fix A and replace A in
(2.6) by λA for λ in a neighborhood of 1, say, λ ∈ (0, 1]; we then show that
for almost every λ ∈ (0, 1], the solution Uλ of (2.6) lies in SO(r, s) because
the equation for w has no non-trivial eigenvectors, analogous to the case
SO(N). We extend this to every λ by showing that our iteration scheme
converges uniformly in λ, which implies continuity of Uλ with respect to λ,
which in turn implies the continuity of w with respect to λ as well. Since
wλ = 0 a.e. in λ, continuity implies w ≡ 0, and we have a proof that Uλ lies
in SO(r, s) for all λ ∈ (0, 1].

More precisely, the key observation in our argument is that (4.25) can be
written as an eigenvalue problem when replacing A by λA as follows: To
begin, write the right hand side of (4.25) as

M(w) ≡ (δA)T · w + w · δA, (4.29)

which is a linear mapping in w pointwise at each x ∈ Ω. We then write
(4.25) as

w = ∆−1M(w). (4.30)

SinceM : H1 → H−1 is a bounded linear operator, K ≡ ∆−1M : H−1 → H1

is bounded and compact, so it has a countable spectrum which we denote
by Σ, [3].

Now for each fixed A, consider the family of solutions Uλ of the RT-
equation (4.14) with A replaced by λA for λ ∈ (0, 1] such that Uλ lies in
SO(r, s) on the boundary of Ω for each λ ∈ (0, 1]. For such a Uλ, the
eigenvalue problem (4.30) turns into

1

λ
wλ = K(wλ), (4.31)

where

wλ ≡ UTλ ηUλ − η. (4.32)
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But since K ≡ ∆−1M is a compact operator, it has a countable spectrum, so
the solution wλ in (4.32) cannot be nonzero for almost every λ. To guarantee
the solution U satisfies w = 0 at λ = 1 when λ = 1 is in the spectrum of
K ≡ ∆−1M, we show that the uniform convergence of the iteration scheme
implies that Uλ is a continuous function of λ in W 1,p. Thus, since wλ = 0
for almost every λ, it follows by continuity that wλ = 0 for all λ including
λ = 1. This argument here will be incorporated into our existence theory in
Section 5 in order to prove rigorously that U lies in SO(r, s).

5. Existence theory of the RT-equations - Proof of Theorem
2.2

We now prove Theorem 2.2, our existence result for the reduced RT-
equation (2.6). So assume A, dA ∈ Lp(Ω), n < p <∞, and let M > 0 be a
constant such that

‖(A, dA)‖Lp(Ω) ≡ ‖A‖Lp(Ω) + ‖dA‖Lp(Ω) ≤ M. (5.1)

Theorem 2.2 then states that for any point in Ω there exists a neighborhood
Ω′ ⊂ Ω of that point, (depending only on Ω, p, n and M), and there exists a
solution U ∈W 1,p(Ω′) of the reduced RT-equations (2.6), such that U(x) ∈
SO(r, s) for any x ∈ Ω′ and such that U satisfies

‖U‖W 1,p(Ω′) ≤ C(M) ‖(A, dA)‖Lp(Ω′), (5.2)

for some constant C(M) > 0 depending only on Ω′, p, n and M .
The proof of Theorem 2.2, is based on the following iteration scheme. The

initial iterate is U1 = 11, so U1 ∈ SO(r, s). Assuming then that Uk ∈W 1,p(Ω)
is given, define the subsequent iterate Uk+1 ∈W 1,p(Ω) as the solution of{

∆Uk+1 = UkδA− (UTk η)−1〈dUTk ; ηdUk〉
Uk+1 = 11 on ∂Ω.

(5.3)

The iterates Uk will in general not lie in the group SO(r, s), but once we
show that their limit U is a solution of the reduced RT-equation (2.6), one
can prove that U lies in SO(r, s) by the spectral argument in Sections 4.3
and 5.3. To handle the non-linearities and prove convergence of the iteration
scheme, we need to introduce a small parameter ε > 0 which is accomplished
in the next subsection.

5.1. The ε-rescaled equations. To handle the non-linearity of the RT-
equation (2.6) and prove convergence of our iteration scheme, we now intro-
duce a small parameter ε > 0 into (2.6). For this, consider (2.6) to be given
in some (arbitrary) coordinate system x on the base space Ω,

∆xU = UδxA− (UT η)−1〈dxUT ; ηdxU〉, (5.4)

where the index x denotes the coordinate dependence of the derivatives. To
start, assume without loss of generality that Ω = B1(0). Now restrict A to
the ball of radius ε with respect to the Euclidean coordinate norm in Rn,
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Ω = Bε(0) ≡ {x ∈ Rn | x2
1 + ... + x2

n < 1} for some 0 < ε < 1. We now
introduce a change to coordinates

x→ x′ ≡ x/ε. (5.5)

Note, coordinate transformations in the base space do not affect the objects
on the fibres (U , η and A), only their coordinate derivatives, i.e., the way
their rate of change is measured. Under the coordinate transformation x→
x′, (5.4) transforms as

1

ε2
∆x′U =

1

ε
Uδx′A−

1

ε2
(UT η)−1〈dx′UT ; ηdx′U〉, (5.6)

and is defined on the ball of radius 1 in x′-coordinates. We now make the
ansatz that U is a small perturbation of the identity,

U(x′) = 11 + εv(x′). (5.7)

Substituting (5.7) into (5.6) and multiplying by ε, we write (5.6) equivalently
as

∆v = UδA− ε (UT η)−1〈dvT ; ηdv〉, (5.8)

expressed in x′-coordinates on Ω′ = B1(0). Equation (5.8) is the rescaled
RT-equation which we solve via the iteration scheme introduced below.

Now, to show that the initial bound (5.1) is maintained, observe the
following difference in the scaling behavior of A and dA,

‖A(x′)‖Lp(B1(0)) = ε
−n
p ‖A(x)‖Lp(Bε(0)), (5.9)

‖dx′A‖Lp(B1(0)) = ε
1−n

p ‖dxA‖Lp(Bε(0)). (5.10)

Since p > n, the scaling for dA preserves the initial bound (since ε < 1),
but the scaling of A, in general, gives an Lp norm which grows as ε → 0.
To address this problem, note that since optimal regularity and Uhlenbeck
compactness are local properties, it suffices to restrict to arbitrarily small
neighborhoods Bδ(0), and

‖(A(x), dxA)‖Lp(Bδ(0)) → 0,

as δ → 0. Thus, at the start, for each ε, choose δ = δ(ε) depending on ε
such that

‖(A(x), dxA)‖Lp(Bδ(0)) ≤ εM.

Starting in Bδ(0), and doing the above scaling of coordinates in (5.5), gives
equation (5.6) in Bδ(0), where δ > 0, and where δ depends on ε. Then,
working in x′ coordinates in Bδ(0), we maintain by (5.9) the bound

‖(A(x′), dx′A)‖Lp(Bδ(0)) ≤M.
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Since the estimates used below, (namely, Morrey’s inequality, Sobolev em-
bedding, the Poincaré inequality and elliptic regularity), hold uniformly in-
side the ball of radius one,9 instead of carrying δ along throughout the
argument, we assume without loss of generality that δ = 1.

From now on we denote the coordinates x′ again as x-coordinates, and
treat these x-coordinates as well as Ω ≡ Ω′ = B1(0) fixed, while ε > 0 in
(5.8) can be varied, and must be chosen sufficiently small (bounded away
from 0) for our iteration scheme below to converge.

5.2. The iteration scheme. Start with the iterate v1 = 0. Then U1 ≡ 11+
εv1 = 11 lies in SO(r, s). Assume now that vk ∈W 1,p(Ω) is given with vk = 0
on ∂Ω, p > n, so Uk ≡ 11 + εvk lies in SO(r, s) on ∂Ω, but not necessarily
everywhere in Ω. Define the next iterate Uk+1 = 11 + εvk+1 ∈ W 1,p(Ω) by
solving

∆vk+1 = UkδA− ε (UTk η)−1〈dvTk ; ηdvk〉, (5.11)

with Dirichlet boundary data vk+1 = 0 on ∂Ω. As shown in Lemma 5.2 be-
low, this defines a sequence of iterates (vk)k∈N in W 1,p(Ω), lying in SO(r, s)
on ∂Ω, but not necessarily everywhere in Ω.

We now derive estimates in terms of our incoming curvature bound (5.1),
for the iterates vk and differences of iterates vk+1 ≡ vk+1− vk. We begin by
clarifying the existence of the inverse of Uk = 11+ εvk when ε > 0 sufficiently
small.

Lemma 5.1. Let 0 < ε < εk, for

εk ≡
1

2C0‖vk‖1,p
(5.12)

where C0 > 0 is the constant from the Morrey inequality (A.4). Then the
iterate Uk ≡ 11 + εvk is invertible with inverse U−1

k = 11 − εu−k , and there
exists a constant C−1 > 0 depending only on p, n,Ω and C0 such that

‖u−k ‖W 1,p ≤ C−1‖vk‖W 1,p ; (5.13)

and for 0 < ε < min(εk, εk−1), the difference u−k ≡ u−k − u
−
k−1 satisfies the

estimate

‖u−k ‖W 1,p ≤ C−1‖vk‖W 1,p . (5.14)

Proof. This is proven in [14], Lemmas 6.1 and 6.3. �

We now prove the existence of the iterates vk+1 in W 1,p for ε > 0 suffi-
ciently small.

Lemma 5.2. For 0 < ε < εk, with εk given in (5.12), there exists a solution
vk+1 ∈ W 1,p(Ω) of (5.11) with boundary data vk+1 = 0 on ∂Ω, and there

9Note, smooth functions of compact support (a dense subset) in the small ball can be
view as functions of compact support in a fixed larger domain where the uniform estimates
hold.
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exists some constant C1 > 0 depending only on p, n,Ω, M , C0 and C−1 such
that the following elliptic estimate holds,

‖vk+1‖W 1,p ≤ C1

(
‖A‖Lp+ε‖A‖Lp‖vk‖1,p+ε

(
1+ε‖vk‖1,p

)
‖vk‖21,p

)
. (5.15)

Proof. The existence of a solution vk+1 to (5.11) together with estimate
(5.15) for any k ∈ N follows from Theorem A.1, (a standard result from
elliptic PDE theory included with references in the appendix). To apply
Theorem A.1, we need to show that the right hand side of (5.11) is in
W−1,p(Ω), the space of functionals over W 1,p∗(Ω), with conjugate exponent
p∗ satisfying 1

p + 1
p∗ = 1.

For this we estimate the W−1,p-norm of the right hand side of (5.11) to
show that it is bounded. Note first that ‖δA‖−1,p ≤ ‖A‖Lp by definition of
the operator norm, so the zero order term on the right hand side of (5.11),
resulting from substitution of Uk = 11 + εvk, is bounded. Moreover, vkδA
is in W−1,p(Ω), since by (3.10) and cyclic commutativity we find for any

matrix valued 0-form φ ∈ W 1,p∗

0 (Ω) that 〈UkδA, φ〉L2 = −〈A, d(UTk φ)〉L2 ,
and thus

‖vkδA‖−1,p ≤ C‖A‖Lp‖vk‖1,p (5.16)

by the Hölder inequality for a generic constant C > 0 and using that Uφ ∈
W 1,p∗(Ω) for any U ∈W 1,p(Ω) for p > n, by the Morrey inequality. By this,
we conclude that the first source term in (5.11) is bounded by

‖UkδA‖−1,p ≤ ‖A‖Lp + ε C‖A‖Lp‖vk‖1,p. (5.17)

To handle the non-linear term in (5.11), which is one derivative more regular

than δA, we use that Sobolev embedding gives Lp/2(Ω) ⊂ W−1,p(Ω) for
p > n, from which we derive the estimate10

‖(UTk η)−1〈dvTk ; ηdvk〉‖−1,p ≤ C‖(UTk η)−1〈dvTk ; ηdvk〉‖L p2
≤ C‖(UTk η)−1‖1,p ‖dvk‖2Lp (5.18)

in terms of a generic constant C > 0, where the first inequality follows from
Sobolev embedding and the second one from the Morrey inequality (A.4),
used to bound the supremums norm of (UTk η)−1, in combination with the
Hölder inequality, used to bound the inner product of dvk. Using finally
that the bound (5.13) of Lemma 5.1 on U−1

k = 11− εu−k , we obtain

‖(UTk η)−1〈dvTk ; ηdvk〉‖−1,p ≤ C
(
1 + ε‖vk‖1,p

)
‖vk‖21,p. (5.19)

In summary, the bounds (5.17) and (5.19) show that the right hand side of
(6.4) defines a functional over W 1,p∗ .

10To be more precise, the embedding Lp/2(Ω) ⊂ W−1,p(Ω) follows from applying

Sobolev embedding to show that φ ∈ W 1,p∗ ⊂ L(p/2)∗ . Thus the dual paring of

(UTk η)−1〈dvTk ; ηdvk〉 with φ ∈ W 1,p∗ is finite for p > n, which gives the desired em-
bedding. (Note, Sobolev embedding states that φ ∈ Lq for 1

q
= 1

p∗ −
1
n

. Now the required

embedding Lq ⊂ L(p/2)∗ holds if and only if q ≥ (p/2)∗, which in turn is equivalent to the
condition p ≥ n.)
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Theorem A.1 now implies the existence of vk+1 ∈ W 1,p(Ω) which solves
(5.11) with Dirichlet data vk+1 = 0 on ∂Ω. The standard elliptic estimate
(A.3) of Theorem A.1 in the appendix yields that the W 1,p-norm of vk+1

is bounded by the W−1,p-norm of the right hand side of (5.11), which in
turn is bounded by (5.17) and ε times (5.19). This proves the sought after
estimate (5.15) with a generic constant C1 > 0 depending only on p, n,Ω
and M . �

We now introduce an induction assumption which is maintained by our
iteration scheme and which provides uniform bounds.

Lemma 5.3. Let k ∈ N and assume

ε < min
( 1

4MC1C0
,

1

4C2
1M

,
1

4C1M(1 + C1)

)
. (5.20)

Then, if
‖vk‖1,p ≤ 2C1M, (5.21)

the subsequent iterate satisfies

‖vk+1‖1,p ≤ 2C1M. (5.22)

Proof. First note that for any ε satisfying (5.20), the induction assumption
‖vk‖1,p ≤ 2C1M implies

ε <
1

2C0

1

2MC1
≤ 1

2C0

1

‖vk‖1,p
= εk.

Thus, the elliptic estimate (5.15) applies and yields

‖vk+1‖W 1,p ≤ C1M + ε 2C2
1M

2
(
1 + 2C1 + ε 4C2

1M
)

≤ C1M + ε 2C2
1M

2(2 + 2C1)
≤ 2C1M, (5.23)

where the last two inequalities follow from the second and third ε-bound in
(5.20). �

The uniform bound (5.22) provided by Lemma 5.3 already implies weak
W 1,p-convergence of the iterates, and hence strong Lp-convergence, but this
is not sufficient to prove the limit function solves the rescaled RT-equations
(5.8). For this, we now establish strong convergences in the W 1,p-norm by
deriving estimates on differences of iterates which are of order ε. From this
a geometric series argument then implies that the sequence of iterates is
Cauchy in W 1,p(Ω), hence converging strongly in W 1,p(Ω).

Lemma 5.4. For 0 < ε < min(εk, εk−1), there exists a constant C2 > 0
depending only on p, n,Ω, C0, C−1, such that difference of iterates vk+1 ≡
vk+1 − vk satisfies the estimate

‖vk+1‖W 1,p ≤ ε C2

(
‖A‖Lp + C(k)

)
‖vk‖W 1,p , (5.24)

where

C(k) ≡
(
1 + ε‖vk−1‖1,p

)(
‖vk‖1,p + ‖vk−1‖1,p

)
+ ε‖vk‖1,p. (5.25)
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Proof. From (5.11), we find that

∆vk+1 = ε vk · δA− ε η−1Nk (5.26)

where

Nk ≡ (UTk )−1〈dvTk ; ηdvk〉 − (UTk−1)−1〈dvTk−1; ηdvk−1〉
=

(
1− ε(u−k−1)T

)(
〈dvkT ; ηdvk〉 − 〈dvTk−1; ηdvk〉

)
− εu−k

T
〈dvTk ; ηdvk〉,

which is linear in differences of iterates and their inverses. The elliptic
estimate (A.3) now yields

‖vk+1‖W 1,p ≤ ε C
(
‖A‖Lp ‖vk‖1,p + ‖Nk‖L p2

)
, (5.27)

where we used that ‖Nk‖−1,p ≤ C‖Nk‖L p2 for p > n by Sobolev embedding,

where C > 0 is some constant depending only on p, n,Ω. Using now the
Morrey inequality (A.4) as well as estimates (5.13) and (5.14) on inverses,
we bound ‖Nk‖L p2 as

‖Nk‖L p2 ≤ C
((

1 + ε‖vk−1‖1,p
)(
‖vk‖1,p + ‖vk−1‖1,p

)
+ ε‖vk‖1,p

)
‖vk‖1,p,

(5.28)
where C > 0 is some constant depending only on p, n,Ω. This established
(5.24) and proves the lemma. �

We now prove convergence of the iteration scheme, assuming without loss
of generality that C0 ≥ 1, C1 ≥ 1, C2 ≥ 1 and M ≥ 1.

Proposition 5.5. There exist an ε̄ > 0, such that for any 0 < ε < ε̄ the
iterates vk converge to some v strongly in W 1,p(Ω). Moreover, v solves the
rescaled RT-equation (5.8) with boundary data v = 0 on ∂Ω and U ≡ 11 + εv
is invertible.

Proof. Choose ε > 0 small enough to meet the ε-bound (5.20). Since v1 = 0
meets the induction assumption (5.21), Lemma 5.3 implies that

‖vk‖1,p ≤ 2C1M ∀ k ∈ N. (5.29)

Combining (5.29) with the difference estimate (5.24) of Lemma 5.4 then
gives

‖vk+1‖W 1,p ≤ ε C2(M + 10C1M)‖vk‖W 1,p , (5.30)

since

C(k) ≤
(
1 + ε2C1M

)
4C1M + ε2C1M ≤ 10C1M. (5.31)

Restricting ε further to

ε <
1

C2(M + 10C1M)
, (5.32)

estimate (5.30) implies strong convergence in W 1,p(Ω) by the standard geo-
metric series argument. The limit v therefore also solves (5.8) with boundary
data v = 0 on ∂Ω. �
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Clearly, U ≡ 11+εv ∈W 1,p(Ω) solves the RT-equation (2.6) with Dirichlet
data U = 11 on ∂Ω, and satisfies the sought after elliptic estimate (2.11).
To complete the proof of Theorem 2.2, we next show that U does indeed lie
pointwise in SO(r, s).

5.3. Proof that our iteration scheme generates solutions in SO(r, s).
We now prove that the solution U = 11 + εv constructed in Proposition 5.5
through our iteration scheme does indeed lie pointwise in SO(r, s). For this
recall that U ∈ SO(r, s) is equivalent to w = 0, for w ≡ UT ηU − η = 0. The
property det(U) = 1 is already satisfied by construction of U = 11 + εv close
to the identity (for ε > 0 sufficiently small). Recall further that we showed
in Section 4.3 that any solution U of the RT-equation (2.6) satisfies (4.25),
that is,

∆w = (δA)T · w + w · δA, (5.33)

with Dirichlet boundary data

w = 0 on ∂Ω. (5.34)

Clearly w = 0 is a solution of (5.33). However, in light of the Fredholm
alternative, solutions to (5.33) might not be unique, and our iteration scheme
above provides no information whether wk ≡ UTk ηUk − η converges to zero.
To prove that w = 0 does indeed hold, we need to incorporate the spectral
argument outlined in Section 4.3 into the framework of the rescaled RT-
equations (5.8).

To implement this spectral argument, write the rescaled RT-equation
(5.8) as

∆v = (11 + εv)δA− εH(v), (5.35)

where for this argument

H(v) ≡ (UT η)−1〈dvT ; ηdv〉. (5.36)

For λ ∈ (0, 1], consider the following modification

∆vλ = (11 + εvλ)λδA− εH(vλ), (5.37)

based on replacing A by λA. Proposition 5.5 applies for each λ ∈ (0, 1] and
yields the existence of a solution Uλ = 11 + εvλ ∈W 1,p(Ω) of (5.37). Clearly
wλ ≡ (Uλ)T ηUλ − η solves (5.33) with λA in place of A, and following the
argument between (4.30) and (4.31) in Section 4.3, we write this equation
as

1

λ
wλ = Kwλ (5.38)

for the compact operator Kw ≡ ∆−1
(
δAT · w + w · δA

)
. Thus, since the

spectrum of K is countable, it follows that wλ = 0 is the unique solution of
(4.30) for almost every λ ∈ (0, 1], i.e., for every λ with 1/λ in the complement
of the spectrum of K. We now prove continuity of the wλ with respect to λ,
for solutions wλ generated by our iteration scheme. Continuity then implies
wλ = 0 for all λ ∈ (0, 1], and in particular at λ = 1, and this gives w = 0. The
continuity of wλ with respect to λ is a consequence of the following lemma,
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(which also implies that solution Uλ generated by our iteration scheme with
A replaced by λA converge uniformly in λ with respect to W 1,p).

Lemma 5.6. Let Uλ = 11 + εvλ and Uλ
′

= 11 + εvλ
′

be solutions of the
RT-equations (5.37) generated by our iteration scheme. Then there exists
ε0 > 0 such that for any 0 < ε < ε0 we have the estimate

‖Uλ − Uλ′‖W 1,p ≤ C3|λ− λ′|, (5.39)

for some constant C3 > 0 depending only on p, n,Ω, C0, C1 and C2.

Proof. By Lemma 5.3 there exists a ε′0 > 0 such that for all 0 < ε < ε′0 any
solution vλ generated by the iteration scheme with λ ∈ (0, 1] satisfies the
uniform bound

‖vλ‖ ≤ 2C1M. (5.40)

This provides a uniform bound on vλ for λ ∈ (0, 1].
Next, we establish the Cauchy property (5.39) in the spirit of the proof of

Lemma 5.4. Since vλ and vλ
′

both satisfy the RT-equation (5.37), we have

∆(vλ − vλ′) = (λ− λ′)δA+ ε(λvλ − λ′vλ′)δA− ε
(
H(vλ)−H(vλ

′
)
)
, (5.41)

and standard elliptic estimates (equation (A.3) with corresponding source
estimates as in Section 5.2) now imply

‖vλ − vλ′‖1,p ≤ |λ− λ′| ‖δA‖−1,p + ε ‖λvλ − λ′vλ′‖1,p ‖δA‖−1,p

+ ε ‖H(vλ)−H(vλ
′
)‖−1,p. (5.42)

As before ‖δA‖−1,p ≤ ‖A‖Lp ≤M , while

‖λvλ − λ′vλ′‖1,p ≤ |λ− λ′| ‖vλ‖1,p + |λ′| ‖vλ − vλ′‖1,p; (5.43)

and by the corresponding estimate in the proof of Lemma 5.4 on differences
of iterates, we can bound the non-linear term by

‖H(vλ)−H(vλ
′
)‖−1,p ≤ C2

(
‖A‖Lp + C(λ, λ′)

)
‖vλ − vλ′‖1,p, (5.44)

where

C(λ, λ′) ≡
(
1 + ε‖vλ′‖1,p

)(
‖vλ‖1,p + ‖vλ′‖1,p

)
+ ε ‖vλ‖1,p. (5.45)

Using now (5.40), in the form ‖vλ‖ ≤ 2C1M and ‖vλ′‖ ≤ 2C1M , to further
bound the right hand sides of (5.43) and (5.44), we find that (5.42) gives
the bound

‖vλ − vλ′‖1,p ≤ (M + ε 2C1M) |λ− λ′|+ ε C ′2‖vλ − vλ
′‖1,p, (5.46)

for some constant C ′2 > 0 depending only on p, n,Ω, M , C0, C1 and C2.
Choosing now 0 < ε0 < min(ε′0,

1
2C′2

), subtraction of the last term in (5.46)

from both sides of the equation yields

1

2
‖vλ − vλ′‖1,p ≤ (M + ε2C1M) |λ− λ′|, (5.47)

which implies the desired estimate (5.39). �
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The continuity of Uλ and wλ with respect to λ in the W 1,p-norm asserted
by Lemma 5.4, implies that wλ = 0 for all λ, including the original λ = 1.
This proves that U lies in SO(r, s) everywhere in Ω and completes the proof
of Theorem 2.2.

6. Weak formalism

We finally address the weak formulation of the RT-equations (2.6) re-
quired for the low regularity U ∈ W 1,p and A, dA ∈ Lp(Ω). Extending the
proof of our existence result, Proposition 5.5 to this weak setting here is
quite standard and should not require further explanation, (c.f., [14] for a
detailed analysis of the weak setting in the case of tangent bundles). Only
the derivation of equation (4.25) for w = UT ηU − η in Section 4.3 as well
as the proof of Lemma 4.1 require clarification, since both proofs involve
substitutions of the RT-equation (2.6) in a pointwise sense.

We now introduce the weak form of the RT-equations (2.6) based on the
integration by parts formula (3.10). To begin, we define the weak Laplace

operator on Ã as

∆Ã[ψ] ≡ −〈dÃ, dψ〉L2 − 〈δÃ, δψ〉L2 , (6.1)

acting on matrix valued 1-forms ψ ∈W 1,(p/2)∗

0 (Ω), and we define

∆U [φ] ≡ −〈dU, dφ〉L2 , (6.2)

for matrix valued 0-forms φ ∈W 1,p∗

0 (Ω), (note that δφ = 0 for all 0-forms),
where 1

p/2 + 1
(p/2)∗ = 1 and 1

p + 1
p∗ = 1, and the L2 inner product 〈·, ·〉L2

defined in (3.9). Based on this, we define the weak form of the RT-equations
(2.5) - (2.6) as

∆Ã[ψ] = −〈dA, dψ〉L2 + 〈dU−1 ∧ dU, dψ〉L2 (6.3)

∆U [φ] = −〈A, d(UTφ)〉L2 −
〈
(UT η)−1〈dUT ; ηdU〉, φ

〉
L2 . (6.4)

From the Hölder inequality and Sobolev embedding it follows that the right
hand side of (6.4) defines a functional in W−1,p(Ω), (c.f. the proof of Lemma

5.2), and the right hand side of (6.4) defines a functional in W 1,p/2(Ω).
In the next lemma we extend the derivation of equation (4.25) for w in

Section 4.3, i.e., ∆w = (δA)T · w + w · δA, to the weak setting here.

Lemma 6.1. Assume U ∈ W 1,p(Ω) is a weak solution of (6.4). Then
w ≡ UT ηU − η ∈W 1,p(Ω) solves (4.25) weakly, that is,

∆w[φ] = −〈AT , d(φw)〉L2 − 〈A, d(wφ)〉L2 (6.5)

holds for any matrix valued 0-forms φ ∈W 1,p∗

0 (Ω).

Proof. Using that dw = dUT · ηU + UT η · dU , a direct computation using
cyclic commutativity of the matrix-trace shows that

−∆w[φ] ≡ 〈dw, dφ〉
= 〈dUT , dφ · UT η〉L2 + 〈dU, ηU · dφ〉L2 . (6.6)
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Writing dφ ·UT η = d(φUT η)−φ · d(UT η) and ηU · dφ = d(ηUφ)− d(ηU) ·φ
by the Leibnitz rule, and substituting this back into (6.6), we substitute
for the terms containing total derivatives, (that is, 〈dU, d(ηU · φ)〉L2 and
〈dUT , d(φUT η)〉L2 = 〈dU, d(ηUφT )〉L2), the right hand side of the RT-
equation (6.4).11 A calculation then gives

−∆w[φ] = 〈AT , d(φ · UT ηU)〉L2 + 〈A, d(UT ηU · φ)〉L2 , (6.7)

after several cancellations which become apparent by our definition of 〈·, ·〉L2

in (3.9). In the last step, we now use that AT η + ηAT = 0, (since A lies in
the Lie algebra), to subtract from the right hand side of (6.7) the expression

0 = 〈(AT η + ηAT ), dφ〉L2 = 〈AT , dφη〉L2 + 〈A, ηdφ〉L2 , (6.8)

which yields the sought after equation (6.5). This completes the proof. �

By Lemma 6.1, it is straightforward to extend the argument in Section
5.3 to weak solutions of the RT-equation (6.4) and show that our iteration
scheme in Section 5 produces solutions U which lie pointwise in SO(r, s).
Note, in order to define the compact operator K ≡ ∆−1M in (4.30) at the
weak level, it suffices to introduce M as the bilinear form on the right hand
side of (6.5).

We next extend Lemma 4.1 to the weak setting, which is required for the
proof of Theorem 2.1 in Section 7.1 below.

Lemma 6.2. Assume U ∈ W 1,p(Ω) solves (6.3) such that U in SO(r, s)

pointwise, then Ã′ ≡ A − U−1dU solves (6.3) with Ã replaced by Ã′, and

Ã ∈W 1,p/2(Ω).

Proof. To begin observe the regularity Ã′ ≡ A− U−1dU ∈ Lp(Ω), and that

by (3.5) dÃ′ = dA− dU−1 ∧ dU ∈ Lp(Ω), which yields

− 〈dÃ′, dψ〉L2 = −〈dA, dψ〉L2 + 〈dU−1 ∧ dU, dψ〉L2 . (6.9)

Thus, to show that Ã′ solves the RT-equation (6.3) weakly, it remains to
show that

− 〈δÃ′, δψ〉L2 = 0. (6.10)

In analogy to the proof of Lemma 4.1, we accomplish this by showing that

δÃ′[φ] ≡ −〈Ã′, dφ〉L2 = 0 (6.11)

for any matrix valued 0-form φ ∈W 1,p∗(Ω). For this we use that UT ηU = η
implies U−1 = ηUT η, and compute

−δÃ′[φ] = 〈A, dφ〉L2 − 〈dU, ηUη · dφ〉L2

= 〈A, dφ〉L2 + 〈dU, d(ηUη)φ〉L2 − 〈dU, d(ηUηφ)〉L2 (6.12)

and substitution of the weak RT-equation (6.4) for the last terms yields after

a computation the sought after vanishing (6.12). This proves that Ã′ solves
the sought after RT-equation (6.3) in the weak sense.

11Recall, fφ ∈W 1,p∗(Ω) for any f ∈W 1,p(Ω) when p > n by the Morrey inequality.



28 M. REINTJES AND B. TEMPLE

To prove the regularity gain from Ã′ ∈ Lp(Ω) to Ã′ ∈W 1,p/2(Ω), observe

that the right hand side in (6.3) defines a functionals over W 1,(p/2)∗ . Namely,

since dA ∈ Lp ⊂ Lp/2 and dU−1 ∧ dU ∈ Lp/2, the L2 inner products on the
right hand side of (6.3) are both finite by Hölder inequality and indeed define

functionals over W 1,(p/2)∗ . This completes the proof. �

7. Proof of optimal regularity and Uhlenbeck compactness

Theorem 2.2, our fundamental existence result, was proven in Section 5.
We now complete the proofs of Theorems 2.1, 2.3 and 2.4, which are based
on Theorem 2.2, together with Lemmas 4.1 and 6.2 which give the regularity
boost for Ã′.

7.1. Proof of Theorem 2.1. Let A ≡ Aa be the connection components
in a gauge a of a connection AVM on an SO(r, s) vector bundle VM with
base manifold M ≡ Ω ⊂ Rn open and bounded. Assume A ∈ Lp(Ω) with
dA ∈ Lp(Ω), for p > n with p <∞.

Theorem 2.1, part (ii), then states that if there exists a gauge trans-
formation U ∈ W 1,p(Ω) pointwise in SO(r, s), such that the gauge trans-

formed connection Ab in (2.4) has optimal regularity Ab ∈W 1,p/2(Ω), then

Ã ≡ U−1AbU ∈ W 1,p/2 together with U solve the RT-equations (2.5) and
(2.6), respectively. The proof of this statement follows directly from the
derivation of the RT-equation in Section 4.1, and it is straightforward to
extend this derivation to the weak formalism of Section 6.

Theorem 2.1, part (i), states that if there exists a solution U ∈ W 1,p(Ω)
in SO(r, s) of the reduced RT-equations (2.6), then the gauge transformed

connection Ab in (2.4) has optimal regularity Ab ∈ W 1,p/2(Ω). The proof
of this statement follows from Lemma 6.2. That is, Lemma 6.2 asserts that
Ã′ ≡ A − U−1dU has regularity W 1,p/2(Ω) as a result of solving the RT-
equation (2.5). Thus, since the connection in the gauge b = U · a satisfies

Ab = UÃ′U−1, (7.1)

it follows that Ab ∈W 1,p/2(Ω), which is optimal regularity. This completes
the proof of Theorem 2.1. �

7.2. Optimal regularity - Proof of Theorem 2.3. Assume A, dA ∈
Lp(Ω), n < p < ∞, as in Theorem 2.1, satisfy the bound (2.10), i.e.
‖(A, dA)‖Lp(Ω) ≤M . Theorem 2.3 then asserts that for any point in Ω there
exists a neighborhood Ω′ ⊂ Ω of that point, (depending only on Ω, p, n and
M), and there exists a gauge transformation U ∈W 1,p(Ω′) in SO(r, s), such
that the connection components Ab of the resulting gauge b = U ·a in (2.4)
have optimal regularity

Ab ∈W 1,p/2(Ω′′), (7.2)

on every open set Ω′′ compactly contained in Ω′, and such that

‖Ab‖W 1,p/2(Ω′′) ≤ C(M) ‖(A, dA)‖Lp(Ω′), (7.3)
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for some constant C(M) > 0 depending only on Ω′′,Ω′, p, n and M .
To prove Theorem 2.3, observe that Theorem 2.2 yields the existence of

the sought after gauge transformation U ∈W 1,p(Ω′) which, by Theorem 2.1
(i), lifts A to optimal regularity (7.2). It only remains to prove the elliptic
estimate (7.3). For this, recall first that Theorem 2.2 asserts that U satisfies
estimate (2.11), i.e.,

‖U‖W 1,p(Ω′) ≤ C(M) ‖(A, dA)‖Lp(Ω′), (7.4)

for some constant C(M) > 0 depending only on Ω′, p, n and M . By Lemma

6.2, we know that Ã ∈W 1,p/2 solves the RT-equation (2.5). Now the interior
elliptic estimate A.5 of Theorem A.2 implies, after bounding the right hand
side of (2.5), by using the Hölder inequality and (7.4), that

‖Ã′‖W 1,p/2(Ω′′) ≤ C(M) ‖(A, dA)‖Lp(Ω′), (7.5)

for some constant C(M) > 0 depending only on Ω′′,Ω′, p, n and M . Com-
bining now (7.4) with (7.5), it is straightforward to show that the connection

of optimal regularity Ab = UÃ′U−1 satisfies the sought after bound (7.3).
This completes the proof of Theorem 2.3. �

7.3. Uhlenbeck compactness - Proof of Theorem 2.4. Consider finally
a sequence of connections (Ai)i∈N on VM in fixed gauge a, satisfying the
uniform bound

‖(Ai, dAi)‖Lp(Ω) ≡ ‖Ai‖Lp(Ω) + ‖dAi‖Lp(Ω) ≤ M, (7.6)

for some constant M > 0. Theorem 2.4 then states that for any point in Ω
there exists a neighborhood Ω′′ ⊂ Ω of that point, (for which we can take
any of the compactly contained neighborhoods asserted to exist by Theorem
2.3), such that statements (i) - (iii) hold.

(i) There exists for eachAi a gauge transformation Ui ∈W 1,p(Ω′′, SO(r, s))
to a gauge bi = Ui · a, such that the components Abi of Ai in the gauge bi
have optimal regularity Abi ∈W 1,p/2(Ω′′), with uniform bound

‖Abi‖W 1,p/2(Ω′′) ≤ C(M)M, (7.7)

for some constant C(M) > 0 depending only on Ω′′,Ω, p, n and M .
The proof of (i) is a direct consequence of the optimal regularity result of

Theorem 2.3 applied to each connection, noting that the neighborhood Ω′′

only depends on the upper bound M , and that the right hand side of (7.3)
is uniformly bounded by C(M)M > 0.

(ii) The sequence of gauge transformations Ui is uniformly bounded in
W 1,p(Ω′′) by (2.11), and a subsequence of this sequence converges weakly in
W 1,p to some U ∈W 1,p(Ω′′) in SO(r, s).

The proof of (ii) follows immediately from estimate (2.11) of Theorem
2.2, which holds on each Ui and turns into a uniform bound in light of (7.6).
The Banach Alaouglu compactness theorem [3] then implies the sought after
weak convergence of a subsequence of the Ui in W 1,p(Ω).
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(iii) Main conclusion: There exists a subsequence of Ai, (denoted again
by Ai), such that the components of Abi converge to some Ab weakly in

W 1,p/2(Ω′′), and Ab are the connection coefficients of A in the gauge b =
U · a, where A is the weak limit of Ai in Lp(Ω′′) in fixed gauge a.

To prove (iii), note that the existence of the converging subsequence
follows from the uniform bound (7.7) with respect to the W 1,p-norm by the
Banach Alaouglu compactness theorem. By first restricting only to those
elements of the sequence Ai associated to the convergent subsequence of Ui,
asserted by part (ii) with weak limit U ∈W 1,p, it follows that the limit Ab

does indeed give the connection coefficients of A in the gauge b = U ·a. This
completes the proof of Theorem 2.4, and gives our Uhlenbeck compactness
result. �

Appendix A. Basic results from elliptic PDE theory

We now summarize the results we use from elliptic PDE theory. We as-
sume throughout that n < p < ∞, n ≥ 2 and that Ω ⊂ Rn is a bounded
open domain, simply connected and with smooth boundary. Our proofs
in this paper use only the following two theorems of elliptic PDE Theory,
which directly extend to matrix valued and vector valued differential forms
because the Laplacian acts component-wise. Note, we take the weak Lapla-
cian here as ∆u[φ] = −〈du, dφ〉L2 for scalar functions u ∈ W 1,p(Ω) and for

test functions φ ∈ W 1,p∗

0 (Ω), where W 1,p∗

0 (Ω) is the closure of C∞0 (Ω) with

respect to the W 1,p∗-norm (so φ|∂Ω = 0). Our first theorem is based on
Theorem 7.2 in [15], but adapted to the case of solutions to the Poisson
equation with non-zero Dirichlet data, (see Appendix B in [14] for a proof).

Theorem A.1. Let Ω ⊂ Rn be a bounded open set with smooth boundary
∂Ω, assume f ∈W−1,p(Ω) and u0 ∈W 1,p(Ω)∩C0(Ω) for n < p <∞. Then
the Dirichlet boundary value problem

∆u[φ] = f [φ], in Ω (A.1)

u = u0 on ∂Ω, (A.2)

for any φ ∈W 1,p∗

0 (Ω), has a unique weak solution u ∈W 1,p(Ω) with bound-

ary data u−u0 ∈W 1,p
0 (Ω). Moreover, any weak solution u of (A.1) - (A.2)

satisfies

‖u‖W 1,p(Ω) ≤ C
(
‖f‖W−1,p(Ω) + ‖u0‖W 1,p(Ω)

)
, (A.3)

for some constant C depending only on Ω, n, p.

Note that u ∈W 1,p(Ω) is Hölder continuous by Morrey’s inequality (A.4),
so the boundary data (A.2) can be assigned in the sense of continuous func-
tions. Recall, that for p > n Morrey’s inequality gives

‖f‖C0,α(Ω) ≤ C0‖f‖W 1,p(Ω), (A.4)
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where α ≡ 1 − n
p and C0 > 0 is a constant depending only on n, p and

Ω [3]. We also require the following interior elliptic estimates, which for
completeness we derived from (A.3) in Appendix B in [14].

Theorem A.2. Let f ∈ Wm−1,p(Ω), for m ≥ 0 and n < p < ∞. Assume
u is a weak solution of (A.1). Then u ∈ Wm+1,p(Ω′) for any open set Ω′

compactly contained in Ω and there exists a constant C depending only on
Ω,Ω′,m, n, p such that

‖u‖Wm+1,p(Ω′) ≤ C
(
‖f‖Wm−1,p(Ω) + ‖u‖Wm,p(Ω)

)
. (A.5)
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