The Riemann Problem for Systems of Conservation Laws

The p-System

Introduction

In this paper, we will be exploring ideas leading up to an analysis of the p-system, a
system of hyperbolic conservation laws, of which we will show the complete
solution. None of these ideas are my own, I read about them in Joel Smoller’s book,
Shock Waves and Reaction-Diffusion Equations, and the p-system analysis can be
found in Chapter 17, §A. of his book. Many of the words in this paper are not my
own, and are taken from Smoller’s book stated above. It is my sole intention to
compile notes from his book and organize them in a manner I thought would
provide the best understanding to someone who is new to conservation laws (as I
was myself).

This paper is meant to begin the study of equations of the form
u,+ f(u), =0

where u = (u,,...,u,) ER", n =1, and (x,t) ER xR, the subscripts u, , denote partial
derivatives, and we assume the vector-valued function f is C (twice continuously

differentiable) in some open subset Q CR". More specifically, the p-system deals
with a specific case when n = 2. These equations are commonly called conservation
laws because many systems of equations in science arise that are of this form. We
will show some background information in weak solutions, the jump condition, and
characteristics, before showing the solution to the single conservation law, and
finally the p-system.

Shane Austin



§A. Weak Solutions of Conservation Laws

Often times, solutions to conservation laws contain discontinuities in them, and thus
pose a problem because discontinuous functions cannot be differentiated. Thus, we
first begin by exploring exactly what it means for a function to be called a “solution.”
Consider the initial-value problem

u, + f(w), =0, u(x,0) = uy(x) (1.1)

Let us suppose that u is a classical! solution to (1.1). Let ¢ be a C' (differentiable)
function that vanishes outside of a compact subsetin ¢t =0, i.e. (spt¢) N (¢ =0)C D,
where Disarectangle O<¢=<T, a=< x <b, chosen so that ¢ =0 outside of D and on
thelines t=T, x =a, x =b.
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If we multiply (1.1) by ¢ and integrate over ¢ >0, to get

I, +f)¢dxdt—ff(u +f)¢dxdt—ff(u + f)¢dxdr =0

t>0

Now integrating by parts gives

}}(uf + f ) ¢dxdt = }}u,qbdxdt + }}fxwxdt

ffuq)dxdt—fuqb

a()

fff¢dxdt-ff¢

a 0

dx — ffuq),dxdt— fuo(x)q)(x ,0)dx - ffu(p,dxdt

dt—fff(/)dxdt——fffqbdxdt

a 0

1 What exactly is a classical solution?



and finally
I @, + f)¢dxdr = - [ uy(x)g(x.0) - [[ (ug, + fp,)dxdt =0

t=0 a t=0

[ g, + f o )dxdr + [ uypdx =0 (1.2)

t=0

Thus, if u is a classical solution to (1.1), then (1.2) holds for all ¢ €C;. But (1.2)
makes perfect sense if u, u, are merely bounded and measurable. We thus define:

Definition: A bounded, measurable function u(x,¢) is called a weak solution of the
initial value problem (1.1) with bounded and measurable initial data «,, provided

(1.2) holds for all ¢ EC,.

This may not have as big of a purpose in a practical sense, since when we solve the
p-system we never actually check to see if our solution satisfies (1.2), however it
does show us that discontinuities in a solution are natural and in fact possible to
deal with.

§B. Jump Condition

We shall now explore what a discontinuity in a solution looks like. Not all
discontinuities are acceptable, as we shall see.

Let I" be a smooth curve
across which u has a
jump discontinuity. i.e. u
has well defined limits
on both sides of T'. Let P
be any point on I’, and let
D be a small ball
centered on P.We
assume thatin D, I''is
given by x = x(7). Let D,
and D, be the

t A

> components of D, which
= are determined by I'. Let
Figure 1.2 (l)EC(l)(D).

From (1.2), we see that

0= [ (ug, + fo.)dxdr = [[ (ug, + fp,)dxctt + [[ (ug, + fp,)dlxdt

Now using the fact that u is differentiable in D,, the divergence theorem gives



[f ug, + fo,)dxdr = [[ (ug), +(f9), dxdt = [ ¢p(~udx + fdr)

Since ¢ =0 on JD, these line integrals are nonzero only along I'. Thus if
u, =u(x(t)-0,t) and u, = u(x(¢)+0,t), then we have

[ p(-udx + fdr) = f d(—u,dx + f(u,)dt)

D,

[ o udx+fdz)—-f¢( wdx + f(u)dr)

D,

Therefore

0= f P(-u,dx + f (u,)dr) - f ¢(~u,dx + f(u,)dr) = f (~Cut, — u,)dx +(f (u) ~ f(u,))dr)
= f p(~Luldx +1 f(u)]dt)

where [u] =u, —u, and [ f(u)] = f(u,) - f(u,). Now from the previous equality,
= —[uldx +[ f(u)ldt
[uldx =[ f (w)]dt
=) (13)
dt '

Thus, since ¢ was arbitrary, we conclude that s[u] =[ f(u)] at each pointon T,
d.
where s = 7); We call s the speed of the discontinuity (the reciprocal of the slope of

I'). This is called the “jump condition,” and if all discontinuities in our solution
satisfy this condition, than the discontinuities are acceptable and our solution is
valid.

§C. Characteristics

Characteristic curves are essentially curves of the form x = x(¢) where the partial
differential equations become a system of ordinary differential equations. We
change coordinates from (x,#) to (x,,s), along which we can integrate the solution
from some initial data to obtain a specific solution to our original PDE. We compute

o7u dx ou dt dx dt
£ (u(x(0).1 28 EanE 1.4
(”(x() V= s Taras T g T g (1.4)



For example, consider the advection equation
u +au, =0 x€ER, =0 (1.5)
If we compare (1.4) to (1.5), we equate (what are called the characteristics)

dx dt
oa —=
ds ds

Then, assuming #(0) =0, we see that ¢ = s and x(¢) = at + const. Moreover, we note
that along the curves x(¢) — at = const, u stays constant because

du Ju Judx
—=—+——=u+au =0
dt ot ox dt

Now, for example, if we consider Figure 1.3(b), we can see that if we have specified
the initial condition u(x,0) = u,(x) then the solution will be u(x,t) = u,(x —at), and
the values of u at each point along the x-axis will propagate along the characteristic
lines. Thus if we know the initial condition, we know the solution for all of time.

Now if we consider the following boundary problem

u+au, =0, x>0,1>0, u(x,0)=u,(x) in x=0, u(0,7) in =0
where u is defined on the positive quarter plane, then considering Figure 1.3(b)
(when a >0, thus the solution propagates to the right), we can see that we would
have to specify not only the initial condition along ¢ =0, but the boundary condition

along x =0. If only the initial condition is specified, we only have the solution for
half of the quarter plane, since the information is moving to the right. However, if we

LA LA

X — at = const.
x — at = const.

a<0 a>0

Figure 1.3 (a) (b)

X

specify the boundary condition, then the entire quarter plane will be filled. On the
other hand, considering Figure 1.3(a) (when a <0 and the solution propagates to
the left), we see that only the initial condition along ¢ =0 is necessary to solve for u
in the entire plane. This idea will prove useful in the next section.



§D. Shock Waves Inequalities

We will now take a moment to consider a general discontinuity in a solution,
typically called a “shock wave”.

Now suppose we have a hyperbolic? system (defined on the positive quarter plane)
u,+Au, =0, u€R” (1.6)

where A is a constant nxn matrix with eigenvalues A <...<A, <0<A, <..<A,.
Let P be a nonsingular matrix such that P"'AP = diag(A,,...,A,) = A. If we define
u=Pv,then u, =Pv , and (1.6) becomes

x,t?

Pv,+APv_=0
P7'(Pv, + APv_=0)
v,+Av =0

and the system decouples into n scalar equations
vi+Av =0,i=12,..,n

Thus, if i<k and A, <0, then v'(0,1) (that is, the solution along the line x=0) is
determined by the initial data (similar to the previous example in §C if a <0, since
the information will propagate into the line x=0). However, if i > k and A, >0, we

must specify v'(0,t), i =k +1,...,n (similar to §C if a >0, since the information
propagates away from the line x=0).

Now each v' is a linear combination of the u,’s, so we see we must specify
(n - k) conditions on the components of u on the boundary x =0.

More generally, if we don’t have a quarter plane problem but a boundary that moves
with speed s,and if A, <...< A, <s< A, <..<A, , then we need to specify (n — k)
boundary conditions in order to specify the solution in the region x —st >0, ¢ >0.

Now if the boundary is a discontinuity of the hyperbolic system of conservation
laws, these remarks can easily be extended.

Thus, let A, () <...< A, (u) be the eigenvalues of df, and let u,, u, respectively, be
the values of u on the left and the right sides of the discontinuity, which moves with

2 A “hyperbolic” system is a system where the Jacobian matrix has only real and
distinct eigenvalues.



speed s. Suppose that A, (u,) <s <A, («,). Then from the above reasoning, we
should specify (n — k) conditions on the right boundary of the discontinuity.
Similarly, on the left, if A,(u,) <s <A, (1), we must specify j conditions on the left

boundary.

Now the jump conditions s(u, —u,) = f(u,) — f(u,) are n equations connecting the
values on both sides of the discontinuity with s. But since (¢, —u,) =0, we can
eliminate s from these equations to get (n —1) equations (or conditions) between
and u,.

Thus we require that (n-k)+ j=n-1,0r j=k-1.

We can thus conclude that, in view of these considerations, a discontinuity (u,,u,;s)

is permissible provided that for some index &, 1< k < n, the following inequalities
hold:

}\'k(ur) <s§< )\’k+l(ur)
A (u) <s <A (u,) (1.7)

We call such a discontinuity a k-shock wave, or a k-shock. The inequalities (1.7) are
called the entropy inequalities, or the (Lax) shock conditions.

We can go one step further and rewrite (1.7) in the form

A(u)<s <A (u)
Mo () <8 < Ay (u,)

Moreover, if n =1, then the shock conditions become simply A(u,) <s < A(x,). But
since u, + f(u), =0, then u, + f'(w)u, =0 and A(u) = f'(u), then the inequality
becomes f'(u,) > s> f'(u,).In other words, the characteristic speeds on either side
of the discontinuity are moving into the discontinuity, and the value of the speeds
must jump down across the boundary from left to right.

These shock inequalities will be very useful in solving the Riemann problem, both
for a single conservation law and for the p-system.

§E. The Riemann Problem for a Single
Conservation Law

Considering the Riemann problem for a single conservation law will give us a brief
idea of what solutions to the p-system could look like. Consider the following

u,+ f(u), =0, t>0, x€ER (1.8)



With initial data given by

u,, x<0,
U, =
u, x>0,

ro

Where u, and u, are constants and f''>0. Our goal is to explore all possible
solutions to this problem.

If u(x,t) is a solution of (1.8), then for every constant A >0, the function

u, (x,t) = u(Ax,At)
is also a solution, as we can see by the following calculation:

Let ¢ = Ax and 6 = Ar. Then the function u(¢,0) solves (1.8) because
oudl of dudp
u,+ f(u), =§_GE+£%E =uyA+ f(u), A =My, + f(u),)=0

Thus, since we seek the unique solution, it is natural to consider only solutions that
depend on the ratio x/t.

The solutions u = u(§), & = x/t, will have three types of solutions.

(a) Constant States: i.e. u(&) = const. These are genuine (classical) solutions.?
(b) Shock Waves: i.e. solutions of the form

Uy, X <St,
u(x,t) =
u, Xx>st,

Where, of course, s(u, —u,) = f(u,) — f (). In addition, we require that the
entropy inequality holds, f'(u,) > s> f'(u,) (see the end of §D).

(c) Rarefaction Waves: These are continuous solutions u = u(§), &= x/t of (1.8).
Hence they must satisfy the ordinary differential equation

=Eu. + f(u). =0

due to the following calculation:

u, + f(u), = ugj—fﬁ(u)gg—f - (;—f)ug +(%)f<u)§ =(%)(—&u§ + f(w))=0

3 Meaning they simply propagate through time, there are no discontinuities or
rarefaction waves.



The ODE can be rewritten as (f'(u) - &)ME =0.

Thus, if u. =0, then f'(u(§)) = & (or vice versa). We observe that the equation
f'(u(&)) = & defines a unique function u(§), since f'>0.

We say that u, is connected to u, on the right by a rarefaction wave if

f'(w) > f'(uy) and f'(u(&) =Eif f'(u) >E> f'(uy).

Now, to completely solve the tA

problem, there are only two

cases to consider: (i) u, <u, speed f'(u;)
and (ii) u, > u,. U

f'(u(x/t)) = x/t

(i) Suppose u, < u,; then

since f''>0, we have speed f'(u,)
f'(u,) > f'(u,) and the s ;
equation f'(u(§)) =& hasa g

solution u(&) where Figure 1.4

f'(u)>&> f'(u,). Assuming
that f'(u,) >0, the solution can be depicted as in Figure 1.4:

In the “fan-like” region, f'(u,) > x/t > f'(u,) and the solution is given explicitly by
solving the equation f'(u(x/t)) = x/t for u (which is possible since f''>0).

(ii) Now if u, > u,, we set
REACH A A,

u, —u

t A speed s

£ f'(u,) >s> f'(u,), so the solution is
a shock wave of speed s, connecting
Uy the two states u,, u, (see Figure 1.5).

> These are the only two situations,
and thus we have completely solved

Figure 1.5
8 the problem.

§F. The p-system

The p-system is an important class of equations, especially in gas dynamics. It
includes, as a special case, the equations of isentropic and isothermal gas dynamics,
as seen in the following equations



k
v —u. =0, ut+(—y) =0, t>0, xER.
v X

We define the p-system as the following generalized system of equations:

v, —u_ =0, u, +pv) =0, t>0, xER (1.9)
where p'<0,and p'>0.

Ifwelet U = (v), FU) =( ! ), then (1.9) becomes
u p(v)

U +FU), =0 (1.10)
The Jacobian
9, OF,
g 0EE) | o =( 0 —1)

dvu) |9, IF | (p'(v) 0
ov ou

has real and distinct eigenvalues

- -1
det( _)L) =X +p'(v)=0,so0 A =—/-p'(v) <0<4/-p'(v) =4,

Thus, the p-system is a hyperbolic system.
The Riemann Problem for (1.10) is the initial value problem with data

U =W,u), x<0,

(1.12)
U =@,,u), x>0.

U(x,0)=U,(x) ={

(1.11)

Now we will consider shock wave solutions to (1.10), (1.12). There are two types of

shock waves for (1.11), namely 1-shocks and 2-shocks.
Recall (1.7)

M) <s <y, (u,)
A (u) <s <A (u,)

Then the 1-shock must satisfy (when k =1)



s<Au), Au,)<s<A(u,) (1.13)
while the 2-shocks satisfies
Ay) <s<A,(u), A(u)<s (1.14)

since A, <0 < A,, we see that s <0 for 1-shocks (also called back-shocks) and s >0
for 2-shocks (also called front-shocks).

In view of (1.11) we see that (1.13) can be written

A(u) <s<A(u,),so —/-p'(v,) <s<—/-p'(v,) back (1.15)

and (1.14) can be written

A(u,) <5 <Ay (1)), 50 4/=p'(v,) <s<+/-p'(v,) front (1.16)

Now consider the following. Given a state U, = (v,,u,), what are the possible states
U = (v,u) that can be connected to U, on the right by a back-shock (more
specifically, a single back-shock)?

We know that they must satisfy the jump conditions

s(v,; =v) =(-u; = (-u)) s(u, —u) = p(v;)) = p(v),
-s(v-v,)=—(-u+u,) -s(u-u,) =-p(»)+ p(v,), and finally

sv-v,)=—(u-u,) s(u—-u,)=pE)-p»,) (1.17)
Since s =0, we can eliminate s from the equations and obtain

_(u-u) pO)-pe,)
v-v) (u—u,)
(u—-u)* == -v,)(p(v) = p(v,)), and finally

=, = =:)(v v )(p(v,) - p(v)) (1.18)

To determine the sign, we know that (1.15) must hold, so since

—\/—p'(v) < —\/—p'(vl) , we can conclude that p'(v) < p'(v,), and since p'">0, we have
v, >v.Since s <0 (because it is a back-shock), the first equation of (1.17) implies
that u —u, <0, so u < u,. Thus we must take the minus sign for (1.18). Thus the set §

of states that can be connected to U by a 1-shock (back-shock) on the right must lie
on the curve




Stu—u, = —\/(v -v)(p(v,) -p) =sv;U), v, >v (1.19)

This is called the back-shock curve, or the 1-shock curve.

speed s tA

U,

Figure 1.6 (@) (b)

ds
Next we calculate —:
dv

d 1 2
d—il == (O =v)(p(v) = p)) [ p,) = p) +(=p' (¥ =v))]
_ v-v, P = p)
oo | PO,
V-V, pv,) - pv)
= ! EALUEAEE SRS N0
N T T (] A

A tedious, but straightforward calculation, shows that the curve u —u, = 5,(v;U,) in
the region v, > v is starlike with respect to the point U,; i.e. any ray through U,
meets this curve in at most one point. Thus we can depict the back-shock curve as in
Figurel.6(a). If U, is any point on this curve, then the Riemann problem for (1.10)
with initial data (1.12) can be solved by a back shock, as in Figure 1.6(b). The speed
s of the shock can be obtained from the equation s(v, —-v,) = -(u, — u,), as follows

from (1.17). Moreover, by construction, we know that (1.13) is valid for this
solution.

With a similar analysis, we can construct the curve S,, consisting of all those states
that can be connected to the state U, by a 2-shock (or front-shock) on the right. We
find

S,u-u, =—\/(v—vl)(p(v,)—p(v)) =s,(v;U)), v, <v (1.20)



we call this the front-shock curve, or the 2-shock curve. A calculation as above shows
that ds,/dv <0, and that the curve u —u, = s5,(v;U,) is also starlike with respect to U,

in the region v, <v. We can thus depict the front-shock curve as in Figure 1.7(a). As
before, if U, is any point on this curve, then the Riemann problem for (1.10) with

data (1.12) is solvable by a 2-shock, as depicted in Figure 1.7(b). The speed of the
shock is obtained as above from the equation s(v, —v,) = —(u, - u,), and (1.14) is

valid for this solution.

t A
speed s

U, U, X;
Figure 1.7 (@) ®)
We will now consider the rarefaction-wave solutions of (1.10). We recall from §E
that a rarefaction wave is a continuous solution of (1.10) of the form U = U(x/t).

There are two families of rarefaction waves, corresponding to either characteristic
family A, or A,.Thus a k-rarefaction wave must satisfy the additional condition that

the kth characteristic speed increases as x/t increases, k =1,2. In other words, we
require that A, (U(x/t)) increases as x/t increases.

Now if we let & = x/t, then we see that U = U(x/¢) satisfies the ordinary differential
equation

-&U. + F(U); =0 (see §E.(c).)
or
(dF -EDU, =0

If U, =0, then U, is an eigenvector of dF for the eigenvalue &. Since dF has real
and distinct eigenvalues A, < A,, there are two types of families.

1-rarefaction waves, or back-rarefaction waves, have the eigenvector U e = (vg,ug)’
which satisfies



(p_'()\\:) _)11)(3) = (8) which gives
- &
—-Av: —u; =0,0rsince v, =0, ==——=—=-A(v,u) = A=p' (V)

d
We can integrate —du =4/—p'(v) to obtain
v

R :u-u = [-p0dy =r(viU), v>v, (1.21)

The requirement that A (U) > A (U,) (here’s why: since 4, <0, we know that thisis a
back-rarefaction, and therefore we need the left side to be moving faster than the
right, but since all the speeds are negative, we want A (U) to be less negative,
therefore, we want A, (U) > A (U,)) gives

—W/—p'(v) > —\/—p'(vl), so p'(v)>p'(v,) and v > v, since p''>0.

Finally by direct calculation,

dr, d’r, -p"(v)
— =4/-p' 0 and —; = 0
dv pP(v)>0an v’ 2\/—p'(v) )

Thus, we can depict the curve u —u, = r;(v;U,) as in Figure 1.8(a). The solution varies

speed ,%I(U,)D At
speed 4,(U))
U, U,
U, U, x
Figure 1.8 (a) (b)

smoothly in the “fan” area, and every value of U between U, and U, on the curve R,
moves with speed A, (U).

Finally, the 2-rarefaction wave curve is given by



R,:u-u, = —fw/—p'(y)dy =r,(w;U,), v, >v (1.22)

and dr,/dv <0, d’r,/dv* >0. This curve is depicted in Figure 1.9(a).

tA speed 4,(U))-
U,
speed 4,(U,)
U,
U, U, X

Figure 1.9

We can put all of these curves together in the v — u plane to obtain a picture as in
Figure 1.10. This shows that the v — u plane is divided into four disjoint open

regions I, II, III,
and IV as Ry:u —uy =ry(v; U))

depicted. u v

Now consider L‘U I U, I

the general I

Riemann S,iu — u; = s,(v; U
problem (1.10), Syiu—u=s5;U)

(1.12). We , Figure 1.10
consider U, as

being fixed, and allow U, to vary. If U, lies on any of the above curves, i.e. if
u, —u, =r(v;U)or u —u =s,U,), i=12, then we have seen how to solve the

r

problem. We thus assume that U, lies in one of the four open regions I, II, III, or IV.
We define, for U €R?,

Riyzu—u =ri(v; U)

S0 ={w.w)u=5,0.0)}, i=12
RO ={w.uw):u=r0)}, i=12
and W,(U)=S,U)UR), i=12.

We consider the family of
curves

7 ={w,0):Uew,u,}
. Let’s assume for the

Figure 1.11



moment that the v — u plane is covered univalently by the family of curves &, i.e.
through each point U, there passes exactly one curve W,(U) of 27 . Then the
solution to the Riemann problem (1.10), (1.12) is given as follows: We connect U to
U, on the right by a backward (shock or rarefaction) wave, then connect U, to U on

the right by a forward (shock or rarefaction) wave. The type of wave depends, of
course, on the position of U,.

For example, if U, lies in region III, then consider Figure 1.12(a). For each such U,
there is a unique point U, for which the curve W,(U) is in 2~ and passes through
U..Since U €S,(U,), U is connected to U, on the right by a back shock. Since
U,ER,(U), U, is connected to U on the right by a front rarefaction wave. See
Figure 1.12(b).

. wi(U) t
- v I 7

Wy (U)

w,(0)
Figure 1.12 (a) (b)

Figure 17.8(not included yet) illustrates all the possibilities. It remains to
determine whether the curves of & cover the v — u plane univalently. We’ll split
the proof up into two cases; in the first case we assume U, is in the open regions |,

I, or III; in the second case, we assume U, lies in region IV.

Suppose that U, lies in region u v =,
I. Let the vertical line v = v,
meet W,(U,) at A, and let it >

meet W,(U,) at B. We
observe that the subfamily of
curves in & consisting of the i
set

{Wz(U) =W,v,u):v,svs=s vo},
induces a continuous

W)
A = (vo, Up)

U, = (v,,u,)

o(p)

Figure 1.13 Wy (U))

L~ mapping p —¢(p) from the arc U,A
to the line segment AB. This follows
from transversality, since each of the

(i, w) = U,

Figure 1.14



S, curves have negative slopes. Now in the region U,AB, the slopes of these curves
are bounded; thus we see that points P sufficiently close to A must map into points
above U,. Since U, maps into B, which is below U , we see by continuity, that there
must be a point U on the arc U,A which maps into U,. This shows that region I is
covered by curves in . Since a similar argument works if U, lies in regions II or
I11, we see that regions I, II, and III are covered by members of Z#. This proves the
existence of a solution of the Riemann problem (1.10), (1.12), if U, lies in regions ],
I1, or III with respect to U,.

We shall now show that the curves in & cover regions I, II, and III, univalently; i.e.
that through each point U, belonging to any of the regions I, II, and III, there passes
exactly one element of & .

Again, let’s suppose that U, lies in region I. Referring to Figure 1.14, we se that it
suffices to show that du/dv > 0. Now using the two equations

=+ [[-p'(ndy and  u=1-~(v, -V)(p(@) - p(r),

we compute

u du 1 Nn'(V) — V) —
W w24, =) - p(v,) == =t}

N e v, -v) . P = p(v,)
VPO T ) - pr) {p W+=50, }>0

This implies the uniqueness in region I; the proofs for regions II and III are similar.

We turn our attention now to the case where U, lies in region IV. It is perhaps

surprising that not every point in this region can always be covered by an element of
Z~ . For example, if

uy = [-p'(ndy <, (1.23)

then it is easy to see that the curve

u=rviv,u)=u + f‘\/_p'(y)dy



u . %(v,, iu,)
: \ u=u + 2u,

’ ?U/ =y u=u +u
wi(U)) : 0

wi= iU,
U= (v, uy)

Figure 1.15

has a horizontal asymptote; namely, the line u = u, + u,. Referring to Figure 1.15, we
take U, =(v,,u,) to be in region IV, where u, is chosen so large that u, > u, + 2u,. Let
U = (v,u) be any point on W,(U,); then

u=u, +f1/—p'(y)dy su, + U

The point U’ on W2(l7) with abscissa v,, has ordinate

u =ﬁ—[w/—p'(y)dy =ﬁ+fw/—p'(y)dy sﬁ+fw/—p'(y)dy su, +2u,<u,

Thus U, cannotlie on any curve in &~!

We have shown that if (1.23) holds, then the region IV is not covered by curves in
F~. Generally speaking however, (1.23) is true in the interesting examples. Thus,
for the case where

k
5

p(v) = y=1 (k =const.>0)
v

an easy calculation shows that (1.23) holds if and only if y >1 (the physically
relevant range).

The convergence of the integral (1.23) can be given a nice physical interpretation;
namely, it corresponds to the appearance of a vacuum. For example, in the shock-
tube problem, if the relative velocities on both sides of the membrane in the shock
tube are sufficiently large, then a vacuum, or a region void of gas is formed. In this
case, p =0, or equivalently, v = ,o’I is infinite. To see this mathematically, note that
the R, curve through U, is given by



u-u, == [-p'Mdy =,0:U,),

and, as above, u has a horizontal asymptote in the region u < u, (see the dotted
curve in Figure 1.15). Thus, along this curve —4/-p'(v) = A, tends to zero as v —,
since p''>0. Similarly, A, =4/-p'(v) =0 as v —x, if v lies on the R -curve through
U, (see Figure 1.15). A “solution” of the problem (1.10), (1.12) in this case is given
in Figure 1.16, where we

connect U, on the right by a :
complete back-rarefaction v = o0, u undefined

wave, and we connect U, on (v, u) lies on & s
the left by a complete front- u=u=rw:U) \u’—- u, = ry(v; U,)

rarefaction wave. The
U,

solution is undefined on the
line x =0, since v =+ (i.e,
p =0) there, and, of course, U,
u is undefined.

S~

U, X
Figure 1.16

On the other hand, even if

Figure 1.17

(1.23) holds, the vacuum does not necessarily appear, and it is possible to solve the
Riemann problem if U, is in region IV, provided that U, and U, are close; i.e.,

provided that |U, - U, |is small. This solution is depicted in Figure 1.17.

We have shown how to solve the Riemann problem for the p-system (17.1), in the
class of (at most three) constant states separated by shocks and rarefaction waves.

[t is interesting to note that in the case where p(v) =k/v’, y =1; i.e, the isothermal
gas case, the vacuum does not appear, since the integrals

) :\/ —p'(y)dy

all diverge.



If the solution of the Riemann problem does not assume the vacuum state, then an
examination of all the possible cases shows that the intermediate state in the
solutions lies between the rarefaction-wave curves determined by the initial states.
That is, the solution satisfies the inequalities

rzmin(r,r,) =min(r(v,,u,),r(v,.u,)),

s =max(s,,s,) = max(s(v,,u,),s(v,,v,)),

where

r(v,u) =u —f -p'(s)ds,

s(v,u) = u+f —-p'(s)ds.

Knowing how to solve the Riemann problem enables us to actually solve certain
types of interactions. For example, suppose that we consider the equations (17.1)
with the following initial data:

vp.u,), X <X,
v,u)(x,0)=1(v, ,u,), X, SX<X,,
w,,u,), X >X,,

and suppose too that the discontinuity (v,.4,), (v,,,u,,) is resolved by a front shock
S, of speed s,, and that the discontinuity (v,,,u,,), (v,,u,) is also resolved by a front
shock §, of speed s,; see Figure 1.18. From (1.14), we find 0 < s, < A,(v,,,u,,) <s,,
from which it follows that S, overtakes S, at some time 7" > 0. Notice thatat t =7,
we again have a Riemann problem with data (v,,u,), (v,,u,). In order to solve this
problem, we must determine in what “quadrant” (v,,u,) lies in with respect to
(v,,u,); see Figure 1.19.

(U,, ul)

4
T

Xy

Figure 1.18 (Vs Upy)



Our claim is that (v,,u,) lies in the first quadrant (not the second), so that the
Riemann problem is resolved by a back-rarefaction wave and a front-shock, as
depicted in Figure 1.18. To see this, note that (v,,,u,,) lies on the front-shock curve

S, starting at (v,,4,), and (v,,u,) lies on the front-shock curve §2 starting at (v,,,u, ).
If we can show that S, always lies above S, (as depicted in Figure 1.19), we will
have proved our claim. To this end, we shall prove that: (i) the slope of S, at v,,.u,)
is greater than the slope of S, at (v, ,u, ), so that §, “breaks into” the depicted
region; and (ii), S, never meets S, for v > v,

To show (i), note that S, is given by the equation

@ =v)(p(v,) - p(v))

u-—u,

so that the slope of §, at (v,,,u,,) is

p(vm)+ vl_vm =p'(vm)+p'(§) Vv <§<V
z\/p<>p<> NP ® m
vV, =V,

The slope of S, at (v, ,u,) is —y/-p'(v,) since

the (normalized) right eigenvector at (v, ,u,,) is

(1,4/=p'(v,))". Thus, since
. pPwv,)+p&
-\-r'v,) > NPT

-p'(&)

statement (i) follows. To prove (ii), we define a
new function @(x,y) = ~/(x - y)(p(y) - p(x)). It
is not hard to show that if x > y > z, then
d(x,2) > ¢(x,y) + ¢(v,z). Thus, if there were a point (v,u) €S, N 5”2, with v >v_, then
v>vy, >v,and

Figure 1.19

u—-u, =-pw,v,), u-u =-pv,v,).
This gives
¢(vl’vm) = ul - I/tm = (p(V,VI) - ¢(V,Vm) > ¢(Vm ’vl)

which is a contradiction, and the proof is complete.



