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® | discuss recent work with Moritz Reintjes
in which we derive the Regularity
Transformation equations, a system
of nonlinear elliptic equations with matrix
valued differential forms as unknownes.



The RI-equations:

AT

0dl’ — 6d(J~'dJ) + d(J 1 A), 1
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Curl(J) = 0,;JF — (‘9,L-J;‘ = (0 on 09, (5)



® VWe prove that existence of solutions to
the RI-equations is equivalent to the
existence of a coordinate transformation
sufficient to smooth a crinkled map of
spacetime to optimal metric regularity in
General Relativity.



® Ve then give an existence theorem for the

RI-equations based on elliptic regularity
in LP—spaces...the result:

If a connection and its curvature tensor are
bothin WP, m >1,p > n, then there

always exists a coordinate transformation
with Jacobian in W™ 1P, such that in the

new coordinate system, the connection
is in Wmthp



® I his tells us that we can solve the Einstein
equations in coordinate systems in which
the equations are simpler and solution
metrics are one order below optimal, and
still be guaranteed the existence of other
coordinate systems in which the metric
exhibits optimal regularity, i.e., two
derivatives above its curvature tensor.



® VWhen connection and curvature are
in >, the RI-equations reduce the

open problem of regularity
singularities at GR shock waves to an

approachable problem in elliptic
regularity theory, a topic of authors’
current research.



® The starting point for the derivation of
the RT-equations is the Riemann-flat
condition, a geometric condition for
metric smoothing introduced previously
by the authors.



Introduction



Thesis Statement:

The Einstein equations of General Relativity
are tensorial—Given independent of coordinates...

G = KT

To solve them, one has to specify a coordinate
system in which the equations take a form simple
enough to solve by known methods of PDET ...

The spacetime metric may not exhibit its optimal
level of regularity in the coordinates in which the
equations can be solved.



In Einstein’s theory of General Relativity:

The Einstein equations G = kT

are equns for the gravitational metric G = (;;

coupled to the fluid sources 0, D, U

Giilgii| = kT (p, p, u)

Divl' =T, , =0



In Einstein’s theory of General Relativity:

The gravitational metric tensor (J determines the
properties of spacetime...

geodesics, parallel translation, time dilation, arc length...

...as well as the connection 1' and curvature R

) 1 10
Connection: jk = 59 {=9jk,i + Gijk + Gki,j}
Riemann R

(2
Curvature:

ik _ Fl o Flj’k Fl- o Fl o

1k,g ) 710+ 1k ko~ 13



Our Question: Given a non-optimal solution of the
Einstein equations, does there always exist a
coordinate transformation which smooths the
spacetime to its Optimal Regularity??



Our Question: Given a non-optimal solution of the
Einstein equations, does there always exist a
coordinate transformation which smooths the
spacetime to its Optimal Regularity??

By Optimal Regularity, we mean that the
gravitational metric tensor is two full derivatives
smoother than its curvature tensor.



Our Question: Given a non-optimal solution of the
Einstein equations, does there always exist a
coordinate transformation which smooths the
spacetime to its Optimal Regularity??

By Optimal Regularity, we mean that the
gravitational metric tensor is two full derivatives
smoother than its curvature tensor.

The equations may be too complicated to solve in
coordinates in which the metric exhibits its optimal
regularity...



Motivation: Non-optimal solutions of the
Einstein equations first came up when we
constructed shock wave solutions of the

Einstein equations by the Glimm Scheme in
Standard Schwarzschild Coordinates (SSC)

Groah and | observed: The gravitational
metric appears to be singular at the
shocks in coordinates where the analysis

is feasible (SSC)”.



The Einstein

Equations
In SSC




Assume a gravitational metric ansatz of
the SSC form:

ds® = —B(t,r)dt* - - r2dr?

Plug into the Einstein equations :

G = kT

1i; = (p +p)uz~uj + PYij



Standard Schwarzschild Coordinates

A, 1-—A B
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(H+(2)+(3)+(4) <= (|)+(3)+divT=0

(weakly)



Theorem: (Te-Gr) The equations close in a
“locally inertial” formulation of (1), (2) & Div T=0:

{T]?f}70+{\/ABTJ?}}1 — —%\/ABT](\’}, (1)
1 4 1— A
(T3}, + {\/ABT]%}}J - — AB{;TA141+( T ) (00 _ 711y (2)
+ QZT (TRTA — (T9)?) 47~T22}
rA, = (1—A)—kr?Tyy, (3)
rB, = B(lg A) + gm'QTJ%}. (4)
2 2
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M — o\ 2 M — v\ 2
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{T]?f}ﬁ—i—{@T](\)}} = —%@T}\’}, (1)

1 4 1— A
{T}?}})OJr{\/ABT}}}l = — AB{;TA1}+( P )(T —T37) (2)
QZT(T T _ (T91)2) 47~T22}
rd, = (1—A)—kr°Tsy, (3)
B(1—A) B
rB, = ( )—I——m“zT]bl. (4)

A A




{T$}O+{VABE%} — —§VABI$, (1)

{mﬂﬁ+{%ﬂhﬁ}l=:—%luﬂéﬂ&+ﬂ£f%ﬂ§—ﬂﬁ 2)
+ 2T - () - 1)

rd, = (1—A)—kr?Tyy, (3)

rB, = E“%A‘A)+g§ﬁm?nﬁ. (4)

‘*

The metric components A,B...




{T]({’f},oJr{\/ABT}\’}}’ — —%\/ABT](\)}, (1)

{TJQ}},OJr{\/ET;}}’l = —% AB{%T}}Jr (1;TA)(T§’}’—TA1}) 2)
+ 2T - () - 1)

rd, = (1—A)—kr?Tyy, (3)

rB, = B(lg A) + gmﬂTj}. (4)

The metric components A,B...
...are only one derivative
smoother than the sources T




{T]({’f},oJr{\/ABT}\’}}’ — —%\/ABT](\)}, (1)

{TJQ}},OJr{\/ET;}}’l = —% AB{%T}}Jr (1;TA)(T§’}’—TA1}) 2)
+ 2T - () - 1)

rd, = (1—A)—kr?Tyy, (3)

rB, = B(lg A) + gmﬂTj}. (4)

The metric components A,B...
...are only one derivative
smoother than the sources T

Since G = KT ==y




y
{T]?}’},OJr{\/ABT]?}}’ - -~ VABTY;, (1)

(181}, + {VaBTY} = L AB{éTA% LD @
+ 2T - () - 1)

rd, = (1—A)—kr?Tyy, (3)

rB, = B(lg A) + gmﬂTAl;. (4)

The metric components A,B...
...are only one derivative
smoother than the sources T

The metric is only one order
derivative smoother than
the curvature tensor...

Since G = KT =iy



Conclude: For shock wave solutions of the Einstein
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Conclude: For shock wave solutions of the Einstein
equations G = «T generated by the Glimm Scheme:

® Solution: ds° = —B(t,r)dt* - r2dQ)?

A, B are Lipschitz Continuous

® Riemann Curvature Tensor: k() € L™
® Fluid variables: p(t,r),p(r,t),v(r,t) € L=
Conclude: Second derivatives of the metric contain

delta function sources, but these cancel out in the
curvature tensor...



This is 2 most natural setting for shock
waves in GR because the Einstein
equations G = kT place G € L™ when the

bounded discontinuous fluid sources
are T € L*°.



In General: Given a Metric Jij ...
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In General: Given a Metric Jij ...

') 1 10
Connection: ik = 59 {_gjk,z' + i ik T gkz’,j}

. [ o o
Riemann Rip=Tu = Do+ 15,05 =T, T2
Curvature:

“"Ris a curl plus a commutator” R~ dI' + [[',T]



In General: Given a Metric Jij ...

') 1 10
Connection: ik = 59 {_gjk,z' + i ik T gkz’,j}

- z
Riemann ka = sz,g — I + F](, o —TI_ o’
Curvature:

“Ris a curl plus a commutator” R~ dI' + [, T]

Conclude: T'=3dg9 R~ 0



Thus for Shock-Waves:
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Thus for Shock-Waves:

g is Lipschitz /\

[' ~ 0g is L™



Thus for Shock-Waves something is special:

g is Lipschitz /\

[' ~ 0g is L™

dl' € L™

R~ 0%g is L*° 4-’




Thus for Shock-Waves something is special:

g 1s Lipschitz /\

[' ~ 0g is L™

R~ 0§%gis L~ <= drcl™

In SSC...The curvature is only one
derivative less smooth than ( ...



Thus for Shock-Waves something is special:

g 1s Lipschitz /\

[' ~ 0g is L™

R~ 0§%gis L~ <= drcl™

So all delta functions cancel outin dI’



Conclude: For shock waves we have....
dUe L so geC%!

...iNn X~-coordinates

We ask: “Does there exist a coordinate
transformation x — y such that in
y-coordinates, we have...”

reco! so gecCh 7
(dI'y R € L)



More Generally: Given....

[.dl' € WmP so g€ Wmthp

“Does there exist a coordinate
transformation x — y such that in
y-coordinates...”

e Wwmtle so gewmt2e 7
(dl', R € W™P)



In words: If the connection has the
same regularity as the curvature in some
coordinate system, does there always
exist a coordinate transformation which
smooths the connection, (and hence the

metric), by one order ?!



Defn: Ve say that a connection has
“optimal regularity” if it is two orders
more regular than its curvature tensor.



Defn: Ve say that a connection has
“optimal regularity” if it is two orders
more regular than its curvature tensor.

I”

Our Question: Can “non-optima
connections always be lifted to optimal
regularity by coordinate transformation?



Defn: If 1" non-optimal and no such
coordinate transformation exists at P,
we call P a “Regularity Singularity”



Defn: If 1" non-optimal and no such
coordinate transformation exists at P,
we call P a “Regularity Singularity”

For example: If P is a regularity singularity
on a shock wave, then spacetime is not
regular enough to admit locally inertial
coordinate frames:

g € C%! (Lipschitz continuous)

g@]<P) — 1 = di&g(_L 17 17 1)7 gzg,k(P) =0 777



Conclude: If shock-wave interaction
can create a regularity singularity, then
spacetime is not locally Minkowski...

.e., the physics of GR does not reduce
to Special Relativity...



New GR scattering effects would
occur in a neighborhood of a
shock-wave Regularity Singularity

Regularity Singularities and the scattering
of gravity waves in approximate locally
inertial frames,

M. Reintjes and B.Temple, Meth Appl Anal,
Vol. 23, No. 2, pp. 233-258, September 2016.



Our Question: Given
[.dl € WmP so g&Wmnrhp

“Does there exist a coordinate
transformation x — y such that in
y-coordinates...”

Pewmtlpr so ge&Wmtap 7
(d[', R € W™P)



Our Question: Given
[.dl' € WmP so g€ Wmthp

“Does there exist a coordinate
transformation x — vy such that in
y-coordinates...”

Pewmtlr so gg Wmt2p 7
(dl', R € W™P)

Question: How smooth should the Jacobian be?



Answer: The Jacobian should have the same
regularity as the metric...

oz’

— = m+1,p
J = oy © W
| Ozt O
That IS. ... g,uy — ay,uf gz] ayy



For shock-waves: 4<% rer> Je 0t

That is: Gy = g;; Gi 252
2 BN
cH o1 C% 0,1

“We need discontinuities in derivatives to cancel
out in the Leibniz products...”



For shock-waves: 4<% rer> Je 0t

That is: Jup = S;E; Gi g;’j
2 BN
cH! co1 OO 0,1

“To smooth out a metric singularity requires a
singular transformation...”



The connection By
at shock-waves: get, LelL Je

~ Oy 0z? Oz" | 0%y® 0x° Ox™

That is: B’Y Fﬂf 0zt 0yB Oy | Oxo 0z OyB Oy

'\T/‘ t 1/

LOO

COl

“Discontinuities have to cancel out on the RHS
to smooth the connection...”



The curvature

0,1 00 0,1
’ F L :
at shock-waves: geCm, I'el™, JeC

, ~ - 0y® ox) Ox" Ox
fhacts Wovs = Mk g7 5B Dy 0y

NN,

CO,l

“The curvature involves 2nd derivatives, but it is
a tensor, so J maintains the regularity of the
curvature R in L= ...”



Theorem (SmTe): (1! coordinate
transformations with C°! Jacobians
preserve the weak formulation of the
Einstein equations G = kT at shocks



Our Question:

Given I', dI' € WP does there exist a
Wm™mt2P coordinate transformation z — vy

with Jacobian J € WmtLpr guch that in
y-coordinates, I' € WmTLp 27

Or for shock-waves:

Given I', dI' € L°°, does there exist a
C!! coordinate transformation x — y

with Jacobian J € CY1 such that in
y-coordinates, I' € OVt 77



A result by Israel from the 60s resolves the issue for
smooth shock surfaces in General Relativity:

Assume 9L and R are smooth solutions of the Einstein
equations which match Lipschitz continuously across a
smooth shock surface Y ,and let... 9 = gr, Uggr

>,
2 shock

gr /\
JRr gL g

gr. U gr

R



A result by Israel from the 60s resolves the issue for
smooth shock surfaces in General Relativity:

Then g € CY'}, so delta functions exist in the second
derivatives of the metric. The following theorem gives

conditions under which they all cancel out in the
curvature tensor...

>,
2 shock

gr /\
JRr gL g

gr. U gr

R



Theorem (Israel/SmTe): The follow are equivalent:

(1) 9 = gL U gr is a weak solution of the Einstein
equations with curvature in L.

(2) All the delta functions cancel out in the Riemann
curvature tensor.

(3) The Second Fundamental Forms from g1, and 9R
agree on the surface )]

(4) There exists a C!! coordinate transformation in a
neighborhood of ».; such that in the new coordinates,

g=grUgr € C"!



Theorem (Israel/SmTe):

Moreover, if any of the four equivalencies hold, then the
Rankine-Hugoniot jump conditions (which express
conservation of energy and momentum at the shock)

also hold:

[Gw]ng =0 = [Tig]na

...on solutions of G = kT



“Proof:” In Gaussian Normal Coordinates the
components of the second fundamental form are §;j n
so if the second fundamental form is continuous, then the

metric and its derivatives match on ), which
implies g € C™'in GNC...

The map x — y to GNC is Ct1 ...

...with Jacobian in J € CH1. B



The first step forward from Israel’s Theorem, was
given by Moritz Reintjes:

Theorem (Reintjes): There always existsa C"'
transformation that smooths a C°'! metric to C**
in a neighborhood of a point of regular shock-wave
interaction in spherically symmetric spacetimes,
between shock waves of different families...

Gaussian Normal Coordinates
break down at P:




Reintjes’ procedure for finding the local coordinate
systems of optimal smoothness is orders of magnitude
more complicated than the Riemann normal, or
Gaussian normal construction process.

The coordinate systems of optimal C!! regularity are
constructed by solving a complicated non-local PDE
highly tuned to the structure of the interaction...

Trying to guess the coordinate system of optimal
smoothness apriori, eg harmonic or Gaussian normal

coordinates, didn't work.



Several apparent miracles happen in which the Rankine-
Hugoniot jump conditions come in to make seemingly
over-determined equations consistent...

... but...the principle behind what PDE's must be solved
to smooth the metric in general, or when this is possible,
appears entirely mysterious.



M. Reintjes, Spacetime 1s Locally Inertial at Points
of General Relativistic Shock Wave Interaction

between Shocks from Different Characteristic Fam-
ilies, Adv. Theor. Math. Phys., arXiv:1409.5060.

M. Reintjes and B. Temple, No Reqularity Singu-
larities Exist at Points of General Relativistic
Shock Wave Interaction between Shocks from
Different Characteristic Famalies,

Proc. R. Soc. A 471:20140834.
http://dx.doi.org/10.1098 /rspa.2014.0834




The first breakthrough in discovering
the general principles at play in metric
smoothing came with our discovery of
the Riemann-flat condition...



The Riemann-flat
Condition



The Riemann-flat
Condition

“Shock Wave Interactions in General Relativity: The
Geometry behind Metric Smoothing and the Existence
of Locally Inertial Frames”

Moritz Reintjes, Blake Temple

https://arxiv.org/abs/1610.02390


https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple%2C+B

The Riemann-flat condition:

Assume I', R € L.

Then: There exists a C1'! coordinate
transformation that smooths an L°°
connection [' by one order to (V!

if and only if there exists a tensor I' € C%!
such that Riem(I' +T') = 0.



In words: A smoothing transformation
exists at shock-waves if and only if there
exists a tensor, one order smoother
than the original connection, such that
when added to the original connection,
the new connection is Riemann-flat.



In words: A smoothing transformation
exists at shock-waves if and only if there
exists a tensor, one order smoother
than the original connection, such that
when added to the original connection,
the new connection is Riemann-flat.

Riem F+F = ()

I‘GLOOJ Lre(}“



The same proof works at other orders
of smoothness, for example: 1.1 ¢ wm»



The same proof works at other orders
of smoothness, for example: 1.1 ¢ wm»

A smoothing transformation Je w™+H?
existsifand only if 4 ' e W™mthP st




The same proof works at other orders
of smoothness, for example: 1.1 ¢ wm»

A smoothing transformation J € W™m+=p
exists ifand only if 4 T' € W™mTLP st

Riem/(I" + F

[ e Wmp J L [ c Wmtlr



This shows that whether or not you can
smooth the connection is a geometrical

problem for connections, independent
of the signature of the metric...

Riem(I' +T) =0



“Proof”: Assume gecC”' T eL> JeC%

.. Oy® Oz OxF 0%y® 0x° Ox™
roe —pi 99 |
and I, =I5 0yP 0y | 0x°0x™ OyP Oy

RN

L CO 1 Cr(),l F%’Y
Flat
NP0 V4
_ng



The “hard” part is to show that if
Riem(T' +T) =0

...then a coordinate transformation exists which
takes the connection T'+ T to zero,and this is
the coordinate transformation which smooths
the original connection... W



The Riemann-flat condition
reduces the problem of smoothing
Lorentzian spacetime metrics to
an equation on a tensor T that
has all the remarkable properties
of the zero curvature condition of
Riemann.



~

Since I' continuous implies [' + I has the same
jump discontinuities (shock set) as I at first
we looked for a Nash-type embedding theorem
for extending the shock set to a neighborhood
as a flat connection in order to prove the
metric can be smoothed.



However, our point of view changed
again with another new idea in our
next paper...

“The Regularity Transformation Equations: An elliptic

mechanism for smoothing gravitational metrics in General
Relativity™

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1805.01004


https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple%2C+B

We set out to use the Riemann-flat
condition for metric smoothing to
derive a system of elliptic equations

~

in unknowns T and .J ...



The Regularity
Transformation
Equations:

(RI-equations)



The Rl-equations

“The Regularity Transformation Equations:An
elliptic mechanism for smoothing gravitational
metrics in General Relativity”

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1805.01004



https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple,+B
https://arxiv.org/abs/1805.01004

The RI-equations:

AT

0dl’ — 6d(J~'dJ) + d(J 1 A), 1

(
5(JT) — (dJ;T) — A, (
(
(

DO

~

dv(dJ AT) +d&iv(J dT) — d({dJ; ).

o

)
)
)
)

(9 4

Curl(J) = 0,;JF — (‘9,L-J;‘ = (0 on 09, (5)



Here: 1' is a matrix valued |-form, J and A
are matrix valued O-forms, and .J, A are vector
valued |-forms as follows:

['=T*" do
J = JH J=Jtat dJ = Curl(J)
A= A+ A= Aldyt  dA=Curl(A)

The integrability condition for J is: Curl(J) =0



We introduce two new operations on matrix
valued differential forms:

div(w Q—Zal Wiy iy ) AT A A da™

(“take dlvergence in each component to create a
vector valued form out of vector valued form™)

(A ; B)M = Z Al LB

11<...<1p

(“creates a matrix valued O-form out of the
"inner product” of two matrix valued k-forms™)



The RI-equations:

AT

0dl’ — 6d(J~'dJ) + d(J 1 A), 1

(
5(JT) — (dJ;T) — A, (
(
(

DO

~

dv(dJ AT) +d&iv(J dT) — d({dJ; ).

o

)
)
)
)

(9 4

Curl(J) = 0,;JF — (‘9,L-J;‘ = (0 on 09, (5)



The RI-equations:

1

AT 0dT — 6d(J " dJ) +d(J~'A),

(
5(JT) — (dJ;T) — A, (
(
(

>
Sy
|

~

>
dA = div(dJ AT) +div(Jdl) — d((dJ; T)).

o

)
)
)
)

4

>,
I
|

N

Curl(J) = 0,;JF — (‘)iJ;.‘ = (0 on 09, (5)

free to be chosen



The gauge freedom in the RT-equations is the
freedom to choose v, together with the freedom
to choose the boundary conditions in the

" and A equations...



Theorem (RT): Assume I' is defined in a
fixed coordinate system x on {2 C R™, and
[,dl' e W™P(Q), m>1, p>n.

here exists J € W™TLP(Q) invertible,
e WwmthP(Q), A € W™P(Q) which solve
the RT-equations,



Theorem (RT): Assume I' is defined in a
fixed coordinate system x on {2 C R™, and
[,dl' e W™P(QQ), m>1, p> n.

there exists J € W™TLP(Q) invertible,
e WwmthP(Q), A € W™P(Q) which solve
the RT-equations,

Then .
IV =T+ J ']

solves the Riemann-flat condition.



Theorem (RT): Assume I' is defined in a
fixed coordinate system x on {2 C R™, and
[,dl' e W™P(Q), m>1, p>n.

here exists J € W™TLP(Q) invertible,
e WwmthP(Q), A € W™P(Q) which solve
the RT-equations,

there exists a neighborhood 2 C Q2
of p such that J is the Jacobian of a

coordinate transformation z — y on 2,

and the components of I' in y-coordinates
are in W™+LP(Q).



Theorem (RT): The converse also holds:

If there exists a coordinate transformation
which smooths the connection,

Then the Jacobian together with the smoothed
out connection solve the RT-equations for
some A.



Conclude: The existence of a
coordinate transformation which
smooths a non-optimal connection
by one order reduces to proving
an existence theorem for the
RI-equations, with

~

" one order smoother than I



Existence for the
RI-equations

“Optimal metric regularity in General Relativity
follows from the RT-equations by elliptic regularity
theory in Lp-spaces™

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1808.06455



https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple,+B
https://arxiv.org/abs/1808.06455

Our New Existence Theorem:

Theorem (RT): Assume I',dI' € W™P(Q)
for m > 1, p > n > 2 in some coordinate

system x. Then tor each ¢ € {2 there exists
a solution (I', J, A) of the RT-equations
defined in a neighborhood (2, of g such that

['c Wmthr(Q,), J € Wmthe(Q,), A € W™P(Q,).



Main Steps in the
Derivation of the
RI-equations




® Start with the Riemann-flat condition:
Riem(I'+T)) = 0
dl =dl' + (I =T)A (T =T)

This can be viewed as an equation for dI



® Augment to a first order
Cauchy-Riemann system...

~ ~

Al =dl' + (I —=T)A (I =T
oI = h

But...this is not a solvable system



® [o obtain a solvable system, we look to
to couple this Cauchy-Riemann system
to an equation for the unknown
Jacobian J.
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Recall: geCH T elL>® JeC”
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so Riem(T+1)=0 or |T-T=J"'dJ



® [o obtain a solvable system, we look to
to couple this Cauchy-Riemann system
to an equation for the unknown
Jacobian J.

Theorem: The Riemann-flat condition
is equivalent to...

JldJj=T-T



“Proof™...
Lemma: The following identity holds:

d(JtdJ)=JdI AN J T

~

Soassume (J 'dJ)=T —T.
Then d(J'dJ) =dl — dI’

which implies the Riemann-flat condition

~ ~

dl =dl' + (T =Y A (T =T



e [hus we try to construct a closed
system in (I', J) out of two equivalent
forms of the Riemann-flat condition...

~ ~

Al =dl' + (I —=T)A (I =T
oI = h
dJ =JI -T)

(They start out as equivalent!!)



e [hus we try to construct a closed
system in (I', J) out of two equivalent
forms of the Riemann-flat condition...

~ ~

Al =dl' + (I —=T)A (I =T
o = h
dJ = J(I -T) 0J =0

(for O-forms)

(They start out as equivalent!!)



® Ve next employ the identity
A = do + od

to derive two semi-linear elliptic
Poisson equations, one for AT
and one for AJ



 Apply A =do+dd to
dl' =dl +(I'=T)A (I’ =T
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Apply A = do + od to
dl' =dl +(I'=T)A (I’ =T
oI = h
dJ =JI -T)
0J =0 (delta of a O-form is 0!)

...to obtain



...to obtain

AT = §dU — 6d(J~'dJ) +d(J 1 A),

~

AJ =8(JT) — (dJ;T) — A,

where A= Jh is free...



® o impose the integrability condition

—

Curl(J) =0

...we require that d of the vectorized
right hand side of the J—equation vanish

AJ =6(JT) — (dJ;T) — A,

which gives the A-equation

~

dA = div(dJ AT) + div(J dT) — d((dJ;T))



This leads to the RIl-equations:

AT

6dl — 8d(J " dJ) + d(J~'A), 1

(
5(JT) — (dJ;T) — A, (
(
(

DO

~

dv(dJ AT) + div(J dT) — d((dJ; V),

o

)
)
)
4)

U,



® VWhat | haven’t shown you is how terms
involving oI' which initially appear to
be one derivative too low on the RHS,
can be replaced by terms involving 4T

To make the RHS smooth enough so
that A formally lifts T' to one
derivative above T’



This property comes about by a
rather miraculous identity...



The RI-equations:

AT

0dl’ — 6d(J~'dJ) + d(J 1 A), 1

(
5(JT) — (dJ;T) — A, (
(
(

DO

~

dv(dJ AT) +d&iv(J dT) — d({dJ; ).

o

)
)
)
)

(9 4

Curl(J) = 0,;JF — (‘9,L-J;‘ = (0 on 09, (5)



Consider the A-equation:

AT
AJ

—

dA

0dl — 6d(J~1dJ) +d(J~1A),
5(JT) — (dJ:T) — A,

div(dJ AT) + div(J dT') — d((dJ;



Consider the A-equation:

AT = 6dT —6d(J~dJ) +d(J 1 A), (1)
AJ = §(JT)—(dJ:T) — A, (2)
dA = div(dJ AT) +div(JdT) — d((dJ;T)), ©)

N N

d(6(J Fﬁ)




L emma:

Let ' €¢ W™P(Q) and J € WmTLP(Q)
for p > n and m > 1, then

d(5(JI’3) — dlv(dJ/\ F + dlv JdF

T \T

déFGW_lap dF EWOp

dI"’ one derivative smoother than /T!
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flat condition...

Theorem: If (T, .J) solves the RT-equations,

then 3
IV=T-J"1tdJ

is Riemann-flat...
Riem(I' —T) =0

And... TV has the same regularity as T
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e Finally, the T which solve the RT-
equations may not solve the Riemann-
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Theorem: If (T, .J) solves the RT-equations,

then 3
IV=T-J"1tdJ

R N
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e Finally, the T which solve the RT-
equations may not solve the Riemann-
flat condition...

Theorem: If (T, .J) solves the RT-equations,

then 3
IV=T-J"1tdJ

R N

f/ c Wm—l—l,p I' & Wm,p dJ ¢ WP

The jumps in the (m+1)-derivatives of T

cancel out on the RHS!



e Finally, the T which solve the RT-
equations may not solve the Riemann-

flat condition...

Theorem: If (T, .J) solves the RT-equations,

then 3
IV=T-J"1tdJ

For fixed Jewmtir .

The transformation: [ I/ cWwmthr

Represents a change of gauge: 4 — A’ c w™?



Theorem: (I, J, A) is a solution of the
RT-equations



Theorem: (T, J,A) is a solution of the

RT-equations

AT
AJ

0dl — 6d(J " dJ) +d(J 1 A),
5(JT) — (dJ;T) — A,
div(dJ AT) + div(J dT) — d((dJ;T)).

v,

Curl(J) = 0;J; — 0;J; =0 on 09,



Theorem: (T, J,A) is a solution of the

RT-equations

AT =
AJ =
dA =
A =

if and only if (I",J,4") is a solution.

0dl — 6d(J " dJ) +d(J 1 A),
5(JT) — (dJ;T) — A,
div(dJ AT) + div(J dT) — d((dJ;T)).

v,

Curl(J) = 0;J; — 0;J; =0 on 09,



® Summary: Starting with two equivalent
forms of the RI-equations, we turn the
first order equations into independent
second order equations which allow for
more general boundary conditions.

The second order equations don’t imply
the first order equations, but miraculously,
a gauge transformation converts any
solution into one which does satisfy the
Riemann-flat condition.



Steps in the existence
proof for the
RI-equations

“Optimal metric regularity in General Relativity follows from
the RT-equations by elliptic regularity theory in Lp-spaces™

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1808.06455



https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple,+B
https://arxiv.org/abs/1808.06455

® The existence proof is based on an
iteration scheme which applies the [P
theory of elliptic regularity at each stage

The LP-theory of derivatives is a linear
theory, and the RI-equations are
nonlinear, so an iteration scheme is
required...



The proof that the iterates converge
relies on only two theorems from
classical elliptic PDE theory...



Theorem (Elliptic Regularity): Let f € W™ P(Q), m > 1,

and uy € WerpTTl’p(@Q) both be scalar functions. Assume u €
Wm+Le(Q) solves the Poisson equation Au = f with Dirichlet data
ulgo = ug. Then there exists a constant C' > 0 depending only on
(), m,n,p such that




Theorem (Elliptic Regularity): Let f € W™ P(Q), m > 1,

and uy € WerpTTl’p(@Q) both be scalar functions. Assume u €
Wm+Le(Q) solves the Poisson equation Au = f with Dirichlet data
ulgo = ug. Then there exists a constant C' > 0 depending only on
(), m,n,p such that

Theorem (Gaffney Inequality): Let u € W™ TH2(Q) be a k-form
form >0,1 <k <n-—1and (for ssmplicity) n > 2. Then there
exists a constant C' > 0 depending only on ), m,n,p, such that

Jullwnsro) < C(lldullwma + [0ulwmaey + lull ezt )



(Actually, what we found recorded:)

Theorem (Elliptic Regularity): Let u € W#P(Q) be
a scalar, 1 < p < oo. Then there exists a constant C' > 0
depending only on (), m,n,p, such that

Jullwasy < O (l18ullg) + lullwis) + [ulypo,)
(What we need:)

Theorem (Elliptic Regularity): Let f € W™ (Q), m > 1,

and ug € ijLpT?l’p(@Q) both be scalar functions. Assume u €
WmtLp(Q) solves the Poisson equation Au = f with Dirichlet data

ulgo = ug. Then there exists a constant C' > 0 depending only on
(), m,n,p such that

Jullwnsoy < O (I lwn-toy + ltoll oot )
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® One of the main obstacles to overcome
was how to reduce the existence
theorem at each iterate to a problem
with Dirchlet boundary conditions... so
standard linear elliptic regularity applies...

For this we introduce anC|IIary variable
Yy sothat dy=J, d?y=dJ= Curl(J)

® Details of Proof in Moritz’s Talk!



Conclusion



® Ve show that proving non-optimal metrics (or
connections) can be smoothed one order by
coordinate transformation is equivalent to

proving existence for the RT-equations...



® Ve show that proving non-optimal metrics (or
connections) can be smoothed one order by
coordinate transformation is equivalent to
proving existence for the RT-equations...

® Ve prove existence for the RT-equations above
the threshold smoothness of...

''dlI' e W™P m>1, m>n



® As a Corollary we have that solutions
constructed in SSC can be smoothed one order
by coordinate transformation...
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® As a Corollary we have that solutions

constructed in SSC can be smoothed one order
by coordinate transformation...

Q: What do the SSC metrics look like in
coordinates of optimal regularity?

Ans: We don’t know!
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® Q: How does this fit in with other methods of
obtaining solutions in GR!?

Existence Theorems on the IVP in GR employ
apriori coordinate ansatz’s, like Harmonic
Coordinates...how does this fit in?

Theorems on optimal regularity in GR begin
with technical conditions on the spacetime
(regularity of geodesic balls, etc) and mostly
address vacuum spacetimes...Anderson,
Kleinerman, Rodnianski, Dafermos,LeFloch...?



® Our theorem is geometric, applies independent
of matter sources or metric signature, and
makes no apriori assumptions on the spacetime
other than its regularity...



® Q: Can the existence theory for the RT-
equations extend to the case of GR
shock-waves (topic of our current research)?

...thecase I',d'e L™ ? or m <1
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® Main Obstacles for L°°:

The Laplacian doesn’t lift derivatives two full
orders when sources in [*°

...issue of Calderon-Zygmund Singularities!?

Conclude: The RT-equations connect Regularity
Singularities in GR to Calderon-Zygmund
Singularities in elliptic PDE’s...

(Apparently two completely different kinds of
singularities. ..?)



® Quadratic Nonlinearities on the RHS of RI1-
equations imply iterations may not stay in space...

L~ is closed under nonlinear products
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® Quadratic Nonlinearities on the RHS of RI1-
equations imply iterations may not stay in space...

L~ is closed under nonlinear products

LP is NOT closed under nonlinear products

What about the space BMO?

There is a natural distance from BMO to L*°...?
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® What is working for us in L°° ?

Ans: Although the Laplacian does not lift all
functions f € L up by two derivatives—i.e,,

Au = f € L™

does not always imply u € C' ...

...there is an enormous gauge freedom on the
RHS of the RT-equations.



To settle the problem of regularity singularities
at GR shock waves,...All we need is that there
exists one solution of the RT-equations in ¢**,
for some v, and any choice of boundary
conditions for (T, 4) ...



The RI-equations:

1

AT 0dT — 6d(J " dJ) +d(J~'A),

(
5(JT) — (dJ;T) — A, (
(
(

>
Sy
|

~

>
dA = div(dJ AT) +div(Jdl) — d((dJ; T)).

o

)
)
)
)

4

>,
I
|

N

Curl(J) = 0,;JF — (‘)iJ;.‘ = (0 on 09, (5)

free to be chosen



The RI-equations:

0dT — 6d(J " dJ) +d(J ' A),

AJ = §(JT)—{dJ;T) — A,
dA\ = div(dJ AT) +div(Jdl) — d((d.J;T
6A/) = v,

free to chose boundary conditions

Curl(J) = 0;J; — 8;J; =0 on 0,

>
)

)

1

DO

(1)
(2)
(3)
(4)

4

(5)
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Conclude:

If we can prove there exists solutions I € C*! of
the RT-equations for I',dl' € L™ then regularity
singularities do not exist at GR shocks...

...and it suffices to solve the Einstein equations in
coordinates where the metric is non-optimal...

If we can prove there are no solutions
of the RT-equations for T',dI" € L*°, then we have
discovered a new kind of singularity in GR...

Either way its interesting!
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