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We proposed the idea that a 	


Simple Wave 	



from the 	


Radiation Epoch of the Big Bang 	



might account for the Anomalous 
Acceleration of the Galaxies 	



Without Dark Energy

2007 PI talk in Relativity Session at	


AMS National Meeting 	



in New Orleans:



Our Motivation	


The Radiation Epoch: 	



After Inflation 	


until about 	



30,000 years after the Big Bang	



Evolution by  	


Relativistic Compressible Euler Equations

The p-system with p = c2

3 ⇢



Every characteristic field contributes to 
Decay in the sense of Glimm and Lax

PURE RADIATION
Stefan-Bolzman Law:

p = c2

3 ⇢

⇢ = aT 4
(No Contact

Discontinuities)

The p-system with:

Enormous sound speed � ⇡ .57c

Enormous modulus of Genuine Nonlinearity



It is reasonable to expect 
fluctuations would decay to 

simple wave patterns 	


by the 	



end of radiation

This is our Starting Assumption



Pure Radiation
10�30 to 3� 105 yrs

p = c2

3 �

Big	


!

!

 Bang

Uncoupling of
Matter and Radiation

t ⇥ 3� 105

p � 0

(Neglect
Radiation
Pressure)

Stages of the Standard Model:

Time of CMB	


379,000 yr

Inflation

10�35s

10�30s

to

(Relativistic p-system)



Pursuing this idea, we identified a one 
parameter family of self-similar waves 

that perturb the Standard Model during 
the radiation epoch, and proposed that 

these might induce an 	


Anomalous Acceleration 	



at a later time.
We set out our ideas in 	



PNAS in 2009	


and 	



 Memoirs of the AMS in 2011



Our interest is in the possible 
connection  between	


 these waves and the 	



Anomalous Acceleration.

  Commun Math Phys., 21, 1-40 (1971)
Cahill and Taub:

  Physical Review D,  62, 044023-1-25 (1999)

Extended by others,  esp.  Carr and Coley,  Survey:

In Fact:    This family of self-similar solutions was 
already known to exist



  	


!

No one before us 	


proposed this family of waves 	



as a	


mechanism 	



that could account for the 	


Anomalous Acceleration 	



without Dark Energy

The record is clear on one thing: 



We have now accomplished our goal 
of bringing the effects of these waves 
up to present time to compare with 

Dark Energy.   

There are several surprises 
In this talk I present what 

we have found…



Rather, it is the non-trivial phase portrait of the instability 
they trigger when p=0 that that creates the later 

accelerations 

Surprisingly, the perturbations at the end of radiation 	


do not directly cause the Anomalous Acceleration as we 

originally conjectured,



INTRODUCTION	


TO	



COSMOLOGY



Edwin Hubble (1889-1953)

Hubble’s Law (1929):

``The galaxies are receding from us at a velocity 
proportional to distance’’

Universe is Expanding

Based on Redshift vs Luminosity







Conclude:  The universe 	


appears (and is assumed) 	



uniform on a scale of about 	


1/20th 	



the distance across the visible 
universe

⇠ =
r

ct
⇡ .05



Milky Way

Cosmi
c 

Length 

10 billion light-years≈ Visible Universe

500 million light-years≈ Uniform Density

50 million light-years ≈ Separation between	


clusters of galaxies

10 million light-years≈ diameter of 	


a cluster

1 million light-years separation between	


galaxies in a cluster

≈

100 thousand light-years distance across	


Milky Wave

≈

28 thousand light-years ≈ distance to	


galactic center



Standard Model of Cosmology

Derived FRW solutions of the Einstein equations: 	


 3-space of constant curvature expanding in time: 

ds2 = �dt2 + R(t)2
�

dr2

1�kr2 + r2d�2
⇥

Hubble’s Constant � H � Ṙ
R

The Big Bang theory based on the FRW metric was 
worked out by                          in the late 1920’s 
leading to Hubble’s comfirmation of redshift vs 
luminoscity consistent with an FRW spacetime

George Lemaître

Alexander Friedmann   1922                                   :                              



r = 0

In 1935:   Howard Robertson and Arthur Walker 
derived Friedmann spacetime from the

Any point can be taken as

Homogeneous and Isotropic about every point

Copernican Principle: 	


  “Earth is not in a special place in the Universe”

Each t=const surface is a 3-space 
of constant scalar curvature

R-W: Friedmann uniquely determined by condition



Standard Model of Cosmology

Observations of the 	


micro-wave background	



IMPLY
k = 0

“Critical expansion to within 
about 2-percent”



The Friedmann metric 	


when k=0:

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

The universe is infinite flat space   
at each fixed time:R3

(Assumed to Apply on the Largest Length Scale)



Standard Model of Cosmology

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

Measures distance between galaxies 
at each fixed  t

galaxy galaxy

Conclude: Ḋ = Ṙr =
Ṙ

R
Rr = HD

Hubble’s 
Law

FRW metric,   k=0:

Ḋ = HD

D = Rr

D = R(t)r

Hubble’s Constant � H � Ṙ
R



Standard Model of Cosmology

Hubble’s Law:

Conclude--

``The universe is expanding like a balloon’’

Ḋ = HD

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

R = 0Big Bang



The Hubble “Constant’’ at present time

The inverse Hubble Constant estimates 
the Age of the Universe

c

H0
= Hubble Length ⇡ 1010 lightyears

c

H0
is the distance of light travel since the Big Bang,	



 a measure of the size of the visible universe

1

H0
⇡ 10

10
years ⇡ age of universe



Measuring the Hubble Constant

Measures distance from Earth to distant 
galaxy at present time  

D

t0

t0
EARTH galaxy

D

Hubble’s 
LawH0D = Ḋ

t < t0

D ⇡ d` ⌘ luminosity distance

˙D ⇡ z ⌘ redshift factor =

�0 � �e

�e

H0d` = z +
1

4
z2 � 1

8
z3 +O(z4)

k = 0

Friedmann



H0d` = z +
1

4
z2 � 1

8
z3 +O(z4)

k = 0

Friedmann

Up until 1999, we could only measure	


 the leading linear term:

z << 1 H0 ⇡ h0 100
km

smpc
h0 ⇡ .68

``A galaxy at a distance of one mega-parsec is 
receding at about 68 kilometers per second…’’

mpc ⇡ 3.2 million light years



The 1999 supernova data tested the 
dependence of the Hubble constant on 

time, and the results don’t fit  	


standard model...

Dark energy is non-classical	


Negative pressure        Anti-gravity effect

“Anomalous Acceleration of Galaxies”

Introduction of 	


“Cosmological Const”  and  “Dark Energy”



H0d` = z +
1

4
z2 � 1

8
z3 +O(z4)

k = 0

Friedmann

Recent supernova data have tested the 
dependence of the Hubble constant on 

time, and the results don’t fit  	


standard model...

This is measured at	


 about .425 not .25



Recent supernova data have tested the 
dependence of the Hubble constant on 

time, and the results don’t fit  	


standard model...

This  is usually interpreted in terms 
of a Best Fit to Friedmann Universes 

with the 	


Cosmological Constant

(k,⌦⇤) k = 0, ⌦⇤ ⇡ .7



Thanks to Philip Hughs 	


UM-Astronomy

Standard Model	


k=0 FRW

Supernova Data

“Not a Good Fit”



That is:  To preserve the 	


Copernican Principle,	



that the Universe	


 on the Largest Length Scale	


 is evolving according to a 	



Uniform Friedmann Spacetime 	


with p=0, k=0 	



A Cosmological Constant 	


must be added 	



To Einstein’s Equations	


!

The Physical Interpretation is Dark Energy



Thanks to Philip Hughs 	


UM-Astronomy

Best Fit:  	


70% Dark Energy	



30% Classical Energy



Einstein Equations for Friedmann:

Einstein Equations (1915):     

Einstein Equations for k=0 Friedmann metric:     

�̇ = �3(� + p)H

Solutions determined by equation of state:     p = p(�)

Tij = (� + p)uiuj + pgij=Stress Energy Tensor (perfect fluid)

Gij = �Tij

Gij=Einstein Curvature Tensor

H2 =
�

3
⇥



Incorporating Dark Energy into Friedmann

Leads to:

Assume k = 0 FRW:

Gij = 8πTij + Λgij

Assume Einstein equations with a cosmological constant:

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

H2 = κ

3
ρ + κ

3
Λ

1 = ΩM + ΩΛ

Implies:  The universe is 70 percent dark energy

Divide by H2 = �
3 �crit

Best data fit leads to ⌦⇤ ⇡ .7 and ⌦M ⇡ .3



m - M =  "Distance Modulus"!
!
M=absolute Magnitude!
!
m=apparent magnitude!
!
d=distance in parsecs:!
!
  m - M = 5 log(d) - 5!
!
z=redshift factor!
!
1+z =!
!

�emit
�obs

Best Fit:  	


70% Dark Energy	



30% Classical Energy

�m + �� = 1 for a
flat (k = 0) universe.



Heavy Elements:	


0.03%

Neutrinos:	


0.3%

Stars:	


0.5%

Free Hydrogen	


and Helium:	



4%

Dark Matter:	


25%

Dark Energy:	


70%

Courtesy 
of NASA

Standard Model
Composition of Universe



The Question we Explore: 	


!

  “Could the Anomalous Acceleration of 
the galaxies be due to the fact that we 
are looking outward into an expansion 
wave that formed during the Radiation 
Epoch of the Big Bang?”



The Einstein equations have been confirmed 
without the cosmological constant in every 

setting except cosmology...

The Question we Explore: 	


!

  “Could the Anomalous Acceleration of 
the galaxies be due to the fact that we 
are looking outward into an expansion 
wave during the Radiation Epoch of the 
Big Bang?”



Note:  A general expansion wave has a center of expansion...	



The Einstein equations have been confirmed 
without the cosmological constant in every 

setting except cosmology...

The Question we Explore: 	


!

  “Could the Anomalous Acceleration of 
the galaxies be due to the fact that we 
are looking outward into an expansion 
wave during the Radiation Epoch of the 
Big Bang?”



 Summary	


 of our results	



for the 	


Wave Theory



   Hubbles Law :    

Hubble’s	


Constant    

   Luminosity 	


Distance    

Redshift	


Factor    

H0 = h0
100km
s mpc

h0 ⇡ .68

(1929)

Measured value:

H0 d` = z



The 1999 Supernova data was refined 
enough to measure the quadratic 

correction to 	


Hubble’s Relation:

z2??H0d` = z+

Q



Einstein’s Equations: G = T + ⇤g

Anomalous	


Acceleration

⌦⇤ = .7
Friedmann

⌦⇤ = 0
Friedmann

Cosmological

Constant 1999
⌦M + ⌦⇤ = 1

H0d` = z + .25z2 + O(z3)

H0d` = z + .425z2 + O(z3)



WE PROVE:   The Friedmann Universe is UNSTABLE

This induces exactly the same range of quadratic	


 corrections to redshift vs luminosity as does 	



Dark Energy

A small wave perturbation at the end of 
radiation will expand to create a large 

region of accelerated 	


uniform expansion 	



at the 	


Center of the Wave



MOREOVER:  

The self-similar perturbations we identified 
at the end of the radiation epoch	



TRIGGER	


this instability when p=0



WE PROVE:   The Friedmann Universe is UNSTABLE

The self-similar perturbations we identified 
at the end of the radiation epoch	



TRIGGER	


this instability when p=0

This induces exactly the same range of     as 
does Dark Energy:

H0d` = z +Qz2 +O(z3)

Q



In the case ⌦M = .3, ⌦⇤ = .7 this gives

H0d` = z + .425 z2 � .1804 z3 + O(z4)

H0d` = z + .25 (1 + ⌦⇤) z2 � .125
✓

1 +
2
3
⌦⇤ � ⌦2

⇤

◆
z3 + O(z4)

Dark Energy

⌦M + ⌦⇤ = 1
.25  Q  .5

0  ⌦⇤  1

as



Our Wave Theory

.25  Q  .5

as

H0d` = z + Q(z2, w0)z2 + C(z2, w0, w2)z3 + O(z4)

w0
0 = �

�
1
6z2 + 1

3w0 + w2
0

�
z0
2 = �3w0

�
4
3 + z2

�

Orbit evolves to a NEW STABLE REST POINT

H0d` = z + .425z2 + .3591z3 + O(z4)

A Wave with Underdensity:
⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



THEOREM:
The p = 0 waves take the asymptotic form

THEOREM: The p = 0 waves take the asymptotic form

z(t, ⇠) =
✓

4
3

+ z2(t)
◆

⇠2 +
⇢

40
27

+ z4(t)
�

⇠4 + O(⇠6),

w(t, ⇠) =
✓

2
3

+ w0(t)
◆

+
⇢

2
9

+ w2(t)
�

⇠2 + O(⇠4),

where z2(t), z4(t), w0(t), w2(t) evolve according to the equations

�tż2 = 3w0

✓
4
3

+ z2

◆
, (1)

�tż4 = �5
⇢

2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�
(2)

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�tẇ0 =
1
6
z2 +

1
3
w0 + w2

0, (3)

�tẇ2 =
1
10

z4 +
4
9
w0 �

1
3
w2 +

1
24

z2
2 �

1
3
z2w0 (4)

�1
3
w2

0 + 4w0w2 �
1
4
w2

0z2.

The ANSATZ that triggers the instability:

⇠ =
r

ct

z(t, ⇠) = ⇢r2

w(t, ⇠) =
v

⇠

“Fractional Distance to Hubble Length00

“Dimensionless Density

00

“Dimensionless V elocity

00
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z(t, ⇠) = ⇢r2

Uniform Density out to errors ⇠4

⇢(t) ⇠
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3 + z2(t)
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=

f(t)

t2
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THEOREM:
The p = 0 waves take the asymptotic form
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w0
0 = �

�
1
6z2 + 1

3w0 + w2
0

�
z0
2 = �3w0

�
4
3 + z2

�

Orbit evolves to a NEW STABLE REST POINT

H0d` = z + .425z2 + .3591z3 + O(z4)

A Wave with Underdensity:
⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



w

z´ = -3w*(4/3+z)
w´ = -(1/6z+1/3w+w²)
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The relative underdensity at the end of radiation: 

The relative underdensity at present time:

⇢ssw(t0)
⇢SM (t0)

= .1438 ⇡ 1
7
.

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



The relative underdensity at the end of radiation: 

The relative underdensity at present time:

Conclude:   An under-density of one part in      at 
the end of radiation produces a seven-fold 	



under-density at present time…  

106

⇢ssw(t0)
⇢SM (t0)

= .1438 ⇡ 1
7
.

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



An under-density of 	


one part in      at the 	



end of radiation 
produces a 	



seven-fold under-density 
at present time…  

106

Conclude:   



  The Standard Model is Unstable 
to Perturbation by this 	



1-parameter family of Waves

CONCLUDE: 



Comparison with Dark Energy:  

Wave
Theory

z ⇠ d`

H0
⇠ r

ct
⇠ ⇠

Measures Fractional	


Distance to 	



Hubble Length

A prediction:	


The wave contributes 	



MORE to the Anomalous 
Acceleration	



far from the center

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

H0d` = z + .425z2 + .3591z3

z << 1



z ⇠ d`

H0
⇠ r

ct
⇠ ⇠

Measures Fractional	


Distance to 	



Hubble Length

z << 1



region near the center of the wave

The wave creates a	



UNIFORMLY EXPANDING SPACETIME	



with an	



ANOMALOUS ACCELERATION	



in a

LARGE, FLAT, CENTER-INDEPENDENT

CONCLUDE:



A new ansatz for corrections to the 
p=0 Friedmann that closes:

z ⇠ density
w ⇠ velocity

z(t, ⇠) =
✓

4
3

+ z2(t)
◆

⇠2 +
⇢

40
27

+ z4(t)
�

⇠4 + O(⇠6),

w(t, ⇠) =
✓

2
3

+ w0(t)
◆

+
⇢

2
9

+ w2(t)
�

⇠2 + O(⇠4)

⇠ =
r

t

⇠ fractional distance to Hubble Length



where w̄(t) and k0(t) change exponentially slowly.

THEOREM: Neglecting O(⇠4) errors, as the orbit
tends to the Stable Rest Point:

The Density drops FASTER than SM:

ds2 = �dt2 + dr2 + r2d⌦2

The metric tends to FLAT MINKOWSKI:

⇢WAV E (t) =
k0

t3(1 + w̄)
⇢SM (t) =

4

3t2



Theorem: Let t = t0 denote present time since the

Big Bang in the wave model and t = tDE present time

since the Big Bang in the Dark Energy model. Then

there exists a unique value of the acceleration parameter

a = 0.99999959 ⇡ 1 � 4.3 ⇥ 10

�7
corresponding to an

under-density relative to the SM at the end of radiation,

such that the subsequent p = 0 evolution starting from

this initial data evolves to time t = t0 with H = H0 and

Q = .425, in agreement with the values of H and Q at

t = tDE in the Dark Energy model. The cubic correction

at t = t0 in the wave theory is then C = 0.3591, while

Dark Energy theory gives C = �0.1804 at t = tDE. The

times are related by t0 ⇡ 1.45 tDE.t0 ⇡ (.95)tDE



Around 2007:	


 Other research groups began exploring 

the possibility that the anomalous 
acceleration might be due to the earth 

lying near the center of a large region of 
Under-Density

We first saw publication in 2009





This proposal is still 
taken seriously in 

Astrophysics



Prokopek...2013 (Astrophysicist, Utrecht University)



Details	


 of our 	


Analysis



Main Steps:

(1)  Derivation of the p=0 Einstein equations in a 	


new coordinate system aligned with the structure	



 of the waves. 

(2)  A new ansatz for the Corrections to SM 	


such that the asymptotic equations close.      

(3)  Putting the Initial Data from the Radiation Epoch 
into the gauge of our asymptotics.

(4)  The Redshift vs Luminosity determined by the 
Corrections.



I.   A New Formulation  
of the p=0 

Einstein Equations



The Einstein equations for 
spherically symmetric 
spacetimes take their 

Simplest Form  
in  

Standard Schwarzschild 
Coordinates 

 (SSC)



 I.e.



ds2 = �D(t, r̄)dt̄2 + E(t̄, r̄)dt̄dr̄ + F (t̄, r̄)dr̄2 + G(t̄, r̄)d⌦2

I.e.   A General Spherically Symmetric  
metric



ds2 = �D(t, r̄)dt̄2 + E(t̄, r̄)dt̄dr̄ + F (t̄, r̄)dr̄2 + G(t̄, r̄)d⌦2

I.e.   A General Spherically Symmetric  
metric

Transforms to SSC form:



(t̄, r̄)! (t, r)

ds2 = �D(t, r̄)dt̄2 + E(t̄, r̄)dt̄dr̄ + F (t̄, r̄)dr̄2 + G(t̄, r̄)d⌦2

I.e.   A General Spherically Symmetric  
metric

Transforms to SSC form:



(t̄, r̄)! (t, r)

ds2 = �D(t, r̄)dt̄2 + E(t̄, r̄)dt̄dr̄ + F (t̄, r̄)dr̄2 + G(t̄, r̄)d⌦2

I.e.   A General Spherically Symmetric  
metric

Transforms to SSC form:

ds2 = �B(t, r)dt2 +
1

A(t, r)
dr2 + r2d⌦2

SSC



The Equations 
In SSC



Standard Schwarzschild Coordinates

(1)+(2)+(3)+(4) (1)+(3)+div T=0
(weakly)
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Theorem:  (Te-Gr)  The equations close in a	


 “locally inertial’’ formulation of (1), (2) & Div T=0:
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Setting p=0:
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Substituting into the Equations gives: 



Substituting into the Equations gives: 
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Substituting into the Equations gives: 
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Note:  Equations are Singular at        r = 0
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(2)



The       singularity reflects the fact that 
waves coming into         can amplify and 
blowup.   	


!

Since we are only interested in solutions 
representing outgoing, expanding waves, 
we look for natural changes of variables 
that  regularize the equations at        .

1/r
r = 0

r = 0
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(This is the self-similar variable in the 
waves from the radiation epoch!)



Final change of variables---              



(t, r)! (t, ⇠)

Final change of variables---              
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Substituting into (1) and (2) we obtain 
the following dimensionless eqns:              
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This leads to the following 
Dimensionless Formulation 	



of the p=0 Einstein Equations:



 Einstein Equations when p=0

tzt + ⇠ {(�1 + Dw)z}⇠ = �Dwz, (1)

twt + ⇠ (�1 + Dw) w⇠ = (2)

w �D
n

w2 + 1�⇠2w2
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,

(3)
⇠A⇠ = (A� 1)� z,

⇠D⇠

D = (1�A)� (1�⇠2w2)
2 z. (4)



2.  The Ansatz and 
Asymptotics 

 for the   
Corrections:



Our Ansatz for Corrections to the Standard Model

z(t, ⇠) = zF (⇠) + �z(t, ⇠) �z = z2(t)⇠2 + z4(t)⇠4

w(t, ⇠) = wF (⇠) + �w(t, ⇠) �w = w0(t) + w2(t)⇠2

A(t, ⇠) = AF (⇠) + �A(t, ⇠) �A = A2(t)⇠2 + A4(t)⇠4

D(t, ⇠) = DF (⇠) + �D(t, ⇠) �D = D2(t)⇠2



Our Ansatz for Corrections to the Standard Model
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Our Ansatz for Corrections to the Standard Model

THEOREM: The p = 0 waves take the asymptotic form
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�tẇ2 =
1
10

z4 +
4
9
w0 �

1
3
w2 +

1
24

z2
2 �

1
3
z2w0 (4)

�1
3
w2

0 + 4w0w2 �
1
4
w2

0z2.



ds2 = �B(t, r)dt2 +
1

A(t, r)
dr2 + r2d⌦2

⇠ = r/t D =
p

AB

Reiterate: 

but rather write the SSC eqns in        
-coordinates.  (t, ⇠)

We don’t use co-moving coordinates,



Equations for the Corrections to SM

When we plug into the equations 	


  a remarkable simplification occurs:
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This is a coordinate gauge condition 
reflecting the serendipity of our         

-coordinate system!! (t, ⇠)

Equations for the Corrections to SM

When we plug into the equations 	


  a remarkable simplification occurs:

A2 = �1
3
z2, A4 = �1

5
z4, D2 = � 1

12
z2 (1)



Plugging Ansatz into Equations...

Plugging 

and 

into equations:
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Gives: 



THEOREM: The p = 0 waves take the asymptotic form
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THEOREM:
The p = 0 waves take the asymptotic form



The Corrections to SM evolve according to 

Note:   RHS is Autonomous!
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We can make LHS Automomous too!

⌧ = ln(t) t
d

dt
=

d

d�
⌘ 0 LHS Autonomous
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Autonomous Eqns for Corrections to SM

t⇤  t  1014

ln(t⇤)  ⌧  14 · ln(10)

yr Trivializes the large 
time	



 simulation problem!
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The Equations for the Corrections 

Everything is dimensionless	


 involving only pure numbers!



The Equations for the Corrections 

Note:  Leading order Eqns Uncouple!
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(z2, w0)



The Leading Order Corrections... 

...And Their Equations

�z0
2 = �tż2 = 3w0
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Keep in mind that      is on the order of	


fractional distance to the Hubble Length: 

⇠

⇠ = r/ct ⇡ arclength distance at fixed time

distance of light travel since Big Bang

   For example:  At 1/10 way across the visible 
universe, about 1.1 billion light-years out:    

⇠4 ⇡ 1
10,000 = .0001



   Hubbles Law:    

Hubble’s	


Constant    

   Luminosity 	


Distance    

Redshift	


Factor    

H0 d` = z

  1929:  Linear relation between 
redshift and luminosity    



   Hubbles Law:    

Hubble’s	


Constant    

   Luminosity 	


Distance    

Redshift	


Factor    

H0 d` = z

  1999:  There is an anomalous 
acceleration    

+ Qz2



This term accounts for the
corrections to the Standard Model
Observed in the Supernova Data

In Fact:      is on the order of the redshift factor,  
and              determines the quadratic correction 

to redshift vs luminosity	


=anomalous acceleration

⇠
(z2, w0)

H0d` = z+ +O(z3)z2
Q(z2, w0)

(Nobel Prize)



H0d` = z+ +O(z3)z2
Q(z2, w0)

of the so-called

“Deceleration Parameter” q

Determined by the value

In Fact:      is on the order of the redshift factor,  
and              determines the quadratic correction 

to redshift vs luminosity	


=anomalous acceleration

⇠
(z2, w0)



H0d` = z+

+O(z3)

z2
Q(z2, w0) C(z2, w0, w2)+ z3

                 The cubic correction is 	


determined by      (z2, w0, w2)

Determined by solving

for (z2, z4, w0, w4)

our system of four equations



H0d` = z+

+O(z3)

z2
Q(z2, w0) C(z2, w0, w2)+ z3

                 The cubic correction is 	


determined by      (z2, w0, w2)

Beyond experimental precision

A prediction



H0d` = z+ +O(z3)z2
Q(z2, w0)

           The quadratic correction is determined 
by our equations for (z2, w0)
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Thanks to:

pplane Rice University

The (z2, w0) phase portrait:

Numerical Simulation
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3.   The Initial Data 
determined by the 	


Self-Similar Waves 	



from the 	


Radiation Epoch
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Thus our equations are for the 
corrections to the Standard Model:
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p =
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       Self-similar coordinates for Friedmann	


 with 	



Pure Radiation
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The             Friedmann Universe admits a 	


1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	



Radiation Epoch: 
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The             Friedmann Universe admits a 	


1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	



Radiation Epoch: 

p =
c2

3
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The           Friedmann Universe DOES NOT 	


admit Self-Similar perturbations! 

p = 0



The             Friedmann Universe is embedded in  	


1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	



Radiation Epoch: 

p =
c2

3
⇢

The           Friedmann Universe DOES NOT 	


admit Self-Similar perturbations! 

p = 0

       (The topic of our PNAS and MEMOIR) 
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The perturbations are describe by ODE’s:
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    Self-Similar perturbations of Friedmann	


for Pure Radiation 

       (The topic of our PNAS and MEMOIR) 
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       A 1-parameter family of solutions depending on 
the  Acceleration Parameter 0 < a <1
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a = 1    is the Standard Model for Pure Radiation 
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Da
1/3 = 1 + O(⇠̄4)



self-similar waves 
at the end of the 	


Radiation Epoch  

depends on:

(1)  The temperature       at which T⇤ p = 0

(2)  The value of the acceleration parameter a

 The initial data created by



OUR GOAL NOW:   Use our equations to evolve 
the initial data at the end of radiation to determine 

that gives the correct anomalous acceleration.

I.e.,            that give the observed 	


quadratic correction to redshift vs 

luminosity at present time

(a, T⇤)

(a, T⇤)



Our simulation turns out to be entirely 
insensitive to the initial     ,      

 I.e.,  we need only compute the value of the 
acceleration parameter that gives the correct 

anomalous acceleration.

In the Standard Model p=0 at about

T⇤ ⇡ 90000K

(Depending on theories of Dark Matter)  

t⇤ ⇡
!

    10,000-30,000 yrs

t⇤ T⇤



Technical Problem:   The self-similar waves at the 
end of radiation are in the wrong gauge due to 
the fact that time since the Big Bang changes            

between          and p =
c2

3
⇢p = 0

 That is:   The initial data for the self-similar waves 
does not meet the gauge conditions for our p=0 

ansatz

A2 = �1
3
z2, A4 = �1

5
z4, D2 = � 1

12
z2

 (Resolving this held us back for close to a year!)



Resolution:   We post-process the initial data by 
a gauge transformation of the form---

 That is:   The initial data for the self-similar waves 
does not meet the gauge conditions for our p=0 

ansatz

A2 = �1
3
z2, A4 = �1

5
z4, D2 = � 1

12
z2

 (Resolving this held us back for close to a year!)

t = t̄ +
1
2
q(t̄� t̄⇤)2 � tB



THEOREM: Let the transformation

¯t! t be defined by

t =

¯t +

1

2

q(¯t� ¯t⇤)
2 � tB,

where q and tB are given by

tB =

¯t⇤(1� ↵),

q =

a2

16�̄
=

a2

2(1 + a2
)

,

where

↵ =

1

5

✓
1 + a2

1.3� a2

◆
.

Then, on the constant temperature surface T = T⇤, the initial data

from the self-similar waves at the end of the radiation epoch meets

the gauge conditions in (

¯t, ¯⇠).



 Resolution:   To get the asymptotics correct we 
have to pull the initial data back to 

T = T⇤, ⇢ = ⇢⇤2nd Technical Problem:   The    	


surfaces are distinct from the constant time 

surfaces  t = t⇤

t = t⇤



 The initial data created by  
self-similar waves 

on a constant temperature surface 
at the end of the 
Radiation Epoch  

!



ẑ2 =

⇢
3a2↵2

4
� 4

3

�

z2

ẑ4 =

⇢
15a2(3

2 � a2)↵4

16
� 40

27

�

z4

ŵ0 =

⇢
↵

2
� 2

3

�

v1

ŵ2 =

⇢
↵3

16

�
9.5� 8a2

�
� 2

9

�

v3

z2(t⇤) = ẑ2,

z4(t⇤) = ẑ4 + 3ŵ0

✓
4

3
+ ẑ2

◆
�,

w0(t⇤) = ŵ0,

w2(t⇤) = ŵ2 +

✓
1

6
ẑ2 +

1

3
ŵ0 + ŵ2

0

◆
�,

t⇤ = ↵t̂⇤ =
a↵

2

r
3

⇢⇤
, � = ↵�̄ =

(1 + a2)↵

8
, ↵ =

(1 + a2)

5(1.3� a2)

where

THEOREM: The initial data for oiur p = 0 evolution

at time t = t⇤ is given as a function of the acceleration

parameter a and start temperature ⇢⇤ = aT 4
⇤ by



4.  Redshift vs Luminosity	


 as a function of 	


our corrections



H0d` = z

⇢
1 +


1
4

+ E2

�
z +


�1

8
+ E3

�
z2

�
+ O(z4)

A (long) Calculation gives:

Anomalous 	


Acceleration

Cubic 	


Correction

E3 = E3(z2, w0, w3)E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2
= E2(z2, w0),



H0d` = z

⇢
1 +


1
4

+ E2

�
z +


�1

8
+ E3

�
z2

�
+ O(z4)

is quite complicated:

Cubic 	


Correction

E3(z2, w0, w2)



I3 = H3 + 3

�1 +

✓
8� 8H2 + 3w0 � 12H2w0

2(2 + 3w0)2

◆�
,

H3 =
5
8

(
1�

1� 18
5 Q2 � 81

5 Q2
2 + 9

5w0 + 27
5 Q3 + 81

10Q3w0
�
1 + 3

2w0

�4

)

Q2 =
2
3
w0 +

1
2
w2

0 �
1
12

z2

Q3 =
2
9
w0 + w2

0 +
1
2
w3

0 + w2 �
1
18

z2 �
1
3
z2w0

(Each term represents a different effect...)

A calculation gives:

H2 =
1
4

(
1�

1 + 9
�

2
3w0 + 1

2w2
0 � 1

12z2

�

(1 + 3
2w0)2

)
,

I2 = H2 +
9w0

2(2 + 3w0)

E3 = 2I2 + I3,
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3.  Comparison	


 with the	



 Standard Model



C.f. our formula:

H0d` =
2

1 + 3�

n

(1 + z)� (1 + z)
1�3�

2

o

.

In the case p = � = 0, we get

H0d` = z +
1
4
z2 � 1

8
z3 + O(z4)

H0d` = z

⇢
1 +


1
4

+ E2

�
z +


�1

8
+ E3

�
z2

�
+ O(z4)

be obtained from exact formulas:
Redshift vs Luminosity for k=0 Friedmann can

p = �⇢



Cosmology now assumes a Cosmological Constant	


 with 	



Seventy Percent Dark Energy 

H0d` = z +
1
2

✓
�⌦M

2
+ 1

◆
z2 +

1
6

✓
�1� ⌦M

2
+

3⌦2
M

4

◆
z3 + O(z4)

In the case ⌦M = .3, ⌦⇤ = .7 this gives

H0d` = (1 + z)
Z z

0

dy

(1 + z)
p

1 + ⌦My
.

Taylor expanding gives:

⌦M + ⌦⇤ = 1

H0d` = z + .425 z2 � .1804 z3 + O(z4)



CONCLUDE:  

H0d` = z + .425 z2 � .1804 z3 + O(z4)

H0d` = z + .25 z2 � .125 z3 + O(z4)

⌦M + ⌦⇤ = 1

The	


Anomalous	



Acceleration

Standard Model

with

Dark Energy

⌦⇤ = 0

k = 0, p = 0 Friedmann
with and without Dark Energy

⌦⇤ = .7

Standard Model

Without

Dark Energy



IN FACT:  As the Dark Energy Parameter 	


ranges from 0 to 1, the Anomalous 
Acceleration ranges from .25 to .5

H0d` = z +
1
2

✓
�⌦M

2
+ 1

◆
z2 +

1
6

✓
�1� ⌦M

2
+

3⌦2
M

4

◆
z3 + O(z4)

0 ⌦M  1

as

Range: .25 to .5



We get the Same Conclusion	


 in the Wave Theory!

H0d` = z

⇢
1 +


1
4

+ E2

�
z +


�1

8
+ E3

�
z2

�
+ O(z4)

E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2

along the orbit

from the Standard Model

to the

Stable Rest Point

Range: .25 to .5



Orbits

Isoclines

Stable           	


Manifold

Unstable	


Manifold

SM	


Unstable	


Saddle Pt.

Stable	


Rest	


Point
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5.  Determination of the value	


 of the 	



Acceleration Parameter 	


that matches the	



 Anomalous Acceleration



H0d` = z + .425 z2 � .1804 z3 + O(z4)
⌦⇤ = .7

Dark Energy

H0d` = z + [.24 + E2] z2 + [�.125 + E3] z3 + O(z4)
Our Wave Model

�z0
2 = �tż2 = 3w0

✓
4
3

+ z2

◆
,

�z0
4 = �tż4 = �5

⇢
2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�w0
0 = �tẇ0 =

1
6
z2 +

1
3
w0 + w2

0,

�w0
2 = �tẇ2 =

1
10

z4 +
4
9
w0 �

1
3
w2 +

1
24

z2
2 �

1
3
z2w0

�1
3
w2

0 + 4w0w2 �
1
4
w2

0z2.

E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2

We simulate our equations starting from the self-similar

wave data at the end of radiation T = T⇤, to find the

value of (a, T⇤) that gives the same Anomalous Acceler-

ation as seventy percent Dark Energy when H = H0:



THE ANSWER:   The value of the acceleration for the 
wave perturbation of SM that produces a quadradic 

correction of .425 at the present value of       is:  H0

H0d` = z + .425z2 + .3591z3

= 1�
�
4.3⇥ 10�7

�
a= 0.99999957



THE ANSWER:   The value of the acceleration for the 
wave perturbation of SM that produces a quadradic 

correction of .425 at the present value of       is:  H0

H0d` = z + .425z2 + .3591z3

= 1�
�
4.3⇥ 10�7

�

This corresponds to an relative underdensity of 

a = 0.99999957

THE ANSWER:   The value of the acceleration for the 
wave perturbation of SM that produces a quadradic 

correction of .425 at the present value of       is:  H0

This corresponds to an relative underdensity of 

H0d` = z + .425z2 + .3591z3

= 1�
�
4.3⇥ 10�7

�
a= 0.99999957

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6
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The relative underdensity at the end of radiation: 

Numerical Simulation gives the relative under-density 	


at present time as:

Conclude:   An under-density of one part in      at 
the end of radiation produces a seven-fold 	



under-density at present time!  

106

⇢ssw(t0)
⇢SM (t0)

= .1438 ⇡ 1
7
.

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



Conclude:  The Standard Model is 
Unstable to Perturbation 	


by this family of Waves!  



Comparison with Dark Energy:  

H0d` = z + .425z2 + .3591z3

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

Wave
Theory

Dark

Energy



The Wave Theory predicts a	


 Larger Anomalous Acceleration 	



far from the center than 	


Dark Energy

Comparison with Dark Energy:  

H0d` = z + .425z2 + .3591z3

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

Wave
Theory

Dark

Energy



Wave Theory takes More Time to H = H0:

tDE ⇡ 13.8 Billion years ⇡ (1.45) tSM

Comparison with Dark Energy:  

H0d` = z + .425z2 + .3591z3

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

Wave
Theory

Dark

Energy

t0 ⇡ .95tDE



Conclude:  The Standard Model 	


is 	



Unstable to Perturbation 	


by this	



 Family of Waves,	


and under-densities create an	



Anomalous Acceleration  



Theorem: Let t = t0 denote present time since the

Big Bang in the wave model and t = tDE present time

since the Big Bang in the Dark Energy model. Then

there exists a unique value of the acceleration parameter

a = 0.99999959 ⇡ 1 � 4.3 ⇥ 10

�7
corresponding to an

under-density relative to the SM at the end of radiation,

such that the subsequent p = 0 evolution starting from

this initial data evolves to time t = t0 with H = H0 and

Q = .425, in agreement with the values of H and Q at

t = tDE in the Dark Energy model. The cubic correction

at t = t0 in the wave theory is then C = 0.3591, while

Dark Energy theory gives C = �0.1804 at t = tDE. The

times are related by t0 ⇡ 1.45 tDE.t0 ⇡ .95tDE



6.  The Flat 	


Uniformly Expanding 

Spacetime  	


at the 	



Center of the Wave

(Under-Dense Case: a < 1)



Consider the evolution 
of the spactime at the 

center obtained by 
neglecting all errors  

of order 

O(⇠4)



The spacetime near the 
center evolves toward 

the	


Stable Rest Point
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Neglecting O(⇠4)



⇢(t) =
4
3+z2(t)

t2 = O
�

1
t3

�
z2 ! �

4
3

The density
drops faster

of the

Standard
Model

than the
O

�
1
t2
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Neglecting         errors:	


The spacetime near the center evolves 

toward the Stable Rest Point

O(⇠4)

is CENTER-INDEPENDENT
(like Friedmann Spacetimes)

BUT: The evolution creates a uniformly

expanding density near the center,

which, neglecting relativistic corrections,

The metric tends to Flat Minkowski Spacetime

which is not co-moving with the fluid, BUT:



⇢SM (t) =
4

3t2
,

THEOREM: Neglecting O(⇠4
), as the orbit tends to the

Stable Rest Point, the density drops FASTER than SM,

⇢(t) =
k0

t3(1+w̄)
,

where w̄(t) and k0(t) change exponentially slowly.

in a

LARGE, FLAT, CENTER-INDEPENDENT

CONCLUDE: The wave creates a

UNIFORMLY EXPANDING SPACETIME
with an

ANOMALOUS ACCELERATION

region near in the center of the wave.
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CONCLUSIONS:
Our Proposal: The AA is due to a local under-

density on the scale of the supernova data, created

by a self-similar wave from the radiation epoch

that triggers an instability in the SM when the

pressure drops to zero.

We have made no assumptions regarding

the space-time far from the center of the perturba-

tions. The consistency of this model with other ob-

servations in astrophysics would require additional

assumptions.



CONCLUSIONS:

• This is arguably the simplest model for the anomalous 
acceleration within Einstein’s original theory of GR,  
without requiring Dark Energy.

• It demonstrates that any local center of the Standard 
Model of Cosmology is unstable on the largest length 
scale, to perturbation by exact solutions from the 
Radiation Epoch.

•  These perturbations are stabilized by a nearby stable 
rest point that generates the same accelerations as 
Dark Energy. 

•  It makes testable predictions. 



• On what scale would such waves apply?	



• If these came from time-asymptotic wave 
patterns created in an earlier epoch, would 
we expect a secondary transitional wave far 
from the center?	



• How does cosmology address the instability? 
Can Dark Energy help?  (NO!)	



• Implications of a preferred center?	



• Is this more fine-tuned than Dark Energy?

QUESTIONS:



There are large scale anomalies in the data indicating a 
lack of uniformity on the largest length scale

Prokopek...2013 (Astrophysicist, Utrecht University)



Prokopek...2013 (Astrophysicist, Utrecht University)



Every aspect of this work 
came from  

Applied Mathematics,  
not Physics

Whatever its implications to Physics, 	


it stands on its own as a self-contained 

model in Applied Mathematics

FINAL COMMENT



Mathematics is part of physics…	


…[the] part of physics 	



where experiments are cheap.	


!

—Arnold,  Paris, 1997



End


