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Eli Isaacson 	


and 	

Our 15-Year Collaboration	


!

(…and many good times in Rio!)



Alternative Title:   How 
to make a talk on old 
work interesting…	


  	

Tell a Story 



My story begins in 
1980, the first year 

the NSF offered their	

NSF Postdoctoral 

Research Fellowships



In 1980 I finished my 
Ph.D. thesis on the 

Glimm Scheme under	

Joel Smoller	


University of Michigan



At that time, hardly anyone 
understood the technicalities 

of the 	

Glimm Scheme…	


Peter Lax, Joel Smoller, 	

Ron Diperna, Tai-ping Liu	


…a few others and…	

Glimm Himself



At Joel Smoller’s 
urging I applied for an 
NSF Postdoc to work 

with Glimm at 
Rockefeller University



Years later Igor 
Stackgold told me 
the committee was 

dominated by 	

TOPOLOGISTS… 



…and it was a fight.	

!

—Ivar Stackgold



But I won anyway… 	

and went to Rockefeller 
University, NYC, 1980	


on an 	

NSF Postdoc 	


which payed $13,000/yr 



I did not care about 
money, tenure, or security 

then…	

I just wanted to see if I 

could make an important 
contribution to 

Mathematical Physics… 



The first day at 
Rockefeller	


 I met Eli Isaacson, 	

my office-mate



And many other postdocs 
working in Glimm’s group 

at Rockefeller 
University…	


(No photos allowed 
because they’re not dead 

yet!!!)	




The first day Eli told me 
he (working with others) 
had solved the Riemann 

problem for the 	

Polymer Equations…	






He told me they had a 
``global solution’’, and 
it looked very different 

from gas dynamics, 
exhibiting… 	


 



Non-Lax shocks
Non-uniqueness for RP

A nonlinear field with 
coinciding shock and 
rarefaction curves
A ``transition curve’’ of 
coinciding wave speeds



The only other global 
Riemann problem I knew 
of then was the Nishida 
System, the topic of my 
Thesis…



I immediately set out 
to prove an existence 
theorem by Glimm’s 
method, and succeeded 
in the fall of 1980…





After that, Eli and I 
extended the ideas in RP 
and Glimm analysis in 
numerous papers…



















This culminated in our last 
publication SIAM J. Appl. 
Math,1995…





I now discuss our 	

first and last papers 	

in detail…



Our FIRST papers

……………

E. ISAACSON, Global solution of a Riemann problem for a

non-strictly hyperbolic system of conservation laws arising in

enhanced oil recovery, Rockefeller University preprints (1980).



Our LAST paper



I now discuss our First Papers..

……………

E. ISAACSON, Global solution of a Riemann problem for a

non-strictly hyperbolic system of conservation laws arising in

enhanced oil recovery, Rockefeller University preprints (1980).
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I.  The Polymer Equations

s=saturation of H2O

c=concentration of POLYMER in H2O

b = sc=total concentration of POLYMER

0  s  b  1

s
t

+ [sG(s, b)]
x

= 0

b
t

+ [bG(s, b)]
x

= 0



I.  The Polymer Equations
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Basic Two Phase Flow Model	

 in secondary oil recovery,	


 modeling the flow of 	

Oil together with Polymer+Water	


 in varying concentrations
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A Natural Generalization of the scalar 	

 Buckley-Leverett Equation…

Derivation based on Darcy’s Law…

Reduces to the Buckley-Leverett when

I.  The Polymer Equations
s
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c = const.



s
t

+ f(s, c)
x

= 0

(sc)
t

+ [f(s, c)c]
x

= 0

The Natural Variables are         :(s, c)

Varying     changes the Buckley-
Leverett  S-shaped curve:

c



s1

1

f(s, c)

c = 0

c = 1

Buckley-Leverett at c = const.
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The Eigen-Families:

dF =

✓
G+ sGs sGb

bGs G+ bGb

◆

�c =
f

s
�s = fs

RI: c = const.RI:
f

s

= const.



The s-wave family (nonlinear):

�s = fs

c = const.RI:

s-waves solve the Buckley-Leverett 
scalar equation at c = const.



The c-wave family (linear):

c-waves are contact-discontinuities at 

�c =
f

s

RI:
f

s

= const.

g =
f

s

= const.



Riemann Invariants are constant along 	

Integral Curves of the Eigenvectors of DF,	

defining coordinate system of wave curves

For Polymer Equations: solutions restricted	

to wave curves reduce to solutions of 	

scalar cons. laws ``in the weak sense’’

This happens in Two Different Ways!

RI:   Riemann Invariants

(Surprising to me as equations are Nonlinear!!)



Scalar Equations 2 Different Ways

(2)  When                        solutions 
reduce to a scalar non-linear equation.  

c = const.

(1)  When                             nonlinear g =
f

s

= const.

(Like the entropy waves in gas dynamics!)

equations reduce to a scalar linear equation



The coordinate system of RI’s

Conserved quantities: U = (s, b)



Wave curves are tangent when:

�s = fs(s, c) =
f(s, c)

s
= g(s, c) = �c



Conclude:   The coordinate system of 
wave curves is singular and wave speeds 
coincide on  a co-dimension one curve T 



T = Transition Curve



I.e., on                    ,  we have: dc

ds
= �gs

gc
g(s, c) = const.

So on T: gs =
fs
s

� f

s2
=

1

s
(�s � �c)0 =



Turns Out:   	

!

The only way a system of CL’s can 
reduce to a linear scalar equation is 
when the wave curves are level curves 
of an eigenvalue…	

!



AND…   	

!

The only way a system of CL’s can reduce 
to a nonlinear scalar equation is when the 
shock and rarefaction curves coincide…	

!

…and this can only happen when the 
wave curves are straight lines in the plane 
of conserved quantities…. 







Line and Contact Families

(nonlinear)

R(�)Line Family:   The integral curves          are 
straight lines in        space  

(2)
u�

R(⇠)(1) Contact Family:   The integral curves          
are level curves        � = const.

(linear)
u(⇠(x, t)) : u

t

+ �u

x

= 0

Let         be an eigenfamily:    (�, R)

u(�(x, t)) : �

t

+ ��

x

= 0

DF ·R = �R



Turns out there are lots of systems	

of conservation laws with coinciding 
shock and rarefaction curves:

Chromatography:   Aris and Amundson

Two Line fields



CL’s with coinciding shock and rarefaction 
curves are highly nonlinear,  but wave 
interactions are simpler,  so the analysis of 
solutions by Glimm’s method is easier…	

!

…a good deal of interest in these systems 
followed…

Dennis Serre was very generous in citing 
this work by naming them…



The Polymer Equations are Canonical	

 in a mathematical sense because they 

represent the simplest system with 
coinciding shock & rarefaction curves with  	


!

BOTH:	

!

Line Family and Contact Family

C.f. equivalent systems identified by Keyfitz and Kranzer 
from models in elasticity…



Solving the Riemann Problem for the 
Polymer Equations

 (1)  The Line Field

 (2)  The Contact Field



 (1)  RP for the Line Field (s,b)-plane



 (1)  RP for the Line Field (s,c)-plane



 (1)  Line Field-Buckley Leverett at fixed c



 (2)  RP for the Contact Field (s,c)-plane



Theorem:   There is a unique solution of 
the RP involving s-wave and c-waves…	

!

…subject to the Entropy Condition that  	

c-waves are admissible iff they do not 
cross the Transition curve.

Moreover:   The entire entropy solution of 
the RP can be drawn in…

TWO DIAGRAMS



Solution of the RP for 



Solution of the RP for 



RP can contain three waves, but only 	

one (linear) c-wave

Every solution of form  scs 

Wave curves depend dis-continuously 
on         

RP  depends continuously in       at each 
fixed time in the xt-plane.

Entropy Solution of the RP 



Dis-continuous waves when  



Dis-continuous waves when  



Dis-continuous waves when  



Dis-continuous waves when  



Dis-continuous waves when  



Dis-continuous waves when  



in the xt-plane
-continuous

…solutions are

When wave curves are 
dis-continuous… 	




 All three waves have speed              
-continuity in xt-plane  IMPLIES:

shock	

speed	




 All three waves have same speed

BOTH  WAYS!

shock	

speed	




When wave curves are 
dis-continuous… 	


…there is a 	

1-2-4 weighting principle 	


that makes 	

wave strengths 	


continuous as well…



 The 1-2-4 principle balances wave strengths  



 The 1-2-4 principle balances wave strengths  

BOTH WAYS!



Convergence of the Glimm Scheme



The Glimm SchemeThe Glimm Scheme



The Glimm Scheme

Define a staggered grid…



The Glimm SchemeThe Glimm Scheme

Define a staggered grid…

Solve RP in each grid rectangle 



The Glimm Scheme

Define a staggered grid…

Solve RP in each grid rectangle 

Continue according to a sample sequence  



The Glimm Scheme

Find a functional F that bounds TV and 
decreases across interaction diamonds 

Define a staggered grid…

Solve RP in each grid rectangle 

Continue according to a sample sequence  



The Glimm Scheme

Find a functional F that bounds TV and 
decreases across interaction diamonds 

Define a staggered grid…

Solve RP in each grid rectangle 

Continue according to a sample sequence  

Bound the TV at each time to prove 
convergence by Helly’s Theorem 



The Glimm Scheme

THEN:   Prove the Residual tends 
to zero for almost every choice of 
sampling sequence. 

TO CONCLUDE:   Off a set of 
zero measure sampling sequences,	

the Glimm approximates converge 
to a weak solution. 



Problem:   The TV is un-bounded



Main Idea:   Bound the Total Variation 
under a Singular Transformation of 
the Conserved Quantities…



The variable z



Define wave strengths in terms of    :

I.e.,  by the  1-2-4 weight principle.



Define wave strengths in terms of    :

Define F in terms of wave strengths:





t

x





Helly Compactness ala Standard Glimm 
implies pointwise a.e,     -Lipschits  	

in time convergence in the (z,c)-plane.

Conclude:



Helly Compactness ala Standard Glimm 
implies pointwise a.e,     -Lipschits  	

in time convergence in the (z,c)-plane.

Uniform Continuity of the inverse map

gives convergence in the (s,c)-plane

Conclude:



Theorem:  For each choice of sampling, 
there exists a convergent  subsequence 
of Glimm approximate solutions

No bound on: 

Uniform bound:  



Because we have no bound on the 
Total Variation of the conserved 
quantities (s,b) or (s,c), the proof of 
convergence of the Residual must 
be modified…



Convergence of the Residual



Convergence of the Residual

Since the TV can be unbounded in plane of conserved 
quantities, Glimm’s proof must be modified…



Convergence of the Residual

Since the TV can be unbounded in plane of conserved 
quantities, Glimm’s proof must be modified…

To isolate the effect of the Transition Curve, 	

one needs to equi-distribute in space and time.



Convergence of the Residual

The idea is to partition the rectangles into those whose 
RP solutions intersect      and those that do not.S✏

Since the TV can be unbounded in plane of conserved 
quantities, Glimm’s proof must be modified…

To isolate the effect of the Transition Curve, 	

one needs to equi-distribute in space and time.



S✏



The Residual in general…

Integrating by parts…

The Residual for Glimm approximate soln…

Initial Data



Proposition 6.1 For and fixed � and any

fixed mesh length r, if (m,n) 6= (m0, n0
), then

< Dmn(r, ·,�r), Dm0n0(r, ·,�r) >A= 0

Glimm Orthoganality with respect to sampling…

…reduces the Residual to a sum of squares…

kD(r, ·,�r)k22 =
X

m,n

kDmn(r, ·,�r)k22



Estimate by value at fixed           …ā 2 A



Decompose the sum into those corresponding to 
mesh rectangles     entirely in     and those not…S✏R



Decompose the sum into those corresponding to 
mesh rectangles     entirely in     and those not…S✏R

Mesh Rectangles
S✏in



Decompose the sum into those corresponding to 
mesh rectangles     entirely in     and those not…S✏R

Mesh Rectangles
S✏in

Mesh Rectangles
S✏not in



S✏



For rectangles in      estimate using the sup norm… S✏

X

(m,n)2R

|Dmn(ā)|2  Const

X

m,n

r

2
✏

2



For rectangles not in      estimate by VAR in zc… S✏

|Dmn(r, a,�r)|  Const(✏)k�k1 r V arzcumn

X

m

V arzcumn  Const V arzc 

X

(m,n)/2R

|Dmn(ā)|2  Const(✏2)r



Therefore:  The residual admits the estimate… 

Since                is arbitrary, we conclude  ✏ << 1

lim
r!0

kD(r, ·,�r)k22 = 0



Theorem: O↵ a set of zero measure N ⇢ A,
the residual tends to zero.

Conclude:  For almost every choice 
of sampling,  the convergent Glimm 
Approximate Solutions converge to 
a weak solution of the equations… 



Consider now the LAST 
paper Eli and I wrote:



Our LAST joint paper…



We study	

generic resonance 

between a	

nonlinear wave family 

and a 	

stationary source…



The framework…
An inhomogeneous scalar 
equation treated as system

(so               )



As a 2x2 system it takes 
the form…



Motivation:  Transonic flow 
in a variable area duct…



As a 2x2 system it has a line 
field and a contact field…

Eigenvalues…

and



Ask:  Under what generic 
conditions do you get  

resonance?



That is:  Solve the RP and 	

initial value problem 	

in a neighborhood 

where generically
of a state                 



Theorem:  The RP has a 
canonical structure in a 
neighborhood of a point	


generic conditions hold:
where the following



(1)	


Generic Conditions

(resonance)

(2)	
 (wlog  <0 )

(3)	
 (wlog  <0 )

(4)	
 (wlog  <0 )
(5)	




Theorem 1:  The RP has a 
canonical structure in a 
neighborhood of a point	

where (1)-(5) hold	




Theorem 1:  The RP has a 
canonical structure in a 
neighborhood of a point	

where (1)-(5) hold	


Theorem 2:  Convergence can 
be demonstrated for both 
Glimm and Godunov methods	




When         , the RP looks 
exactly like the Polymer 
Equations…	




 …RP the same as for the Polymer Eqns…
 …except all c-waves have zero speed…



 …RP the same as for the Polymer Eqns…
 …except all c-waves have zero speed…



zero	

speed	

shock

 …and                  give BOTH the standing wave 
curves and the zero speed shock curves…



zero	

speed	

shock

 …and                  give BOTH the standing wave 
curves and the zero speed shock curves…



The reason it looks like Polymer	

 is because it is Polymer…	


I.e., doing a Lagrangian change of 
variables using speed…	


gives…	

with…	




How does the source term work?	


Why the       on the RHS?? 	




The Point:   Writing the source as 	


implies the standing waves are 	

scale invariant, like a linear

I.e., standing waves re-scale into 
jump discontinues.

Contact Family…



Standing Waves Re-scale



Standing Waves Re-scale

CL:



Standing Waves Re-scale

CL:

SW:



Standing Waves Re-scale
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SW:



Standing Waves Re-scale

CL:

SW:



Standing Waves Re-scale

CL:

SW:



Standing waves are determined by 
integral curves like a Contact Family:	




Standing waves are determined by 
integral curves like a Contact Family:	




By assumption:	


Standing waves are determined by 
integral curves like a Contact Family:	




By assumption:	


Thus:	


Standing waves are determined by 
integral curves like a Contact Family:	




Generically,  standing waves look like 
c-waves of Polymer Equations…	

Line Field (s,c)-plane…



Generically,  standing waves look like 
c-waves of Polymer Equations…	

SW’s in (a,u)-plane…

Integral curves	

 of



The RP can be solved and the 
Glimm and Godunov methods 	

converge,  subject to an 	


Entropy Condition… 

(E1)  Standing waves do not cross T 

(E2)  The RP minimizes F 



As for Polymer: 	




The variable z



The admissible RP can be 
presented in four diagrams… 	


New phenomena because the 
zero speed shock curve 
diverges from the 	

standing wave curve… 	






The admissible solution of RP 	




Case

The admissible solution of RP 	




The admissible solution of RP 	

Case



Case

The admissible solution of RP 	




Case

The admissible solution of RP 	




Multiple solutions of RP     
Multiple time-asymptotic	


 wave patters…



Multiple solutions of RP     
Multiple time-asymptotic	


 wave patters…



Multiple solutions of RP     
Multiple time-asymptotic	


 wave patters…



Multiple solutions of RP     

For Example:



Case

Multiple solutions of RP     



Multiple solutions of RP     
(1)



Multiple solutions of RP     
(2)



Multiple solutions of RP     
(3)



The Multiple solutions of RP     



Always only 1 or 3 solutions of RP     
The Multiple solutions of RP     



Always only 1 or 3 solutions of RP     
The Multiple solutions of RP     

All three solutions have the same	

F-value



Always only 1 or 3 solutions of RP     

All three solutions have the same	

F-value

…so they don’t affect Glimm Conv proof	


The Multiple solutions of RP     



Always only 1 or 3 solutions of RP     

All three solutions have the same	

F-value

…so they don’t affect Glimm Conv proof	


Multiple solutions do not depend 
continuously in (x,t)-plane…	


The Multiple solutions of RP     



Theorem:   It doesn’t matter 
which admissible solution you 
pick, there always is a 
convergent subsequence for 
both the Glimm and Godunov 
methods…	


Main Lemma:  



Conclude:  The three solutions  
of the RP represent distinct 
time-asymptotic wave patterns 
to which solutions with the 
same state left and right states 
at + and - infinity can converge!	

!



Open Problem:  For a smooth 
duct, find conditions on the 
initial data which tells which 
time-asymptotic wave pattern 
the solution will converge to!!!	


…when the left and right states 
are the same…	




My former student 	

John Hong 	


(Prof in Taiwan) 	

Found a Mistake in the 

proof of convergence of 
the residual…this led to 

his doctoral thesis…



He corrected the proof 
of convergence of the 

residual…



…and we answered the 
question:   Can we find a 

bound for the Total 
Variation of the 

Conserved Quantities?
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Consider first the proof 
of convergence of the 

Residual…



The Residual:

R(a, u,�) =

Z +1

�1

Z +1

�1
{u�

t

+ f�

x

+ a

0
g�} dxdt

+

Z +1

�1
u0(x)�(x, 0)dx



The Residual:

R(a, u,�) =

Z +1

�1

Z +1

�1
{u�

t

+ f�

x

+ a

0
g�} dxdt

+

Z +1

�1
u0(x)�(x, 0)dx

Weakly imposes the	

 initial data…



The Residual:

R(a, u,�) =

Z +1

�1

Z +1

�1
{u�

t

+ f�

x

+ a

0
g�} dxdt

+

Z +1

�1
u0(x)�(x, 0)dx

Ignore this…



The Residual:

R(a, u,�) =

Z +1

�1

Z +1

�1
{u�

t

+ f�

x

+ a

0
g�} dxdt



The Residual:

R(a, u,�) =

Z +1

�1

Z +1

�1
{u�

t

+ f�

x

+ a

0
g�} dxdt

Put in the Glimm approximates 
with discontinuous a and u…

(a, u) = (a�x

, u�x

)



The Residual:

Z +1

�1

Z +1

�1
{u�x

�

t

+ f(u�x

)�
x

+ a

0
�x

g(a�x

, u�x

)} dxdt

R(a�x

, u�x

,�) =



The Residual:

Z +1

�1

Z +1

�1
{u�x

�

t

+ f(u�x

)�
x

+ a

0
�x

g(a�x

, u�x

)} dxdt

R(a�x

, u�x

,�) =

Delta-Function 
times	


 Discontinuous 



The Residual:

Z +1

�1

Z +1

�1
{u�x

�

t

+ f(u�x

)�
x

+ a

0
�x

g(a�x

, u�x

)} dxdt

R(a�x

, u�x

,�) =

Since you can’t multiply distributions, 
these aren’t approximations in the 

distributional sense!



The Residual:
To prove convergence of Residual…

R(a�x

, u�x

,�) �! 0
�x ! 0

…requires 3 small parameters…

…and requires           be a(x)

Lipschitz Continuous



The three small parameters:
A parameter to smooth out g(a�x

, u�x

)(1)  

 � =
1

�

2
 

✓
x

�

,

t

�

◆
…standard 	

convolution	


 kernel

g(a�x

, u�x

)
�

= g(a�x

, u�x

) ⇤  
�



A parameter to smooth out a�x

(2)  

The three small parameters:

ai ai+1 x

t



The three small parameters:

Estimate the residual differently in (3)  S✏

S✏



Modifying the argument you can get:	


The Residual:



The point is that you can make all of terms 
independent of       small by                     ,	

then choose               small to obtain… 

�x ✏, ✏̂, � << 1
�x << 1

for any           , implying⌧ > 0

�x ! 0



That is,

Implies:

�x ! 0



Key Step:  Integration by Parts produces 

 the        term…



Theorem: O↵ a set of zero measure N ⇢ A,
the residual tends to zero.

That is:  For almost every choice of sampling, the 
convergent Glimm Approximate Solutions 
converge to a weak solution of the equations… 

Again we can conclude… 



Using this correct convergence 
theorem, Hong was able to 
reduce Glimm’s theorem for 
inhomogeneous systems to 
Glimm’s original argument by 
treating the source term as a 
contact discontinuity field… 





u
t

+ f(a, u)
x

= a0g(a, u)

By treating the source term as a	

 zero speed contact field!

THEOREM: Any n⇥ n system of the form



u
t

+ f(a, u)
x

= a0g(a, u)

By treating the source term as a	

 zero speed contact field…

THEOREM: Any n⇥ n system of the form

(Proof for Non-resonant case only!)



u
t

+ f(a, u)
x

= a0g(a, u)

By treating the source term as a	

 zero speed contact field…

THEOREM: Any n⇥ n system of the form

(Resonant case is completely open!)



A local Glimm existence theory	

 in a neighborhood of a point of 
resonance would solve a long	

 open problem…	

!

…transonic flow in a variable 
area duct… 



!

Special Case:  Transonic flow 
in a variable area duct… 



!

For systems:  A Glimm type 
bound would require a bound 
on the total variation of the 
conserved quantities…it 
appears unlikely that for 
systems,  wave interactions 
can be controlled by a 
singular transformation…



Such a bound would be 
required to extent the 

scalar results to systems 
like transonic flow in a 

duct…



To start,  we set out to 
establish a bound on the 

total variation of the 
conserved variables	


 for the 	

scalar resonant case…



We 
accomplished 

this in…





We discovered a Complicated Potential 
Interaction Functional that works…
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The Potential Interaction Functional 	

that bounds the 	


Total Variation of the Conserved Variables 
for 	


Generic Resonance 	

between a 	


Nonlinear Wave Family 	

and a 	


Stationary Source…



That is:  Find an functional F such that



…it is constructed as 
follows…

Start by defining 	

preliminary wave strengths…



Replace the singular variable z by w	

which bounds the total variation in u…

Impose the 1-2-4 weights on wave 
strengths



Use these to define the preliminary 	

linear functional~TV in u…

 is not continuous across multiple 	

solutions of RP



Adjust the wave strengths to make L	

continuous across multiple RP solns…
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1. Correct to make 	

triple RP’s continuous

Adjust the wave strengths to make L	

continuous across multiple RP solns…



2. Correct new 	

RP discontinuities 	


Created by 1.
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2. Correct new 	

RP discontinuities 	


Created by 1.

Adjust the wave strengths to make L	

continuous across multiple RP solns…

1. Correct to make 	

triple RP’s continuous

Define:   



2. Correct new 	

RP discontinuities 	


Created by 1.

Conclude:       is continuous wrt RP’s

Adjust the wave strengths to make L	

continuous across multiple RP solns…

1. Correct to make 	

triple RP’s continuous



Show that       only increases due to 
the interaction of rarefaction waves 
and standing waves…

Define a potential for the 
interaction of rarefaction waves and 
standing waves…



Define the Nonlinear Functional…

In a case by case study, prove…





Conclude:   If the F-value of the 
waves at time t+ is finite,   then    

Corollary:   If there are only shocks 
and standing waves initially, then the 
total variation of the solution at 
time t>0 is bounded by	

 	

4x(TV of the waves at time zero). 



Theorem:  A sharp bound on the 
total variation of the conserved 

quantities in resonant scalar 
balance laws of the form:



Theorem:  A sharp bound on the 
total variation of the conserved 

quantities in resonant scalar 
balance laws of the form:

(Only works for SCALAR functions f)



Open Problem:  Prove that a similar 
total variation bound holds in a  
neighborhood of a point where

Difficult problem of transonic flow!!!

in a resonant SYSTEM of form



References:   Many people have 
addressed the transonic flow 
problem from varying perspectives..

Eg.  TP Liu, Keyfitz & Kranzer, N Risebro, 
H Holden, P Lefloch…

Many more!




