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This Talk is to Honor
Eli Isaacson
and
Our |5-Year Collaboration

(...and many good times in Rio!)



Alternative Title: How
to make a talk on old
work interesting...

Tell a Story



My story begins in
1980, the first year
the NSF offered their
NSF Postdoctoral
Research Fellowships



In 1980 | finished my
Ph.D. thesis on the
Glimm Scheme under

Joel Smoller
University of Michigan



At that time, hardly anyone
understood the technicalities
of the
Glimm Scheme...
Peter Lax, Joel Smoller,
Ron Diperna, lai-ping Liu
...a few others and...
Glimm Himself



At Joel Smoller’s
urging | applied for an
NSF Postdoc to work
with Glimm at
Rockefeller University



Years later lgor
Stackgold told me
the committee was

dominated by
TOPOLOGISTS...



...and it was a fight.

—Ivar Stackgold



But | won anyway...
and went to Rockefeller
University, NYC, 980
on an
NSF Postdoc
which payed $13,000/yr




| did not care about
money, tenure, or security
then...
| just wanted to see if |
could make an important
contribution to
Mathematical Physics...



The first day at
Rockefeller
| met Eli Isaacson,
my office-mate



And many other postdocs
working in Glimm’s group
at Rockefeller
University...

(No photos allowed
because they're not dead
yet!!!)



The first day Eli told me
he (working with others)
had solved the Riemann
problem for the
Polymer Equations...
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He told me they had a
- global solution”, and
it looked very different
from gas dynamics,
exhibiting...



* Non-uniqueness for RP
* Non-Lax shocks

* A nonlinear field with
coinciding shock and
rarefaction curves

e A transition curve’ of
coinciding wave speeds



The only other global
Riemann problem | knew
of then was the Nishida

System, the topic of my
Thesis...



| immediately set out
to prove an existence
theorem by Glimm’s

method, and succeeded
in the fall of 1980...



ADVANCES IN APPLIED MATHEMATICS 3, 335-~375 (1982)

Global Solution of the Cauchy Problem
for a Class of 2 X 2 Nonstrictly
Hyperbolic Conservation Laws*

BLAKE TEMPLE

Department of Mathematical Physics,
The Rockefeller University,
New York, New York 10021

We prove the existence of a global weak solution to the Cauchy problem for a
class of 2 X 2 equations which model one-dimensional multiphase flow, and which

represent a natural generalization of the scalar Buckley—Leverett equation. Loss of
1 1

0 1
a curve in state space, and waves in a neighborhood of this curve contribute

unbounded variation to the approximate Glimm scheme solutions. The unbounded
variation is handled by means of a singular transformation; in the transformed
variables, the vanation is bounded. Glimm’s argument must be modified to handle
the unbounded variation that appears in the statement of the weak conditions, and
this requires that the random choice variable be random in space as well as time.

strict hyperbolicity (coinciding wave speeds with a ( normal form) occurs on



o After that, Eli and |
extended the ideas in RP
and Glimm analysis in
numerous papers...
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THE RIEMANN PROBLEM NEAR A HYPERBOLIC
SINGULARITY: THE CLASSIFICATION OF SOLUTIONS
OF QUADRATIC RIEMANN PROBLEMS I*

E. ISAACSONTY, D. MARCHESIN#, B. PLOHRS, AND B. TEMPLEY

Abstract. The purpose of this paper is to classify the solutions of Riemann problems near a hyperbolic
singularity in a nonlinear system of conservation laws. Hyperbolic singularities play the role in the theory
of Riemann problems that rest points play in the theory of ordinary differential equations: Indeed, generically,
only a finite number of structures can appear in a neighborhood of such a singularity. In this, the first of
three papers, the program of classification is discussed in general and the simplest structure that occurs is
characterized.

Key words. nonlinear hyperbolic conservation laws, Riemann problems, hyperbolic singularities

AMS(MOS) subject classifications. 35L65, 35L67, 35L80
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THE RIEMANN PROBLEM NEAR A HYPERBOLIC SINGULARITY II*

E. ISAACSONT AND B. TEMPLE:

Abstract. This paper is interested in classifying the solutions of Riemann problems for the 2x2
conservation laws that have homogeneous quadratic flux functions. Such flux functions approximate an
arbitrary 2X2 system in a neighborhood of an isolated point where strict hyperbolicity fails. Here the
solution for the symmetric systems in Region III of the four region classification of Schaeffer and Shearer

is given. The solution is based on the qualitative shape of the integral curves described by Schaeffer and
Shearer and a numerical calculation of the Hugoniot loci and their shock types.

Key words. Riemann problem, nonstrictly hyperbolic conservation laws, umbilic points

AMS(MOS) subject classifications. 65M10, 76 N99, 35L6S5, 35L67
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THE RIEMANN PROBLEM NEAR A HYPERBOLIC SINGULARITY III*

E. ISAACSONY AND B. TEMPLE?

Abstract. This paper is interested in classifying the solutions of Riemann problems for the 2x2
conservation laws that have homogeneous quadratic flux functions. Such flux functions approximate an
arbitrary 2X 2 system in a neighborhood of an isolated point where strict hyperbolicity fails. Here the
solution for the symmetric systems in Region II of the four region classification of Schaeffer and Shearer
is given. The solution is based on the qualitative shape of the integral curves described by Schaeffer and
Shearer and a numerical calculation of the Hugoniot loci and their shock types.

Key words. Riemann problem, nonstrictly hyperbolic conservation laws, umbilic points

AMS(MOS) subject classifications. 65M10, 76 N99, 35L65, 35L67
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The Structure of Asymptotic States in a Singular
System of Conservation Laws

ELI ISAACSON*

Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071

AND
BLAKE TEMPLE'

Department of Mathematics, University of California, Davis, Davis, California 95616



Contemporary Mathematics
Volume 108, 1990

NONLINEAR RESONANCE IN INHOMOGENEOQUS
SYSTEMS OF CONSERVATION LAWS12

Eli Isaacson® and Blake Temple?

ABSTRACT: We solve the Riemann problem for a general
inhomogeneous system of conservation laws in a region
where one of the nonlinear waves in the problem takes on a
zero speed. We state generic conditions on the fluxes that
guarantee the solvability of the Riemann problem, and these
conditions determine a unique underlying structure to the
solutions. The inhomogeneity is modeled by a linearly
degenerate field. @ Our analysis thus provides a general
framework for studying (what we are calling) resonance
between a linear and a nonlinear family of waves in a system
of conservation laws. Special cases of this phenomenon are
observed in model problems for gas dynamical flow in a
variable area duct and in Buckley-Leverett type systems that
model multiphase flow in a porous medium.



Mat. Aplic. Comp., V. 11, no. 2, pp.147-166, 1992
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MULTIPHASE FLOW MODELS
WITH SINGULAR RIEMANN PROBLEMS*
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NONLINEAR RESONANCE IN SYSTEMS OF CONSERVATION LAWS*

ELI ISAACSONf AND BLAKE TEMPLE}

Abstract. The Riemann problem for a general inhomogeneous system of conservation laws is solved
in a neighborhood of a state at which one of the nonlinear waves in the problem takes on a zero speed.
The inhomogeneity is modeled by a linearly degenerate field. The solution of the Riemann problem determines
the nature of wave interactions, and thus the Riemann problem serves as a canonical form for nonlinear
systems of conservation laws. Generic conditions on the fluxes are stated and it is proved that under these
conditions, the solution of the Riemann problem exists, is unique, and has a fixed structure; this demonstrates
that, in the above sense, resonant inhomogeneous systems generically have the same canonical form. The
wave curves for these systems are only Lipschitz continuous in a neighborhood of the states where the wave
speeds coincide, and so, in contrast to strictly hyperbolic systems, the implicit function theorem cannot be
applied directly to obtain existence and uniqueness. Here we show that existence and uniqueness for the
Riemann problem is a consequence of the uniqueness of intersection points of Lipschitz continuous manifolds
of complementary dimensions. These systems are resonant for two reasons: The linearized problem exhibits
classical resonant behavior, while the nonlinear initial value problem exhibits a “nonlinear resonance” in
the sense that wave speeds from different families of waves are not distinct; so the number of times a pair
of waves can interact in a given solution cannot be bounded a priori. Since waves are reflected in other
families every time a pair of waves interact, a proliferation of reflected waves can occur by the interaction
of a single pair of waves. Examples of resonant inhomogeneous systems are observed in model problems
for the flow of a gas in a variable area duct and in Buckley-Leverett systems that model multiphase flow
in a porous medium.

- Key words. Riemann problem, nonstrictly hyperbolic, resonance

AMS(MOS) subject classifications. 35L65, 35L67, 65M10, 76 N99



T his culminated in our last

publication SIAM J. Appl.
Math,|995...
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CONVERGENCE OF THE 2x2 GODUNOV METHOD FOR A
GENERAL RESONANT NONLINEAR BALANCE LAW*

ELI ISAACSONT AND BLAKE TEMPLE?}

Abstract. We introduce a generalized solution of the Riemann problem for a general resonant
nonlinear balance law, and we prove the convergence of the 2 X 2 Godunov numerical method based
on these solutions. In particular, we obtain generic conditions that guarantee a canonical structure
for the elementary waves in the solution of the Riemann problem, and an interesting multiplicity of
time-asymptotic wave patterns is observed and characterized.



| now discuss our
first and last papers
in detail...



Our FIRST papers

E. ISAACSON, Global solution of a Riemann problem for a
non-strictly hyperbolic system of conservation laws arising in

enhanced oil recovery, Rockefeller University preprints (1980).

ADVANCES IN APPLIED MATHEMATICS 3, 335~375 (1982)

Global Solution of the Cauchy Problem
for a Class of 2 X 2 Nonstrictly
Hyperbolic Conservation Laws*

BLAKE TEMPLE

Department of Mathematical Physics,
The Rockefeller University,
New York, New York 10021



Our LAST paper
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CONVERGENCE OF THE 2x2 GODUNOV METHOD FOR A
GENERAL RESONANT NONLINEAR BALANCE LAW*

ELI ISAACSONT AND BLAKE TEMPLE?

Abstract. We introduce a generalized solution of the Riemann problem for a general resonant
nonlinear balance law, and we prove the convergence of the 2 X 2 Godunov numerical method based
on these solutions. In particular, we obtain generic conditions that guarantee a canonical structure
for the elementary waves in the solution of the Riemann problem, and an interesting multiplicity of
time-asymptotic wave patterns is observed and characterized.



| now discuss our First Papers..

E. ISAACSON, Global solution of a Riemann problem for a
non-strictly hyperbolic system of conservation laws arising in

enhanced oil recovery, Rockefeller University preprints (1980).

ADVANCES IN APPLIED MATHEMATICS 3, 335~375 (1982)

Global Solution of the Cauchy Problem
for a Class of 2 X 2 Nonstrictly
Hyperbolic Conservation Laws*

BLAKE TEMPLE

Department of Mathematical Physics,
The Rockefeller University,
New York, New York 10021



l. The Polymer Equations
st + |sG(s,b)],. =0

b; + [bG(s,b)]. =0



l. The Polymer Equations
st + |sG(s,b)],. =0

b; + [bG(s,b)]. =0

s = saturation of H,O

¢ = concentration of POLYMER in H,O

b = sc=total concentration of POLYMER
0<s<b<1



l. The Polymer Equations
st + |sG(s,b)],. =0

b; + [bG(s,b)]. =0

Basic Two Phase Flow Model
in secondary oil recovery,
modeling the flow of
Oil together with Polymer+Water
In varying concentrations
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® A Natural Generalization of the scalar
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l. The Polymer Equations
st + |sG(s,b)],. =0

b; + [bG(s,b)]. =0

® A Natural Generalization of the scalar
Buckley-Leverett Equation...

® Derivation based on Darcy’s Law...

® Reduces to the Buckley-Leverett when

c = const.



The Natural Variables are (s, ¢):
si + f(s,c)y =0
(sc)¢ + [f(s,c)c| . =0

Varying C changes the Buckley-
Leverett S-shaped curve:




S

Buckley-Leverett at ¢ = const.



The Eigen-Families:




The Eigen-Families:

dF:(G+SGs sy, )

b(s G + bGy,

)\s:fs

RI: ¢ = const.




The s-wave family (nonlinear):

s-waves solve the Buckley-Leverett
scalar equation at ¢ = const.



:The c-wave family (Iinear)::

c-waves are contact-discontinuities at

g = — = const.
S



{RI: Riemann Invariants}

® Riemann Invariants are constant along
Integral Curves of the Eigenvectors of DF,
defining coordinate system of wave curves

® For Polymer Equations: solutions restricted
to wave curves reduce to solutions of
scalar cons. laws in the weak sense”

® This happens in Two Different Ways!

(Surprising to me as equations are Nonlinear!!)



{ Scalar Equations 2 DifferentWast

(1) When g = = = const. nonlinear
S

equations reduce to a scalar linear equation

(Like the entropy waves in gas dynamics!)

(2) When ¢ = const. solutions
reduce to a scalar non-linear equation.



[The coordinate system of Rl’s]

Conserved quantities: U = (s, b)



Wave curves are tangent when:

f(s,¢)

S

AS:fs(Svc): :g(S,C):)\C




Conclude: The coordinate system of
wave curves is singular and wave speeds
coincide on a co-dimension one curve [



T' = Transition Curve



\
"\t~ T -7/ 7 - T
|
|
|
J=0g—> e—-i-—gzconsfonf
|
|
|
gzgmox 1 )
dc gs
l.e., on g(s,c) = const., we have: — = -2
ds Je
fs 1
SoonT: 0= gs= = — (As — A¢)

S S2 S



Turns Out:

The only way a system of CLs can
reduce to a linear scalar equation is
when the wave curves are level curves
of an eigenvalue...



AND...

The only way a system of CL's can reduce
to a nonlinear scalar equation is when the
shock and rarefaction curves coincide...

...and this can only happen when the
wave curves are straight lines in the plane
of conserved quantities....



Contemporary Mathematics
Volume 17, 1983

SYSTEMS OF CONSERVATION LAWS
WITH COINCIDING SHOCK AND RAREFACTION CURVES*

BLAKE TEMPLE

1. INTRODUCTION

Systems of conservation laws which have coinciding shock and rarefaction
curves arise in the study of oil reservoir simulation, nonlinear wave motion in
elastic strings, as well as in multicomponent chromatography (1, 4, 5, 6, 9,
11, 12). These systems have many interesting features. The Riemann problem
for these equations can be explicitly solved in the large, and wave interac-
tions have a simplified structure, even in the presence of a nonconvex flux
function. For this reason, these systems represent some of the few examples
for which the Cauchy problem has been solved for arbitrary data of bounded
variation. Also, hyperbolic degeneracies appear in each of these systems. In
the present paper we are concerned with locating the class of equations that
exhibit the phenomenon of coinciding shock and rarefaction curves. For n xn
systems, we give necessary and sufficient conditions for a shock curve to coin-
cide with a rarefaction curve. We use these general results to write down ex-

plicitly the class of 2 x 2 conservation laws which have shock and rarefaction
curves that coincide.



TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 280, Number 2, December 1983

SYSTEMS OF CONSERVATION LAWS
WITH INVARIANT SUBMANIFOLDS
BY
BLAKE TEMPLE'

ABSTRACT. Systems of conservation laws with coinciding shock and rarefaction
curves arise in the study of oil reservoir simulation, multicomponent chromatogra-
phy, as well as in the study of nonlincar motion in elastic strings. Here we
characterize this phenomenon by deriving necessary and sufficient conditions on the
geometry of a wave curve in order that the shock wave curve coincide with its
associated rarefaction wave curve for a system of conservation laws. This coinci-
dence is the one dimensional case of a submanifold of the state variables being
invanant for the system of equations, and the necessary and sufficient conditions are
derived for invariant submanifolds of arbitrary dimension. In the case of 2 X 2
systems we derive explicit formulas for the class of flux functions that give rise to the
coupled nonlinear conservation laws for which the shock and rarefaction wave
curves coincide.,



[Line and Contact Familiesj

Let (A, R)be an eigenfamily: DF-R = AR

(I) Contact Family: The integral curves R(¢)
are level curves A = const.

w(é(x,t)) 0 up + Augy =0 (linear)

(2) Line Family: The integral curves R()\) are
straight lines in ¢ —space

uMz,t)): M +AA =0  (nonlinear)



Turns out there are lots of systems
of conservation laws with coinciding
shock and rarefaction curves:

Chromatography: Aris and Amundson

+ {1 =0
“ 1+ u+v). '
( KU
y + |- - 0.
b ll+u+vL

Two Line fields



CLs with coinciding shock and rarefaction
curves are highly nonlinear, but wave
interactions are simpler, so the analysis of
solutions by Glimm’s method is easier...

...a good deal of interest in these systems
followed...

Dennis Serre was very generous in citing
this work by naming them...



The Polymer Equations are Canonical
in 2 mathematical sense because they
represent the simplest system with
coinciding shock & rarefaction curves with

BOTH:

Line Family and Contact Family

C.f. equivalent systems identified by Keyfitz and Kranzer
from models in elasticity...



Solving the Riemann Problem for the
Polymer Equations

(1) The Line Field

(2) The Contact Field



(1) RP for the Line Field (s,b)-plane




(1) RP for the Line Field (s,c)-plane

Q=0—> /l e——-:-—g:consfonf

g9 =(_?lrmx

FIGURE 4



(1) Line Field-Buckley Leverett at fixed ¢

¢ ¢
A A
1+ ---— - E {t+ — — — —~
| I
u u u u |
- L R R L
(13-~ FE
f | I by
| - I '
t > S : t—r—— s
S Sr 1 Sk s 1
fs,cr=Hs) ts B f(s)
|
“lower | “upper
convex , |  convex |,
envelope | envelope”
|
-5 }— = 5
(SL‘E) svave speed fg yWave Speed f
“Shock speed f(sR)-“sN) “.Shock Speed w
_ S5y S-S
(Sg,0) R
> X > X

F1G. 6. Riemann problem for nonconvex scalar equation (s-waves).



(2) RP for the Contact Field (s,c)-plane

— -+

contact discontinuity
of Speed §

F1G. 7. c¢-wave solutions.



Theorem: There is a unique solution of
the RP involving s-wave and c-waves...

...subject to the Entropy Condition that
c-waves are admissible iff they do not
cross the Transition curve.

Moreover: The entire entropy solution of
the RP can be drawn in...

TWO DIAGRAMS
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Entropy Solution of the RP

® RP can contain three waves, but only
one (linear) c-wave

® Every solution of form SCS

® Wave curves depend dis-continuously
on Ur,uURr

® RP depends continuously in L' at each
fixed time in the xt-plane.
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Dis-continuous waves when U7 & 73




Recion I ’ - T~ )
4 (SOLN. SCS) / 1 T \

=

Recion TT

. r 4 P 4 (SOLN- SC)

Reclon T Ur U.
(SOLN. SCS)

UL,

i

Dis-continuous waves when U7 & 73



7~ ~ \
V' - - -
Recion III / PR S "\
4 (SOLN. SCS) / 1 T \
/ V4
1 \
y L/ u . Recion IL
y . r 4 F 4 (SOLN- SC)
Reclon T Ur 2
(SOLN. SCS)
UR
\ —_— S

1

Dis-continuous waves when U7 & 73




VWWhen wave curves are
dis-continuous...

...solutions are

L'-continuous
in the xt-plane



/ ~ .
4 - \
C / Pl . R \
A Recion 1M ,/ e T N )
{1 +— (307. 5CS)
UR
/ Recion I
/ (SOLN, SC)
R I L
shock
speed
o — g
S

1

All three waves have speed s = A\, = ¢
IMPLIES: [ '-continuity in xt-plane
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Recion TT
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S=4gq

Reclon T Ur
(SOLN. SCS)
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All three waves have same speed

BOTH WAYS!



VWWhen wave curves are
dis-continuous...

...there is a
|-2-4 weighting principle
that makes
wave strengths
continuous as well...
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The |-2-4 principle balances wave strengths
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Convergence of the Glimm Scheme
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The Glimm Scheme



The Glimm Scheme

® Define a staggered grid... (mr,(n — 1)9)
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The Glimm Scheme

® Define a staggered grid... (mr,(n — 1)9).

® Solve RP in each grid rectangle
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decreases across interaction diamonds



The Glimm Scheme

® Define a staggered grid... (mr,(n — 1)9).

® Solve RP in each grid rectangle

® Continue according to a sample sequence
{a,} € A=11,[0,1]

® Find a functional F that bounds TV and
decreases across interaction diamonds

® Bound the TV at each time to prove
convergence by Helly’s Theorem



The Glimm Scheme

THEN: Prove the Residual tends
to zero for almost every choice of
sampling sequence.

TO CONCLUDE: Off a set of

zero measure sampling sequences,
the Glimm approximates converge
to a weak solution.



Uo(x) The initial dato u(x) lies
on the tronsition curve,

S
c
1
T
1
The I-curve O iS o Sequence
T~curve O
of almost parollel s- and c-waoves
which aquires unbounded variation
os the mesh length approaches zero,
—— S
1

Problem: The TV is un-bounded



Main Idea: Bound the lTotal Variation
under a Singular Transformation of
the Conserved Quantities...

(s,¢) — (2,c)



c The variable z

l\
-
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Define wave strengths in terms of 2:

|s| = |Az]
2|1Ac| if s /
=5
[Ac| if s\

l.e., by the 1-2-4 weight principle.



Define wave strengths in terms of 2:

5| = |Az

I | 2|1Ac| if s /
Cl =
4|Ac| if 5 N\
Define F in terms of wave strengths:

F(J)=)_lsil +ei

J



THEORM.:

F(Jy) < F(Jq)

for Jo a successor of J;






THEOREM: TV bound for

the Glimm Approximates:




Conclude:

® Helly Compactness ala Standard Glimm
implies pointwise a.e, L'-Lipschits
in time convergence in the (z,c)-plane.



Conclude:

® Helly Compactness ala Standard Glimm
implies pointwise a.e, L'-Lipschits
in time convergence in the (z,c)-plane.

® Uniform Continuity of the inverse map
(2,¢) = (,¢)

gives convergence in the (s,c)-plane



Theorem: For each choice of sampling,
there exists a convergent subsequence
of Glimm approximate solutions

(s8p(x,t),cr(x,t)) — (s(z,t),c(x,t))

r — (0

No bound on: TV {85, 62}
Uniform bound: TVt L8y, 856) |



Because we have no bound on the
Total Variation of the conserved
quantities (s,b) or (s,c), the proof of
convergence of the Residual must
be modified...



-
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@ Since the TV can be unbounded in plane of conserved
quantities, Glimm’s proof must be modified...
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@ Since the TV can be unbounded in plane of conserved
quantities, Glimm’s proof must be modified...

@ To isolate the effect of the Transition Curve,
one needs to equi-distribute in space and time.



Convergence of the Residual

@ Since the TV can be unbounded in plane of conserved
quantities, Glimm’s proof must be modified...

@ To isolate the effect of the Transition Curve,
one needs to equi-distribute in space and time.

@ The ideais to partition the rectangles into those whose
RP solutions intersect S, and those that do not.






® The Residual in general...

D(ra,¢)= ["[" ($ury + 0. F(u,,)) dxdr + [~ 6(x,0)4,(x) dx.
o0 — 00 T

‘ |ntegrating b)/ parts. o Initial Data

D(r,a,¢) = i fw ¢(x, no)(u,,(x, ne) — u,,(x, no — 0)) dx.

n=1] —00

® The Residual for Glimm approximate soln...

D(r,a,¢)= ) D, (r,a,¢).

D,,(r,a,9) = [ V6 (x, n0) (@) = ,,(x)) dx

(m—1Dr



® Glimm Orthoganality with respect to sampling...

Proposition 6.1 For and fixed ¢ and any
fixed mesh length r, if (m,n) # (m’,n’), then

< Dmn(T, " ¢T‘)7 DTTL’TL’ (Ta "9 ¢T) > A= 0

...reduces the Residual to a sum of squares...

HD(Ta R ¢?°)H% — Z HDm’n(Tv R ¢T’)||%



® Estimate by value at fixed a € A...

I2(r. .6 = E 1P = X f [Dpa(a)]” @

m.,n

2
= | X |D,,(a)[ da
2

< sup ) [D,,(a)]

a€A m,n

< Y D, (a) + ¢



@® Decompose the sum into those corresponding to
mesh rectangles R entirely in S¢and those not...

2 .2 2
ID(r,-.9)< X [Da(@)] + X [D,(a) + ¢

(m,n)ER (m,n)€ER



@® Decompose the sum into those corresponding to
mesh rectangles R entirely in S¢and those not...

2 .2 2
Ip(r,-,0),< Y D, (a) + X |D,(a) +¢.

(m,n)ER (m,n)€ER

/

Mesh Rectangles

in S¢



@® Decompose the sum into those corresponding to
mesh rectangles R entirely in S¢and those not...

2 .2 2
Ip(r,-,0),< Y D, (a) + X |D,(a) +¢.

(m,n)ER (m,n)&R

/ \

Mesh Rectangles Mesh Rectangles
in S notin S






@® For rectangles in S¢ estimate using the sup norm...

2 - 2 B 2
ID(r, .0, < X |D(a) + X |D,.(a) +¢°

(m,n)ER 7 (m,n)ER

Z Dy (@)]° < COTLStZT‘QEZ

(m,n)eER

D, (r, a,¢)= j( 8 (x, n0) (@) — (X)) d

m—1)r



@® For rectangles not in S¢ estimate by VAR in zc...

2 - 2 B 2
ID(r, .0, < X |D.(a) + X |D,.(a) +¢

(m,n)ER (m,n)&€R

Dpon(r,a, @) < Const(e)||d]|lco ™ Var, umn

Z Var, umn < ConstVar,
m



® Therefore: The residual admits the estimate...
|D(7, -, ¢.||5 < Ce* + Const(e)r

Since € << 1 is arbitrary, we conclude

lim || D(r, -, r) g =

r—(0




Theorem: Off a set of zero measure N C A,
the residual tends to zero.

Conclude: For almost every choice
of sampling, the convergent Glimm
Approximate Solutions converge to
a weak solution of the equations...



Consider now the LAST
paper Eli and | wrote:



Our LAST joint paper...

SIAM J. APPL. MATH. (© 1995 Society for Industrial and Applied Mathematics
Vol. 55, No. 3, pp. 625-640, June 1995 003

CONVERGENCE OF THE 2x2 GODUNOV METHOD FOR A
GENERAL RESONANT NONLINEAR BALANCE LAW*

ELI ISAACSONT AND BLAKE TEMPLE?}

Abstract. We introduce a generalized solution of the Riemann problem for a general resonant
nonlinear balance law, and we prove the convergence of the 2 X 2 Godunov numerical method based
on these solutions. In particular, we obtain generic conditions that guarantee a canonical structure
for the elementary waves in the solution of the Riemann problem, and an interesting multiplicity of
time-asymptotic wave patterns is observed and characterized.

Key words. Godunov method, resonance, shock waves, balance law, Reimann problem



VVe study

generic resonance
between a
nonlinear wave family
and a
stationary source...



The framework...

An inhomogeneous scalar
equation treated as system



As a 2x2 system it takes
the form...



Motivation: Transonic flow
in a variable area duct...

a’(x)

pr + (pu)x = — a(x) pu,
(ou): + (U2 + p)y = =2 2,
a(x)

/

a (x)
(PE): + (PEu + pu)y = — 2(0) (pEu + pu),

Ui + F(U), = d'G(a,u)



As a 2x2 system it has a line
fleld and a contact field...

(0 ), (s ), = (aston )

Eigenvalues...

A= fu(a,u) and Ao = 0



Ask: Under what generic
conditions do you get
resonance!

A :fu(avu) =0



That is: Solve the RP and

initial value problem
in a neighborhood

of a state U, = (a,, u,)
where generically

A =2 Talle, ey =0



Theorem: The RP has a

canonical structure in a
neighborhood of a point

U, Where the following
generic conditions hold:



Generic Conditions

() f(U,) =0 (resonance)
(2) fa(U.)#0 (wlog <0')
3) 9(U.) - fu(U.) #0 (wlog <0)
(4)  fuuU.) #0 (wlog <0)

(5) 9.(Us) #0



Theorem |: The RP has a

cahonical structure in a

neighborhood of a point
where (1)-(5) hold



Theorem |: The RP has a

cahonical structure in a

neighborhood of a point
where (1)-(5) hold

Theorem 2: Convergence can
be demonstrated for both
Glimm and Godunov methods



When g = 0, the RP looks

exactly like the Polymer
Equations...

() (") - (%)
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...RP the same as for the Polymer Eqgns...
...except all c-waves have zero speed...
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...RP the same as for the Polymer Eqgns...
...except all c-waves have zero speed...



Recion T
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Recion TT
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Zero
speed
shock
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...and g = const give BOTH the standing wave
curves and the zero speed shock curves...



C_>a, /, /’ S \
4 Recion I, , T =~ \

{ +— rso7. 5CS)

- Recion I
/ (SOLN, SC)

Recion T L

(SOLN, CS)

Zero
speed
shock

S — U

...and g = const give BOTH the stlanding wave
curves and the zero speed shock curves...



The reason it looks like Polymer
is because it is Polymer...

l.e., doing a Lagrangian change of

variables using speed...
dx

dt
gives... ur+ f(u,a); =0
with... uw=s a(x)=c(z)

— g(S,C) — )‘c



How does the source term work!?

()57~ (76

Why the @’ on the RHS??



The Point: VVriting the source as

/
a'g(a,u)
implies the standing waves are
scale invariant, like a linear

Contact Family...

l.e., standing waves re-scale into
jump discontinues.



Standing VWaves Re-scale



Standing VWaves Re-scale

CL: us + f(a,u), = a'g(a,u)



Standing VWaves Re-scale
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Standing VWaves Re-scale

CL: us + f(a,u), = a'g(a,u)

SWV: fla,u), = d'g(a,u)

da du da
fuS + fue = “Eg(aw

X dx



Standing VWaves Re-scale

CL: us + f(a,u), = a'g(a,u)

SWV: fla,u), = d'g(a,u)
da

da du
fad_f T fud_f — d—{ﬁg(a’u)



Standing VWaves Re-scale

CL: us + f(a,u), = a'g(a,u)

SWV: fla,u), = a'g(a,u)
da

da du
fad_{f T fud_f — d—fg(a’u)

da Fai




Standing waves are determined by
integral curves like a Contact Family:



Standing waves are determined by
integral curves like a Contact Family:

da _ _Ju — fa#0 (>0)
du—g—fa I




Standing waves are determined by
integral curves like a Contact Family:

da _ _Ju — fa#0 (>0)
du—g—fa I

fu(U*) =0

By assumption:
/ ° FuulU2) £0 (< 0)




Standing waves are determined by
integral curves like a Contact Family:

da
da _ _ Ju g—fo #0 (>0)
du ¢ R fa
By assumption: fulls) =0
fuu(Uy) #0 (< 0)
Thus ;Z—Z(U*) =0 %(U ) = gfi“}a < 0




Generically, standing waves look like
c-waves of Polymer Equations...

Line Field (s,c)-plane... / \

—

c

i
20— /l”“ T*
| Nl |

1




Generically, standing waves look like
c-waves of Polymer Equations...

SWr’s in (a,u)-plane...

A "
R S
Integral curves ‘A |
of |
/AN
du ¢g— f, ' |




The RP can be solved and the
Glimm and Godunov methods

converge, subject to an

Entropy Condition...

(El) Standing waves do not cross T

(E2) The RP minimizes F



As for Polymer:

z(a,u) =sgn(u — ur)la — ar

2|12(Ur) — 2(Ur)| if v is a standing wave with ugp < up,

12(Ugr) — 2(Ug)|  if v is a nonlinear wave,
vl =

4|2(Ugr) — z(Ur)| if v is a standing wave with up > uy,

Flvi,-- ;)= |l
=1



The variable z

T—- —

'Il'lll"'\'lll'l'lll

\

~
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The admissible RP can be
presented in four diagrams...

New phenomena because the
zero speed shock curve
diverges from the

standing wave curve...



a
0-speed
shock curve
q“ ““““““““““ .
!
! Standing
' wave curve
Qp [~ A====-—=- == -
! ) , '
i | , -
| { ! |
' L l—L 5 |
u W= u,_



The admissible solution of RP



The admissible solution of RP
T

Case
Gy < 0




The admissible solution of RP

A T Case
- Gy <0




The admissible solution of RP

T Case




The admissible solution of RP

A
§ Case
- < Ju > ()




Multiple solutions of RP P>
Multiple time-asymptotic
wave patters...



Multiple solutions of RP P>
Multiple time-asymptotic
wave patters...

a T
0-speed
shock curve
q” ““““““““““ _
!
! Standing
«e bomdl o S wave curve
H QR : r n |
|
: ; L
: - Lﬁ —_L—3 Y
Uy Uy U Uy



Multiple solutions of RP P>
Multiple time-asymptotic
wave patters...

when U; or U
T S kR
lie in here

0-speed
shock curve

@

Standing
wave curve




Multiple solutions of RP

when Uy, or Ug
lie in here

O-speed
shock curve

For Example:

o
_.l

Standing
wave curve




Multiple solutions of RP Ur = H

T

a * Case
! gu < 0

.‘_
-
—a
£
——
<
4




Multiple solutions of RP Uz = H
! (I) UL —F —> H

- 9

< ﬁ F
D
— »— > >
<5 > h
> 5
B C 7> U



Multiple solutions of RP Uz = H
T @ U, —-E—H

- 9




Multiple solutions of RP Uz = H

T (3) Ur =D —>G— H

- 9




T he Multiple solutions of RP
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e Always only | or 3 solutions of RP
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e All three solutions have the same
F-value



T he Multiple solutions of RP

e Always only | or 3 solutions of RP

e All three solutions have the same
F-value

...so they don’t affect Glimm Conv proof



T he Multiple solutions of RP

e Always only | or 3 solutions of RP

e All three solutions have the same
F-value

...so they don’t affect Glimm Conv proof

e Multiple solutions do not depend
continuously in (x,t)-plane...



Theorem: It doesn’t matter
which admissible solution you
pick, there always is a
convergent subsequence for
both the Glimm and Godunov
methods...

Main Lemma: [F(J,) < F(J;)



Conclude: The three solutions
of the RP represent distinct
time-asymptotic wave patterns
to which solutions with the
same state left and right states
at + and - infinity can converge!



Open Problem: For a smooth
duct, find conditions on the
initial data which tells which
time-asymptotic wave pattern
the solution will converge to!!!

...when the left and right states
are the same...



My former student
John Hong
(Prof in Taiwan)
Found a Mistake in the
proof of convergence of
the residual...this led to
his doctoral thesis...



He corrected the proof
of convergence of the
residual...



...and we answered the
question: Can we find a
bound for the Total
Variation of the
Conserved Quantities?



SIAM J. ApPPL. MATH. (© 2004 Society for Industrial and Applied Mathematics
Vol. 64, No. 3, pp. 819-857

A BOUND ON THE TOTAL VARIATION OF THE CONSERVED
QUANTITIES FOR SOLUTIONS OF A GENERAL RESONANT
NONLINEAR BALANCE LAW*

JOHN HONGT AND BLAKE TEMPLE?

Abstract. We introduce a new potential interaction functional and use it to define a new
Glimm-type functional that bounds the total variation of the conserved quantities at time ¢ > 0 by
the total variation at time ¢ = 0+ in Glimm approximate solutions of a general resonant nonlinear
balance law.

Key words. shock waves, resonance, Glimm scheme, balance laws
AMS subject classification. 35165

DOI. 10.1137/S0036139902405249



SIAM J. ApPPL. MATH. (© 2004 Society for Industrial and Applied Mathematics
Vol. 64, No. 3, pp. 819-857

A BOUND ON THE TOTAL VARIATION OF THE CONSERVED
QUANTITIES FOR SOLUTIONS OF A GENERAL RESONANT
NONLINEAR BALANCE LAW*

JOHN HONGT AND BLAKE TEMPLE#*

Abstract. We introduce a new potential interaction functional and use it to define a new
Glimm-type functional that bounds the total variation of the conserved quantities at time ¢ > 0 by
the total variation at time ¢ = 0+ in Glimm approximate solutions of a general resonant nonlinear
balance law.

Key words. shock waves, resonance, Glimm scheme, balance laws
AMS subject classification. 35165

DOI. 10.1137/S0036139902405249

Pages 819-857



Consider first the proof
of convergence of the
Residual...



The Residual:

+ 00 + 00
Rlowd)= [ [ {udi+ 1o, + g0} dod

+ 00
—I—/_ uo(x)p(x,0)dx



The Residual:

+ 00 + 00
Rlowd)= [ [ {udi+ 1o, + g0} dod

+ 00
—I—/_ uo(x)p(x,0)dx
\OO~/

Weakly imposes the /
initial data...



The Residual:

+ 00 + 00
Rlowd)= [ [ {udi+ 1o, + g0} dod

_|_
‘|—/ Up x,())da:

\/

Cignore s, D



The Residual:

Ria.u.0) = | :O / :O (u,

f @z

a' g} drdt



The Residual:

+ 00 + 00
Rlowd)= [ [ {udi+ 1o, + g0} dod

Put in the Glimm approximates
with discontinuous a and u...

(a,u) = (AL, UAZ)



The Residual:
R(GJA:E) UAx, ¢) —

‘oo pFoo
/ / {uae®e + f(uae) oz + a’m;g(am;, UAz )} dzdt



The Residual:
R(aaz, Ung, @) =

+ 00 + 00
/ / {uazdr + f(uag) Pz + aa,9(ans, uny)} dzdt
— OO — OO — —

Delta-Function
times
Discontinuous




The Residual:
R(anp UAx, ¢) —

+ 00 + 00
/ / {UAmet =+ f(uAa;)¢:c -+ a’Axg(an, qu)} dxdt
— OO — OO — —

Since you can’t multiply distributions,
these aren’t approximations in the
distributional sense!



The Residual:

To prove convergence of Residual...

R(CLA:B) UAx ¢) > U

Ax — 0

...requires 3 small parameters...

...and requires a(x) be

Lipschitz Continuous



The three small parameters:

(1) A parameter to smooth out g(@az, uaz)

g(anz, UAZ)s = G(AAL, UAZ) * Vs

1 T ...standard
s ( )

527\ s convolution
kernel



[The three small parameters:}

(2) A parameter to smooth out aag

t




The three small parameters:

(3) Estimate the residual differently in S,

- 0




The Residual:

Modifying the argument you can get:

/ R(aaz, sz, $)*dl
A

<0(1) {e-l— [K(e Aa:] + [ (€+K(6)] }

+0(1) {

e+//|g U)s — g(U®)| dxdt
//lg-U )s — g(U)| dz dt
E 13

Az

+ -O(ACE)K (€) 4

o |



The point is that you can make all of terms
independent of Az small by ¢€,€,0 << 1,
then choose Az << 1 small to obtain...

/ R(aAa;,qu, qb)zdg T
A

forany 7 > 0, implying

/ R(aAa;,qu, ¢)2d9 — 0
A

Axr — 0



That is,
/R(aAa,,qu,qﬁ)de
A
< O(l){ [K(e Am] [6(6+K(6)] }
+O(l){ e+//|g U)s — g(U)| dx dt

//Ig-U )s —g(U)| dz dt
E 13

+ -O(ALU)K(E) | A(5$-4}

/ R(an, UAz s ¢)2d9 > 0
A

Axr — 0



Key Step: Integration by Parts produces

Az

the — term..

—(ae —a)(g-Upr,)s ¢dx dt
//>0 d.’E( g A )5¢

<0) [ [ lac—al| (- Us| dzar < O



Again we can conclude...

Theorem: Off a set of zero measure N C A,
the residual tends to zero.

That is: For almost every choice of sampling, the
convergent Glimm Approximate Solutions
converge to a weak solution of the equations...



Using this correct convergence
theorem, Hong was able to
reduce Glimm’s theorem for
iInhomogeneous systems to
Glimm’s original argument by
treating the source term as a
contact discontinuity field...
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THEOREM: Any n X n system of the form

Ut T f(av u)a? — a'g(a, U)

satisfies Glimm’s theorem as an
(n+1) X (n+ 1) augmented system

(2),(157).~(%"

By treating the source term as a
zero speed contact field!



THEOREM: Any n X n system of the form

Ut T f(av u)a? — a/g(aa U)

satisfies Glimm’s theorem as an
(n+1) X (n+ 1) augmented system

(2),(157).~(%"

By treating the source term as a
zero speed contact field...

(Proof for Non-resonant case only!)



THEOREM: Any n X n system of the form

Ut T f(av u)a? — a/g(aa U)

satisfies Glimm’s theorem as an
(n+1) X (n+ 1) augmented system

(2),(157).~(%"

By treating the source term as a
zero speed contact field...

(Resonant case is completely open!)



A local Glimm existence theory
in a2 neighborhood of a point of
resonance would solve a long
open problem...

...transonic flow in a variable
area duct...



Special Case: Transonic flow
in a variable area duct...

a'(x)

pr + (pu)x = — a(x) pu,
(pu); + (pu* + p)x = -2 N pu?,
a(x)




For systems: A Glimm type
bound would require a bound
on the total variation of the
conserved quantities...it
appears unlikely that for
systems, wave interactions
can be controlled by a
singular transformation...



Such a bound would be
required to extent the
scalar results to systems
like transonic flow in a
duct...



Jo start, we set out to
establish a2 bound on the
total variation of the
conserved variables
for the
scalar resonant case...



We

accomplished
this in...
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We discovered a Complicated Potential
Interaction Functional that works...
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The Potential Interaction Functional
that bounds the
Total Variation of the Conserved Variables
for
Generic Resonance
between a
Nonlinear Wave Family
and a
Stationary Source...



That is;: Find an functional F such that

Varg.(J) < Const. F(J)

F(Jy) < F(Jy)



...It is constructed as
follows...

Start by defining
preliminary wave strengths...



® Replace the singular variable z by w
which bounds the total variation in u...

) u—ur fu<T,
w(a’u)_{ ur —u ifu>T
® Impose the |-2-4 weights on wave
strengths

2lw(Ugr) — w(UyL)| if v is a weak standing wave,

lw(Ug) —w(UyL)| if v is a nonlinear wave,
Yl =
4lw(Ur) — w(Ur)| if v is a strong standing wave.




® Use these to define the preliminary
linear functional~TV in u...

T
Ly, 0m) = D il
1=1

>* . . .
L s not continuous across multiple
solutions of RP



® Adjust the wave strengths to make L
continuous across multiple RP solns...



® Adjust the wave strengths to make L
continuous across multiple RP solns...

] = |P(y)|x, + 6(y) if v is a standing wave on the right of 7,
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® Adjust the wave strengths to make L
continuous across multiple RP solns...

Iy = { |P(y)|% 4+ 6(y) if v is a standing wave on the right of 7,
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Pri—" otherwise,
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RP discontinuities
Created by |.

|. Correct to make
triple RP’s continuous



® Adjust the wave strengths to make L
continuous across multiple RP solns...

PrE—" otherwise,

Iy = { |P(y)|% 4+ 6(y) if v is a standing wave on the right of 7,
w

2. Correct new
RP discontinuities
Created by |.

|. Correct to make
triple RP’s continuous

T
® Define: Lu[yi,---y 7]l =  ilw.
=1



® Adjust the wave strengths to make L
continuous across multiple RP solns...

Pri—" otherwise,

Iy = { |P(y)|% 4+ 6(y) if v is a standing wave on the right of 7,
w

2. Correct new
RP discontinuities
Created by |.

|. Correct to make
triple RP’s continuous

n
L’w[’Yla ¢ .. ,'Yn] — Z |’7’&|w
=1

® Conclude: L., is continuous wrt RP’s



® Show that [, only increases due to
the interaction of rarefaction waves
and standing waves...

® Define a potential for the

interaction of rarefaction waves and
standing waves...

P(J)= >  d(W,7),

(a,8)E App(J)



® Define the Nonlinear Functional...

F(J) = Lw(J) + P(J),

® In a case by case study, prove...

THEOREM: If J, is a successor of .J;, then

F(Jy) < F(J1)



® Conclude: If the F-value of the
waves at time t+ is finite, then

TV {u(-,t)} < F(Jy)

® Corollary: If there are only shocks
and standing waves initially, then the
total variation of the solution at
time t>0 is bounded by

4x(TV of the waves at time zero).



Theorem: A sharp bound on the
total variation of the conserved
quantities in resonant scalar
balance laws of the form:



Theorem: A sharp bound on the
total variation of the conserved
quantities in resonant scalar
balance laws of the form:

(3),(157).~(“%")

(Only works for SCALAR functions f)



® Open Problem: Prove that a similar
total variation bound holds in a
neighborhood of a point where

A =0
in a resonant SYSTEM of form

(3),(157).~(“%"

Difficult problem of transonic flow!!!



® References: Many people have
addressed the transonic flow
problem from varying perspectives..

Eg. TP Liu, Keyfitz & Kranzer, N Risebro,
H Holden, P Lefloch...

Many more!






