An Instability in the Standard Model of Cosmology creates the Anomalous Acceleration without Dark Energy

Collaborators: Joel Smoller and Zeke Vogler

Blake Temple, UC-Davis
Harvard University
April 8, 2016
The 1999 observations of redshift vs luminosity for type IA supernovae in nearby galaxies won the Nobel Prize because they discovered the Anomalous Acceleration:

The universe is expanding faster than the Standard Model of Cosmology (SM), based on Einstein's original theory of General Relativity, allows.
The only way to preserve the Cosmological Principle-that on the largest length scale the universe is described by a Friedmann Space-Time which holds no special place-is to add the Cosmological Constant to Einstein's equations as a source term. Its interpretation is Dark Energy.
A best fit among Friedmann Space-Times with Dark Energy leads to the conclusion that the universe is a critical k=0 Friedmann Space-Time with Seventy Percent Dark Energy

$$\Omega_\Lambda \approx 0.7$$
We proposed the idea that a Simple Wave from the Radiation Epoch of the Big Bang might account for the Anomalous Acceleration of the Galaxies Without Dark Energy.
Our Motivation

The Radiation Epoch: After Inflation until about 30,000 years after the Big Bang is evolution by Relativistic Compressible Euler Equations

The p-system with $p = \frac{c^2}{3} \rho$
Every characteristic field contributes to Decay in the sense of Glimm and Lax

Stefan-Boltzmann Law: \[\rho = a T^4 \] (No Contact Discontinuities)

\[p = \frac{c^2}{3} \rho \]

The \(p \)-system with:

- Enormous sound speed \(\sigma \approx 0.57c \)
- Enormous modulus of Genuine Nonlinearity
It is reasonable to expect fluctuations would decay to simple wave patterns by the End of Radiation

This was our Starting Assumption
Stages of the Standard Model:

Inflation

Big Bang 10^{-35}s to 10^{-30}s

Pure Radiation

10^{-30} to $3 \times 10^5 \text{ yrs}$

$p = \frac{c^2}{3} \rho$

(Relativistic p-system)

Uncoupling of Matter and Radiation

$t \approx 3 \times 10^5$

(Neglect Radiation Pressure)

$p \approx 0$

Time of CMB 379,000 yr
Pursuing this Idea...

...we discovered that there is only one way the Einstein equations can both perturb the Friedmann spacetimes and also reduce to ODE’ when

\[p = \frac{c^2}{3} \rho \]
...we identified a 1-parameter family of Self-Similar Waves that perturb the Standard Model during the Radiation Epoch. And proposed that these might induce an Anomalous Acceleration at a later time.

We set out our ideas in PNAS in 2009 and Memoirs of the AMS in 2011.
Our interest is in the possible connection between these waves and the Anomalous Acceleration.

In Fact: This family of self-similar solutions was already from a different point of view...

Cahill and Taub:

Extended by others, esp. Carr and Coley, Survey:
Around 2007: Other research groups began exploring the possibility that the anomalous acceleration might be due to the earth lying near the center of a large region of Under-Density.

We first saw publication in 2009.
The record is clear on one thing:

No one before us proposed this family of waves as a mechanism that could account for the Anomalous Acceleration without Dark Energy.
We have now accomplished our goal of bringing the effects of these perturbations of the SM (waves) up to present time to compare with Dark Energy. There are several surprises... ...in this talk I present what we have found...
We identify a instability in the SM based on a new (closed) asymptotic ansatz for local perturbations of the critical $k=0$ Friedmann Spacetime when $p=0$. The instability naturally creates a central region of accelerated uniform expansion on the scale of the supernova data within Einstein's original theory, without Dark Energy.

Bullet Points to Discuss:

- We identify a instability in the SM based on a new (closed) asymptotic ansatz for local perturbations of the critical $k=0$ Friedmann Spacetime when $p=0$. The instability naturally creates a central region of accelerated uniform expansion on the scale of the supernova data within Einstein's original theory, without Dark Energy.
Bullet Points to Discuss:

• The phase portrait of the instability is universal in the sense that it describes every smooth, spherically symmetric perturbation near the center, when \(p=0 \).

• The region of accelerated uniform expansion is one order of magnitude larger in extent than expected.
The instability is triggered by our time asymptotic perturbations of SM from the Radiation Epoch when: \[p = \frac{c^2}{3} \rho \]

Surprisingly—The perturbations at the end of radiation do not directly cause the Anomalous Acceleration as we originally conjectured in PNAS.

Rather—It is the non-trivial phase portrait of the instability they trigger when \(p=0 \) that creates the later accelerations.
The phase portrait of the instability places the SM at a classic...
Present Universe in the Wave Theory

- Stable Rest Point
- Same Hubble Constant
- Same .425 Acceleration

As Dark Energy
The region of accelerated uniform expansion introduces precisely the same range of quadratic corrections to red-shift vs luminosity as does the cosmological constant in the theory of DE.

\[H_0 d_\ell = z + Q z^2 + O(z^3) \]

\[.25 \leq Q \leq .425 \leq .5 \]
The results lead naturally to a testable alternative to Dark Energy within Einstein's original theory…

Without the Cosmological Constant.

Our Proposal: The AA is due to a local under-dense perturbation of the SM on the scale of the supernova data, arising from time-asymptotic perturbations of SM from the Radiation Epoch that trigger an instability in the SM when the pressure drops to zero.
A calculation shows the cubic correction is of the same order, but of a different sign, than the cubic correction in DE theory...

\[H_0 d_\ell = z + 0.425z^2 - 0.180z^3 \]

\[H_0 d_\ell = z + 0.425z^2 + 0.359z^3 \]
We address ONLY the anomalous acceleration… further assumptions regarding space-time far from the center would be required to connect the theory with other measurements…
INTRODUCTION
TO
COSMOLOGY
Edwin Hubble (1889-1953)

- Hubble’s Law (1929):

 “The galaxies are receding from us at a velocity proportional to distance”

 Universe is Expanding

- Based on Redshift vs Luminosity
Astronomers have measured the distances between galaxies in the universe to an accuracy of just 1%.

This staggeringly precise survey - across six billion light-years - is key to mapping the cosmos and determining the nature of dark energy.

The new gold standard was set by BOSS (the Baryon Oscillation Spectroscopic Survey) using the Sloan Foundation Telescope in New Mexico, US.
Frozen ripples
The BOSS team used baryon acoustic oscillations (BAOs) as a "standard ruler" to measure intergalactic distances.

BAOs are the "frozen" imprints of pressure waves that moved through the early universe - and help set the distribution of galaxies we see today.

"Nature has given us a beautiful ruler," said Ashley Ross, an astronomer from the University of Portsmouth.

"The ruler happens to be half a billion light years long, so we can use it to measure distances precisely, even from very far away."
Conclude: The universe appears (and is assumed) uniform on a scale of about 1/20th the distance across the visible universe

\[\xi = \frac{r}{ct} \approx \frac{.5 \text{ billion lightyear}}{13 \text{ billion lightyear}} \approx 0.04 \leq 0.05 \]
10 billion light-years ≈ Visible Universe
10 billion light-years \approx Visible Universe

500 million light-years \approx Uniform Density

Milky Way
10 billion light-years \approx \text{Visible Universe}

500 \text{ million light-years} \approx \text{Uniform Density}

- 50 \text{ million light-years} \approx \text{Separation between clusters of galaxies}
10 billion light-years \approx Visible Universe

500 million light-years \approx Uniform Density

- 50 million light-years \approx Separation between clusters of galaxies
- 10 million light-years \approx diameter of a cluster
10 billion light-years \approx \text{Visible Universe}

500 \text{ million light-years} \approx \text{Uniform Density}

- 50 million light-years \approx \text{Separation between clusters of galaxies}

- 10 \text{ million light-years} \approx \text{diameter of a cluster}

- 1 \text{ million light-years} \approx \text{separation between galaxies in a cluster}
10 billion light-years ≈ Visible Universe

500 million light-years ≈ Uniform Density

- 50 million light-years ≈ Separation between clusters of galaxies

10 million light-years ≈ diameter of a cluster

- 1 million light-years ≈ separation between galaxies in a cluster

100 thousand light-years ≈ distance across Milky Way
10 billion light-years ≈ Visible Universe

500 million light-years ≈ Uniform Density

- 50 million light-years ≈ Separation between clusters of galaxies
- 10 million light-years ≈ diameter of a cluster
- 1 million light-years ≈ separation between galaxies in a cluster

100 thousand light-years ≈ distance across Milky Way

- 28 thousand light-years ≈ distance to galactic center
Convert: light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]
Convert light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]
Convert light-years to redshift factor by the relation:

\[
1 + z = \frac{R(t_0)}{R(t)}
\]

\[
\frac{R(t_0)}{R(t)} = \left(\frac{t_0}{t} \right)^{2/3}
\]

\(p = 0 \)
Convert light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]

\[\frac{R(t_0)}{R(t)} = \left(\frac{t_0}{t} \right)^{2/3} \]

\[1 + z = \left(\frac{t_0}{t} \right)^{2/3} \]
Convert light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]

\[\frac{R(t_0)}{R(t)} = \left(\frac{t_0}{t} \right)^{2/3} \]

\[1 + z = \left(\frac{t_0}{t} \right)^{2/3} \]

\[\xi \approx .1 \]

\[ct = (.1)(ct_0) \approx (.1) \frac{c}{H_0} \]

\[z \approx .07 \]
Convert light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]

\[\frac{R(t_0)}{R(t)} = \left(\frac{t_0}{t} \right)^{2/3} \]

\[1 + z = \left(\frac{t_0}{t} \right)^{2/3} \]

\[\xi \approx .1 \quad \text{ct} = (.1)(ct_0) \approx (.1)\frac{c}{H_0} \quad z \approx .07 \]

About a tenth of the distance to the Hubble Radius corresponds to about \(z \approx .07 \)
Convert light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]

\[\frac{R(t_0)}{R(t)} = \left(\frac{t_0}{t} \right)^{2/3} \]

\[1 + z = \left(\frac{t_0}{t} \right)^{2/3} \]

\[ct = (.35) \frac{c}{H_0} \quad \leftrightarrow \quad z = 1 \]
Convert light-years to redshift factor by the relation:

\[1 + z = \frac{R(t_0)}{R(t)} \]

\[\frac{R(t_0)}{R(t)} = \left(\frac{t_0}{t} \right)^{2/3} \]

\[1 + z = \left(\frac{t_0}{t} \right)^{2/3} \]

\[ct = (.35) \frac{c}{H_0} \quad \Leftrightarrow \quad z = 1 \]

\[z = 1 \] corresponds to about a “third of the way across the visible universe…”
1922 \textbf{Alexander Friedmann}: Derived FRW solutions of the Einstein equations: 3-space of constant curvature expanding in time:

\[ds^2 = -dt^2 + R(t)^2 \left\{ \frac{dr^2}{1-kr^2} + r^2d\Omega^2 \right\} \]

The Big Bang theory based on the FRW metric was worked out by \textbf{George Lemaître} in the late 1920’s leading to Hubble’s confirmation of redshift vs luminoscity consistent with an FRW spacetime

\[\text{Hubble’s Constant} \equiv H \equiv \frac{\dot{R}}{R} \]
In 1935: **Howard Robertson and Arthur Walker** derived Friedmann spacetime from the

Copernican Principle:
“Earth is not in a special place in the Universe”

- R-W: Friedmann uniquely determined by condition

Homogeneous and Isotropic about every point

Any point can be taken as \(r = 0 \)

Each \(t=\text{const} \) surface is a 3-space of constant scalar curvature
Standard Model of Cosmology

Observations of the micro-wave background IMPLY

\[k = 0 \]

“Critical expansion to within about 2-percent”
The Friedmann metric when $k=0$:

$$ds^2 = -dt^2 + R(t)^2 \left\{ dr^2 + r^2 d\Omega^2 \right\}$$

The universe is infinite flat space \mathbb{R}^3 at each fixed time:

(Assumed to Apply on the Largest Length Scale)
Standard Model of Cosmology

- FRW metric, $k=0$:

$$ds^2 = -dt^2 + R(t)^2 \left\{ dr^2 + r^2 d\Omega^2 \right\}$$

- \(D = Rr \) Measures distance between galaxies at each fixed \(t \)

- Conclude:

\[\dot{D} = \dot{R}r = \frac{\dot{R}}{R} Rr = HD \]

Hubble’s Law

Hubble’s Constant \(\equiv H \equiv \frac{\dot{R}}{R} \)
Standard Model of Cosmology

\[ds^2 = -dt^2 + R(t)^2 \{ dr^2 + r^2 d\Omega^2 \} \]

Hubble’s Law:

\[\dot{D} = HD \]

Conclude--

``The universe is expanding like a balloon``
The Hubble “Constant” at present time

- The inverse Hubble Constant estimates the Age of the Universe

\[
\frac{1}{H_0} \approx 10^{10} \text{ years} \approx \text{age of universe}
\]

- \(\frac{c}{H_0} \) is the distance of light travel since the Big Bang, a measure of the size of the visible universe

\[
\frac{c}{H_0} = \text{Hubble Length} \approx 10^{10} \text{ lightyears}
\]
Measuring the Hubble Constant

D Measures distance from Earth to distant galaxy at present time t_0

\[H_0 D = \dot{D} \]

Hubble's Law

\[D \approx d_\ell \equiv \text{luminosity distance} \]

\[\dot{D} \approx z \equiv \text{redshift factor} = \frac{\lambda_0 - \lambda_e}{\lambda_e} \]

\[H_0 d_\ell = z + \frac{1}{4} z^2 - \frac{1}{8} z^3 + O(z^4) \]

Friedmann $k = 0$
Up until 1999, we could only measure the leading linear term:

\[H_0 d_\ell = z + \frac{1}{4} z^2 - \frac{1}{8} z^3 + O(z^4) \]

\[k = 0 \]

\[F \text{riedmann} \]

\[z << 1 \]

\[H_0 \approx h_0 100 \frac{km}{s \ mpc} \quad h_0 \approx .68 \]

\[mpc \approx 3.2 \text{ million light years} \]

``A galaxy at a distance of one mega-parsec is receding at about 68 kilometers per second...``
The 1999 supernova data tested the dependence of the Hubble constant on time, and the results don’t fit standard model...

"Anomalous Acceleration of Galaxies"

Introduction of "Cosmological Const" and "Dark Energy"

Dark energy is non-classical

Negative pressure → Anti-gravity effect
The 1999 supernova data tested the dependence of the Hubble constant on time, and the results don’t fit standard model...

\[H_0 d_\ell = z + \frac{1}{4} z^2 - \frac{1}{8} z^3 + O(z^4) \]

Friedmann

\[k = 0 \]

This is measured at about 0.425 not 0.25
The 1999 supernova data tested the dependence of the Hubble constant on time, and the results don’t fit standard model...

This is usually interpreted in terms of a Best Fit to Friedmann Universes with the Cosmological Constant

$$(k, \Omega_\Lambda) \implies k = 0, \Omega_\Lambda \approx 0.7$$
Thanks to Philip Hughes

UM-Astronomy

Standard Model

$k=0$ FRW

“Not a Good Fit”

Thanks to Philip Hughes

UM-Astronomy
That is: To preserve the Copernican Principle, that the Universe on the Largest Length Scale is evolving according to a Uniform Friedmann Spacetime with \(p=0, k=0 \) A Cosmological Constant must be added To Einstein’s Equations

The Physical Interpretation is Dark Energy
Thanks to Philip Hughs
UM-Astronomy

Best Fit:

- 70% Dark Energy
- 30% Classical Energy
• **Einstein Equations (1915):** \[G_{ij} = \kappa T_{ij} \]

\[G_{ij} = \text{Einstein Curvature Tensor} \]

\[T_{ij} = (\rho + p)u_i u_j + pg_{ij} = \text{Stress Energy Tensor (perfect fluid)} \]

• **Einstein Equations for k=0 Friedmann metric:**

\[H^2 = \frac{\kappa}{3} \rho \]

\[\dot{\rho} = -3(\rho + p)H \]

★ **Solutions determined by equation of state:** \[p = p(\rho) \]
Incorporating Dark Energy into Friedmann

- Assume Einstein equations with a cosmological constant:
 \[G_{ij} = 8\pi T_{ij} + \Lambda g_{ij} \]

- Assume \(k = 0 \) FRW:
 \[ds^2 = -dt^2 + R(t)^2 \left\{ dr^2 + r^2 d\Omega^2 \right\} \]

- Leads to:
 \[H^2 = \frac{\kappa}{3} \rho + \frac{\kappa}{3} \Lambda \]

- Divide by \(H^2 = \frac{\kappa}{3} \rho_{\text{crit}} \)
 \[1 = \Omega_M + \Omega_\Lambda \]

- Best data fit leads to \(\Omega_\Lambda \approx 0.7 \) and \(\Omega_M \approx 0.3 \)

- Implies: The universe is 70 percent dark energy
Incorporating Dark Energy into Friedmann

More slowly...
Incorporating Dark Energy into Friedmann

\[H^2 = \frac{\kappa}{3} \rho + \frac{\kappa}{3} \Lambda \]
Incorporating Dark Energy into Friedmann

\[H^2 = \frac{\kappa}{3} \rho + \frac{\kappa}{3} \Lambda \]

Constant in time
Incorporating Dark Energy into Friedmann

\[H^2 = \frac{\kappa}{3} \rho + \frac{\kappa}{3} \Lambda \]

Decreases to zero as \(t \to \infty \)
Incorporating Dark Energy into Friedmann

\[H^2 = \frac{\kappa}{3} \rho + \frac{\kappa}{3} \Lambda \]
Incorporating Dark Energy into Friedmann

\[1 = \frac{\kappa}{3} \frac{\rho}{H^2} + \frac{\kappa}{3} \frac{\Lambda}{H^2} \]
Incorporating Dark Energy into Friedmann

1 = \frac{\kappa}{3} \frac{\rho}{H^2} + \frac{\kappa}{3} \frac{\Lambda}{H^2}

\Omega_\Lambda
Incorporating Dark Energy into Friedmann

$$1 = \frac{\kappa}{3} \frac{\rho}{H^2} + \frac{\kappa}{3} \frac{\Lambda}{H^2}$$
Incorporating Dark Energy into Friedmann

\[1 = \frac{\kappa}{3} \frac{\rho}{H^2} + \frac{\kappa}{3} \frac{\Lambda}{H^2} \]

\[| = \Omega_M + \Omega_\Lambda \]
Incorporating Dark Energy into Friedmann

\[1 = \frac{\kappa}{3} \frac{\rho}{H^2} + \frac{\kappa}{3} \frac{\Lambda}{H^2} \]

\[| = \Omega_M + \Omega_\Lambda \]

Conclude...
Incorporating Dark Energy into Friedmann

\[1 = \frac{\kappa}{3} \frac{\rho}{H^2} + \frac{\kappa}{3} \frac{\Lambda}{H^2} \]

\[|= \Omega_M + \Omega_\Lambda \]

\[\Omega_\Lambda \approx 0 \rightarrow 1 \quad \text{as} \quad t \approx t_{\text{rad}} \rightarrow \infty \]
Incorporating Dark Energy into Friedmann

\[1 = \frac{\kappa}{3} \rho \frac{1}{H^2} + \frac{\kappa}{3} \Lambda \frac{1}{H^2} \]

\[|I| = \Omega_M + \Omega_\Lambda \]

Best Fit… \[\Omega_\Lambda \approx 0.7 \]
$m - M = "Distance Modulus"

M = absolute Magnitude

m = apparent magnitude

d = distance in parsecs:

$m - M = 5 \log(d) - 5$

z = redshift factor

$1 + z = \frac{\lambda_{emit}}{\lambda_{obs}}$

$\Omega_m + \Omega_\Lambda = 1$ for a flat ($k = 0$) universe.
Standard Model
Composition of Universe

- Heavy Elements: 0.03%
- Neutrinos: 0.3%
- Stars: 0.5%
- Free Hydrogen and Helium: 4%
- Dark Matter: 25%
- Dark Energy: 70%

Courtesy of NASA
The Question we Explore:

“Could the **Anomalous Acceleration** of the galaxies be due to the fact that we are looking outward into an expansion wave that formed during the Radiation Epoch of the Big Bang?”
The Einstein equations have been confirmed without the cosmological constant in every setting except cosmology...

The Question we Explore:

“Could the Anomalous Acceleration of the galaxies be due to the fact that we are looking outward into an expansion wave that formed during the Radiation Epoch of the Big Bang?”
The Question we Explore:

“Could the Anomalous Acceleration of the galaxies be due to the fact that we are looking outward into an expansion wave that formed during the Radiation Epoch of the Big Bang?”

The Einstein equations have been confirmed without the cosmological constant in every setting except cosmology...

Note: A general expansion wave has a center of expansion...
Summary of our results for the Wave Theory
Hubbles Law:

\[H_0 \, d_\ell = z \] (1929)

Hubble’s Constant \quad \text{Luminosity Distance} \quad \text{Redshift Factor}

Measured value:

\[H_0 = h_0 \, \frac{100 \, \text{km}}{s \, \text{Mpc}} \]

\[h_0 \approx 0.68 \]
The 1999 Supernova data was refined enough to measure the quadratic correction to Hubble’s Relation:

\[H_0 d_\ell = z + \frac{z^2}{Q} \]
Einstein’s Equations:

\[G = \kappa T + \Lambda g \]

\[\Omega_M + \Omega_\Lambda = 1 \]

Cosmological Constant 1999

\[H_0 d_\ell = z + 0.25 z^2 + O(z^3) \]
Friedmann \(\Omega_\Lambda = 0 \)

Anomalous Acceleration

\[H_0 d_\ell = z + 0.425 z^2 + O(z^3) \]
Friedmann \(\Omega_\Lambda = 0.7 \)
WE PROVE: The Friedmann Universe is UNSTABLE
WE PROVE: The Friedmann Universe is UNSTABLE

A small wave perturbation at the end of radiation will expand to create a large region of accelerated uniform expansion at the Center of the Wave
WE PROVE: The Friedmann Universe is UNSTABLE

A small wave perturbation at the end of radiation will expand to create a large region of accelerated uniform expansion at the Center of the Wave

This induces exactly the same range of quadratic corrections to redshift vs luminosity as does Dark Energy
The self-similar perturbations we identified at the end of the radiation epoch trigger this instability when \(p=0 \).
The self-similar perturbations we identified at the end of the radiation epoch trigger this instability when $p=0$.

This induces exactly the same range of Q as does Dark Energy:

$$H_0d_\ell = z + Qz^2 + O(z^3)$$
\[H_0d_\ell = z + 0.25 (1 + \Omega_\Lambda) z^2 - 0.125 \left(1 + \frac{2}{3} \Omega_\Lambda - \Omega_\Lambda^2 \right) z^3 + O(z^4) \]

\[0.25 \leq Q \leq 0.5 \]

\[0 \leq \Omega_\Lambda \leq 1 \]

\[\Omega_M + \Omega_\Lambda = 1 \]

In the case \(\Omega_M = 0.3, \Omega_\Lambda = 0.7 \) this gives

\[H_0d_\ell = z + 0.425 z^2 - 0.1804 z^3 + O(z^4) \]
Our Wave Theory

\[H_0d_\ell = z + Q(z_2, w_0)z^2 + C(z_2, w_0, w_2)z^3 + O(z^4) \]

\[.25 \leq Q \leq .5 \]

as

\[z'_2 = -3w_0 \left(\frac{4}{3} + z_2 \right) \]
\[w'_0 = -\left(\frac{1}{6}z_2 + \frac{1}{3}w_0 + w_0^2 \right) \]

Orbit evolves to a NEW STABLE REST POINT

- A Wave with Underdensity:
 \[\frac{\rho_{SM} - \rho_{ssw}}{\rho_{SM}} = 7.45 \times 10^{-6} \]

\[H_0d_\ell = z + .425z^2 + .359z^3 + O(z^4) \]
Conclusion: The cubic correction is of the same order, but of a different sign, from Dark Energy…

…A Testable Prediction!

\begin{align*}
H_0 d_\ell &= z + 0.425z^2 - 0.180z^3 \\
H_0 d_\ell &= z + 0.425z^2 + 0.359z^3
\end{align*}
The Friedmann spacetimes admit self-similar expressions when $p = \sigma^2 \rho$

$$ds^2 = -B(\xi)dt^2 + \frac{1}{A(\xi)}dr^2 + r^2 d\Omega^2$$

$\xi = \frac{r}{ct}$ “Fractional Distance to the Hubble Radius”

$\rho r^2 = z(\xi)$ “Dimensionless Density”

$\frac{v}{\xi} = w(\xi)$ “Dimensionless Velocity”
The $p = 0$ Friedmann Universe in Self-Similar Coordinates:

\[ds^2 = -B_F(\xi)\,dt^2 + \frac{1}{A_F(\xi)}\,d\bar{r}^2 + \bar{r}^2\,d\Omega^2 \]

\[A_F(\xi) = 1 - \frac{4}{9}\,\xi^2 - \frac{8}{27}\,\xi^4 + O(\xi^6) \]

\[D_F(\xi) \equiv \sqrt{A_F B_F} = 1 - \frac{1}{9}\,\xi^2 + O(\xi^4) . \]

\[z_F(\xi) = \frac{4}{3}\,\xi^2 + \frac{40}{27}\,\xi^4 + O(\xi^6) \]

\[w_F \equiv \frac{v}{\xi} = \frac{2}{3} + \frac{2}{9}\,\xi^2 + O(\xi^4) \]
The $\rho = \frac{1}{3} \rho$ Friedmann Universe in Self-Similar Coordinates:

\[p = \frac{c^2}{3} \rho \]

- Pure Radiation \[\bar{\xi} \neq \xi \]

\[
\begin{align*}
\zeta_{1/3} &= \frac{3}{4} \bar{\xi}^2 + \frac{9}{16} \bar{\xi}^4 + O(\bar{\xi}^6) \\
\nu_{1/3} &= \frac{1}{2} \bar{\xi} + \frac{1}{8} \bar{\xi}^3 + O(\bar{\xi}^5) \\
A_{1/3} &= 1 - \frac{1}{4} \bar{\xi}^2 - \frac{1}{8} \bar{\xi}^4 + O(\bar{\xi}^6) \\
D_{1/3} &= 1 + O(\bar{\xi}^4)
\end{align*}
\]
The Friedmann Universe extends to a 1-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:

The $p = \frac{c^2}{3} \rho$ Friedmann Universe does not admit Self-Similar perturbations!

(Something has to give when p drops to zero!)

(The topic of our PNAS and MEMOIR)
A 1-parameter family of solutions depending on the Acceleration Parameter $0 < a < \infty$

$$p = \frac{1}{3} \rho$$

$$z_{1/3}^a = \frac{3a^2}{4} \bar{\xi}^2 + \left[\frac{9a^2}{16} + 3a^2 (V_0 + A_0) (1 - a^2) \right] \bar{\xi}^4 + O(\bar{\xi}^6)$$

$$v_{1/3}^a = \frac{1}{2} \bar{\xi} + \left[\frac{1}{8} + V_0 (1 - a^2) \right] \bar{\xi}^3 + O(\bar{\xi}^5)$$

$$A_{1/3}^a = 1 - \frac{a^2}{4} \bar{\xi}^2 - \left[\frac{a^2}{8} + a^2 A_0 (1 - a^2) \right] \bar{\xi}^4 + O(\bar{\xi}^6)$$

$$D_{1/3}^a = 1 + O(\bar{\xi}^4)$$

\[V_0 = \frac{2}{3}, \quad A_0 = \frac{1}{20} \]
The **ANSATZ** that triggers the instability when \(p=0 \):
The ANSATZ that triggers the instability:

\[
\begin{align*}
 z(t, \xi) &= \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \\
 w(t, \xi) &= \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4),
\end{align*}
\]
The ANSATZ:

\[z(t, \xi) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \]

\[w(t, \xi) = \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4), \]

\[\xi = \frac{r}{ct} \]

“Fractional Distance to the Hubble Radius”
The ANSATZ:

\[
\begin{align*}
\zeta(t, \xi) &= \left(\frac{4}{3} + z_2(t)\right) \xi^2 + \left\{\frac{40}{27} + z_4(t)\right\} \xi^4 + O(\xi^6), \\
w(t, \xi) &= \left(\frac{2}{3} + w_0(t)\right) + \left\{\frac{2}{9} + w_2(t)\right\} \xi^2 + O(\xi^4),
\end{align*}
\]

\[
\xi = \frac{r}{ct} \quad \text{“Fractional Distance to the Hubble Radius”}
\]

\[
\zeta(t, \xi) = \rho r^2 \quad \text{“Dimensionless Density”}
\]
The ANSATZ:

\[z(t, \xi) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \]

\[w(t, \xi) = \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4), \]

\[\xi = \frac{r}{ct} \quad \text{“Fractional Distance to the Hubble Radius”} \]

\[z(t, \xi) = \rho r^2 \quad \text{“Dimensionless Density”} \]

\[w(t, \xi) = \frac{v}{\xi} \quad \text{“Dimensionless Velocity”} \]
In a non-uniform spacetime:

\[\xi = \text{``Fractional distance to the Hubble Radius''} \]

measures (approximately)
how far out you would think you were
if you believed you were at the center of a
Friedmann spacetime…
The ANSATZ:

\[
\begin{align*}
z(t, \xi) &= \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \\
w(t, \xi) &= \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4),
\end{align*}
\]

Only EVEN powers of \(\xi \)...
The ANSATZ:

\[z(t, \xi) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \]

Uniform Density out to errors \(\xi^4 \)

\[z(t, \xi) = \rho r^2 \]

\[\rho(t) \sim \frac{\left(\frac{4}{3} + z_2(t) \right)}{t^2} = \frac{f(t)}{t^2} \]
THEOREM: The $p = 0$ waves take the asymptotic form

$$z(t, \xi) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6),$$

$$w(t, \xi) = \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4),$$

where $z_2(t), z_4(t), w_0(t), w_2(t)$ evolve according to the equations

$$-t \dot{z}_2 = 3w_0 \left(\frac{4}{3} + z_2 \right),$$

$$-t \dot{z}_4 = -5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\} - 5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\},$$

$$-t \dot{w}_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2,$$

$$-t \dot{w}_2 = \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0 - \frac{1}{3} w_0^2 + 4w_0 w_2 - \frac{1}{4} w_0^2 z_2.$$
Our Wave Theory

\[H_0 d_\ell = z + Q(z_2, w_0)z^2 + C(z_2, w_0, w_2)z^3 + O(z^4) \]

\[.25 \leq Q \leq .5 \]

as

\[z'_2 = -3w_0 \left(\frac{4}{3} + z_2 \right) \]

\[w'_0 = -\left(\frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2 \right) \]

Orbit evolves to a NEW STABLE REST POINT
Our Wave Theory

\[H_0 d_\ell = z + Q(z_2, w_0)z^2 + C(z_2, w_0, w_2)z^3 + O(z^4) \]

\[.25 \leq Q \leq .5 \]

as

\[z' = -3w_0 \left(\frac{4}{3} + z_2 \right) \]

\[w'_0 = - \left(\frac{1}{6}z_2 + \frac{1}{3}w_0 + w_0^2 \right) \]

Orbit evolves to a NEW STABLE REST POINT

\[Q(z_2, w_0) = \frac{1}{4} + \frac{24w_0 + 45w_0^2 + 3z_2}{4(2 + 3w_0)^2} \]
Our Wave Theory

\[H_0 d \ell = z + Q(z_2, w_0)z^2 + C(z_2, w_0, w_2)z^3 + O(z^4) \]

as

\[.25 \leq Q \leq .5 \]

\[z'_2 = -3w_0 \left(\frac{4}{3} + z_2 \right) \]

\[w'_0 = -\left(\frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2 \right) \]

Orbit evolves to a NEW STABLE REST POINT

\[Q(z_2, w_0) = \frac{1}{4} + \frac{24w_0 + 45w_0^2 + 3z_2}{4(2 + 3w_0)^2} \]

\[\frac{1}{4} = Q(0, 0) \leq Q \leq Q(M) = \frac{1}{2} \]
Our Wave Theory

\[H_0 d_\ell = z + Q(z_2, w_0)z^2 + C(z_2, w_0, w_2)z^3 + O(z^4) \]

\[0.25 \leq Q \leq 0.5 \]

As

\[z'_2 = -3w_0 \left(\frac{4}{3} + z_2 \right) \]

\[w'_0 = -\left(\frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2 \right) \]

Orbit evolves to a NEW STABLE REST POINT

\[Q(z_2, w_0) = \frac{1}{4} + \frac{24w_0 + 45w_0^2 + 3z_2}{4(2 + 3w_0)^2} \]

\[\frac{1}{4} = Q(0, 0) \leq Q \leq Q(M) = \frac{1}{2} \]

(Along orbit \(SM \rightarrow M \))
Our Wave Theory

\[H_0 d_\ell = z + Q(z_2, w_0)z^2 + C(z_2, w_0, w_2)z^3 + O(z^4) \]

\[.25 \leq Q \leq .5 \]

as

\[z'_2 = -3w_0 \left(\frac{4}{3} + z_2 \right) \]

\[w'_0 = -\left(\frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2 \right) \]

Orbit evolves to a NEW STABLE REST POINT

A Wave with Under-density:

\[\frac{\rho_{SM} - \rho_{ssw}}{\rho_{SM}} = 7.45 \times 10^{-6} \]

\[H_0 d_\ell = z + .425z^2 + .359z^3 + O(z^4) \]
Stable Rest Point

Unstable Rest Point

1-Parameter Family of \(a \)-waves, \(a < 1 \)

\(\mathbb{Z}_2 \)
Strategy: Use our equations to evolve the initial data for a-waves at the end of radiation to determine \((a, T_*)\) that gives the correct anomalous acceleration.

I.e., \((a, T_*)\) that give the observed quadratic correction to redshift vs luminosity at present time.
In the Standard Model $p=0$ at about

\[t_* \approx 10,000-30,000 \]

\[T_* \approx 9000^0 K \]

(Depending on theories of Dark Matter)

Our simulation turns out to be entirely insensitive to the initial t_*, T_*

I.e., we need only compute the value of the acceleration parameter that gives the correct anomalous acceleration.
THE ANSWER: The value of the acceleration for the wave perturbation of SM that produces a quadratic correction of .425 at the present value of H_0 is:

\[a = 0.99999957 = 1 - (4.3 \times 10^{-7}) \]

\[H_0 d_\ell = z + .425z^2 + .359z^3 \]

This corresponds to a relative under-density of

\[\frac{\rho_{SM} - \rho_{ssw}}{\rho_{SM}} = 7.45 \times 10^{-6} \]
\[
\begin{align*}
 w' &= -3w(4/3 + z) \\
 w' &= -(1/6z + 1/3w + w^2)
\end{align*}
\]

As Dark Energy

- Same Hubble Constant
- Same \(.425 \) Acceleration

Creates...

Stable Rest Point

\[\alpha = \alpha \approx 1 - .00000043\]
$w_z' = -3w(4/3 + z)$

$w' = -(1/6z + 1/3w + w^2)$
The relative under-density at the end of radiation:

\[
\frac{\rho_{SM} - \rho_{ssw}}{\rho_{SM}} = 7.45 \times 10^{-6}
\]

The relative under-density at present time:

\[
\frac{\rho_{ssw}(t_0)}{\rho_{SM}(t_0)} = 0.1438 \approx \frac{1}{7}
\]
An under-density of one part in 10^6 at the end of radiation produces a seven-fold under-density at present time...
CONCLUDE:

The **Standard Model is Unstable to Perturbation by this 1-parameter family of Waves**
Comparison with Dark Energy:

\[H_0 d_\ell = z + 0.425 z^2 - 0.180 z^3 \]

\[H_0 d_\ell = z + 0.425 z^2 + 0.359 z^3 \]

\[z \sim \frac{d_\ell}{H_0} \sim \frac{r}{ct} \sim \xi \]

Measures Fractional Distance to Hubble Radius \(z \ll 1 \)

A prediction: The wave contributes MORE to the Anomalous Acceleration far from the center.
Neglecting $O(\xi^4)$ errors:
The spacetime near the center evolves toward the Stable Rest Point

- The metric tends to Flat Minkowski Spacetime which is not co-moving with the fluid

- BUT: The evolution creates a uniformly expanding density near the center, which, neglecting relativistic corrections, is **CENTER-INDEPENDENT** (like Friedmann Spacetimes)
CONCLUDE:

The wave creates a **UNIFORMLY EXPANDING SPACETIME** with an **ANOMALOUS ACCELERATION** in a **LARGE, FLAT, CENTER-INDEPENDENT** region near the center of the wave.
Neglecting errors $O(\xi^4)$:

\[
\begin{align*}
 z(t, \xi) &= \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \\
 w(t, \xi) &= \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4)
\end{align*}
\]

\[z \sim \text{density} \quad w \sim \text{velocity}\]

\[\xi = \frac{r}{t} \sim \text{fractional distance to Hubble Length}\]
THEOREM: Neglecting $O(\xi^4)$ errors, as the orbit tends to the Stable Rest Point:

- The Density drops FASTER than SM:

$$\rho_{\text{WAVE}}(t) = \frac{k_0}{t^3(1 + \bar{w})}, \quad \rho_{\text{SM}}(t) = \frac{4}{3t^2}$$

where $\bar{w}(t)$ and $k_0(t)$ change exponentially slowly.

- The metric tends to **FLAT MINKOWSKI**:

$$ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$$
Theorem: There exists a unique value

\[a = 0.99999956 \approx 1 - 4.3 \times 10^{-7} \]

such that:
Theorem: There exists a unique value \(a = 0.99999956 \approx 1 - 4.3 \times 10^{-7} \) such that:

- The \(p = 0 \) evolution starting from this initial data evolves to \(H = H_0, \, Q = .425 \) at \(t = t_0 \), in agreement with Dark Energy at \(t = t_{DE} \).
Theorem: There exists a unique value

\[a = 0.99999956 \approx 1 - 4.3 \times 10^{-7} \]

such that:

- The \(p = 0 \) evolution starting from this initial data evolves to \(H = H_0, Q = .425 \) at \(t = t_0 \), in agreement with Dark Energy at \(t = t_{DE} \).

- The cubic correction is \(C = 0.359 \) at \(t = t_0 \), while Dark Energy is \(C = -0.180 \) at \(t = t_{DE} \).
Theorem: There exists a unique value

\[a = 0.999999956 \approx 1 - 4.3 \times 10^{-7} \]

such that:

- The \(p = 0 \) evolution starting from this initial data evolves to \(H - H_0, Q = 0.425 \) at \(t = t_0 \), in agreement with Dark Energy at \(t = t_{DE} \).
- The cubic correction is \(C = 0.359 \) at \(t = t_0 \), while Dark Energy is \(C = -0.180 \) at \(t = t_{DE} \).
- The ages of the universe are related by:

\[t_0 \approx (0.95)t_{DE} \approx 1.38 \times t_{SM} = 1.38 \times (9.8 \times 10^9 \text{yr}) \]
Around 2007:
Other research groups began exploring the possibility that the anomalous acceleration might be due to the earth lying near the center of a large region of Under-Density

We first saw publication in 2009
This proposal is still taken seriously in Astrophysics
Some of the more important discrepancies are as follows:

- the ΛCDM model predicts more galactic satellites (dwarf galaxies) than what has been observed [11] (this can be in part cured by a large merger rate, see however Ref. [12]);

- the Gaussian model for the origin of Universe’s structure has difficulties in explaining the controversial large scale (dark) flow of galaxies [13] (even though the Planck satellite has not seen evidence of such flows in its data), and outliers such as the large relative speed in the Bullet Cluster collision [14];

- our Universe is supplied with a large number of voids, whose sizes and distribution may not be consistent with the ΛCDM model; moreover the voids should be filled with dwarfs and low surface brightness galaxies [15], which is not what has been observed [16];

- there are hints [17] that the structure growth rate is somewhat slower from that predicted by the ΛCDM model (alternatively we live in a universe with the equation of state parameter for dark energy \(w_{\text{de}} < -1 \));

- the disagreement between the Hubble Key Project and supernovae measurements of the Hubble constant [18, 19] and that obtained from the Planck data could be an indication that we live in an underdense region, whose size and magnitude would be difficult to reconcile with the standard ΛCDM with Gaussian initial perturbations (see however [20]).
Details of our Analysis
Main Steps:

(1) Derivation of the $p=0$ Einstein equations in a new coordinate system aligned with the structure of the waves.

(2) A new ansatz for the Corrections to SM such that the asymptotic equations close.

(3) Putting the Initial Data from the Radiation Epoch into the gauge of our asymptotics.

(4) The Redshift vs Luminosity determined by the Corrections.
I. A New Formulation of the $p=0$ Einstein Equations
The Einstein equations for spherically symmetric spacetimes take their Simplest Form in Standard Schwarzschild Coordinates (SSC).
l.e.
I.e. A General Spherically Symmetric metric

\[ds^2 = -D(t, \bar{r}) dt^2 + E(t, \bar{r}) dt d\bar{r} + F(t, \bar{r}) d\bar{r}^2 + G(t, \bar{r}) d\Omega^2 \]
I.e. A General Spherically Symmetric metric

\[ds^2 = -D(t, \bar{r})dt^2 + E(t, \bar{r})dt d\bar{r} + F(t, \bar{r})d\bar{r}^2 + G(t, \bar{r})d\Omega^2 \]

Transforms to SSC form:
I.e. A General Spherically Symmetric metric

\[ds^2 = -D(t, \bar{r})dt^2 + E(t, \bar{r})d\bar{t}d\bar{r} + F(t, \bar{r})d\bar{r}^2 + G(t, \bar{r})d\Omega^2 \]

Transforms to SSC form:

\[(\bar{t}, \bar{r}) \rightarrow (t, r)\]
I.e. A General Spherically Symmetric
metric

\[ds^2 = -D(t, \bar{r})dt^2 + E(\bar{t}, \bar{r})d\bar{t}d\bar{r} + F(\bar{t}, \bar{r})d\bar{r}^2 + G(\bar{t}, \bar{r})d\Omega^2 \]

Transforms to SSC form:

\((\bar{t}, \bar{r}) \rightarrow (t, r) \)

\[ds^2 = -B(t, r)dt^2 + \frac{1}{A(t, r)}dr^2 + r^2d\Omega^2 \]

SSC
The Equations In SSC
Standard Schwarzschild Coordinates

Four PDE’s

\[
\begin{align*}
\left\{ -r \frac{A_r}{A} + \frac{1 - A}{A} \right\} &= \frac{\kappa B}{A} r^2 T^{00} \quad (1) \\
\frac{A_t}{A} &= \frac{\kappa B}{A} r T^{01} \quad (2) \\
\left\{ r \frac{B_r}{B} - \frac{1 - A}{A} \right\} &= \frac{\kappa}{A^2} r^2 T^{11} \quad (3) \\
- \left\{ \left(\frac{1}{A} \right)_{tt} - B_{rr} + \Phi \right\} &= 2 \frac{\kappa B}{A} r^2 T^{22}, \quad (4)
\end{align*}
\]

where

\[
\Phi = \frac{B_t A_t}{2 A^2 B} - \frac{1}{2A} \left(\frac{A_t}{A} \right)^2 - \frac{B_r}{r} - \frac{B A_r}{r A} + \frac{B}{2} \left(\frac{B_r}{B} \right)^2 - \frac{B}{2} \frac{B_r}{B} \frac{A_r}{A}.
\]

(1)+(2)+(3)+(4) \quad (weakly) \quad (1)+(3)+\text{div } T=0
Theorem: (Te-Gr) The equations close in a “locally inertial” formulation of (1), (2) & \(\text{Div } T = 0 \):

\[
\begin{align*}
\{ T^0_0 \},_0 + \left\{ \sqrt{AB} T^{01}_M \right\},_1 &= -\frac{2}{r} \sqrt{AB} T^{01}_M, \\
\{ T^0_1 \},_0 + \left\{ \sqrt{AB} T^{11}_M \right\},_1 &= -\frac{1}{2} \sqrt{AB} \left\{ \frac{4}{r} T^{11}_M + \frac{(1 - A)}{Ar} (T^{00}_M - T^{11}_M) \right. \\
&\quad \left. + \frac{2\kappa r}{A} (T^{00}_M T^{11}_M - (T^{01}_M)^2) - 4r T^{22} \right\},
\end{align*}
\]

\[
\begin{align*}
 r A_r &= (1 - A) - \kappa r^2 T^0_0, \\
 r B_r &= \frac{B(1 - A)}{A} + \frac{B}{A} \kappa r^2 T^{11}_M.
\end{align*}
\]

\[
\begin{align*}
 T^{00}_M &= \frac{\rho c^2 + p}{1 - \left(\frac{v}{c} \right)^2} \\
 T^{01}_M &= \frac{\rho c^2 + p}{1 - \left(\frac{v}{c} \right)^2} \frac{v}{c} \\
 T^{11}_M &= \frac{p + \left(\frac{v}{c} \right)^2}{1 - \left(\frac{v}{c} \right)^2} \rho c^2 \\
 T^{22} &= \frac{p}{r^2} \\
v &= \frac{1}{\sqrt{AB}} \frac{u^1}{u^0}
\end{align*}
\]
Setting $p=0$:

$$T_{^{00}M} = \frac{\rho c^2}{1 - (\frac{v}{c})^2} , \quad T_{^{01}M} = \frac{\rho c^2}{1 - (\frac{v}{c})^2} \frac{v}{c}$$

$$T_{^{11}M} = \frac{\rho c^2}{1 - (\frac{v}{c})^2} \left(\frac{v}{c}\right)^2 , \quad T^{22} = 0$$

Everything can be written in terms of $T_{^{00}M}$ and $(\frac{v}{c})$:

$$T_{^{01}M} = T_{^{00}M} \left(\frac{v}{c}\right) , \quad T_{^{22}M} = T_{^{00}M} \left(\frac{v}{c}\right)^2$$
Substituting into the Equations gives:

\[
\left(T_{M}^{00} \right)_{t} + \left\{ \sqrt{AB} \left(\frac{v}{c} \right) \left(T_{M}^{00} \right) \right\}_{r} = -\frac{2\sqrt{AB}}{r} \left(\frac{v}{c} \right) \left(T_{M}^{00} \right)
\]

\[
\left(\left(\frac{v}{c} \right) T_{M}^{00} \right)_{t} + \left\{ \sqrt{AB} \left(\frac{v}{c} \right)^{2} T_{M}^{00} \right\}_{r} =
\]

\[
-\frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c} \right)^{2} + \frac{1-A}{A} \left(1 - \left(\frac{v}{c} \right)^{2} \right) \right\} T_{M}^{00}
\]

\[
\frac{A'}{A} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) - \frac{\kappa r}{A} T_{M}^{00}
\]

\[
\frac{B'}{B} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) + \frac{\kappa r}{A} T_{M}^{00} \left(\frac{v}{c} \right)^{2}
\]
Substituting into the Equations gives:

\[
\begin{align*}
(T^0_0)_t + \left\{ \sqrt{AB} \left(\frac{v}{c} \right) (T^0_0) \right\}_r &= -\frac{2\sqrt{AB}}{r} \left(\frac{v}{c} \right) (T^0_0) \\
\left(\frac{v}{c} (T^0_0) \right)_t + \left\{ \sqrt{AB} \left(\frac{v}{c} \right)^2 (T^0_0) \right\}_r &= -\frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c} \right)^2 + \frac{1-A}{A} \left(1 - \left(\frac{v}{c} \right)^2 \right) \right\} (T^0_0)
\end{align*}
\]

\[
\begin{align*}
\frac{A'}{A} &= \frac{1}{r} \left(\frac{1}{A} - 1 \right) - \frac{\kappa r}{A} (T^0_0) \\
\frac{B'}{B} &= \frac{1}{r} \left(\frac{1}{A} - 1 \right) + \frac{\kappa r}{A} (T^0_0) \left(\frac{v}{c} \right)^2
\end{align*}
\]

Everything in terms of \(T^0_0 \) and \(\left(\frac{v}{c} \right) \).
Substituting into the Equations gives:

\[
\left(T_{M}^{00} \right)_t + \left\{ \sqrt{AB} \left(\frac{v}{c} \right) T_{M}^{00} \right\}_r = - \frac{2\sqrt{AB}}{r} \left(\frac{v}{c} \right) T_{M}^{00} \tag{1}
\]

\[
\left((\frac{v}{c}) T_{M}^{00} \right)_t + \left\{ \sqrt{AB} \left(\frac{v}{c} \right)^2 T_{M}^{00} \right\}_r = - \frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c} \right)^2 + \frac{1-A}{A} \left(1 - \left(\frac{v}{c} \right)^2 \right) \right\} T_{M}^{00} \tag{2}
\]

\[
\frac{A'}{A} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) - \frac{\kappa r}{A} T_{M}^{00}
\]

\[
\frac{B'}{B} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) + \frac{\kappa r}{A} T_{M}^{00} \left(\frac{v}{c} \right)^2
\]

Note: Equations are Singular at \(r = 0 \)
The $1/r$ singularity reflects the fact that waves coming into $r = 0$ can amplify and blow up.

Since we are only interested in solutions representing outgoing, expanding waves, we look for natural changes of variables that regularize the equations at $r = 0$.
First: set \(c = 1 \), collect \(v/r \), and assume \(v/r \) smooth at \(r=0 \):

\[
(T^{00}_M)_t + r \left\{ \sqrt{AB} \left(\frac{v}{r} \right) T^{00}_M \right\}_r = 3\sqrt{AB} \left(\frac{v}{r} \right) T^{00}_M
\]

\[
\left(\frac{v}{r} \right)_t + r\sqrt{AB} \left(\frac{v}{r} \right) \left(\frac{v}{r} \right)_r = -\sqrt{AB} \left\{ \left(\frac{v}{r} \right)^2 + \frac{1-A}{2Ar^2} \left(1 - r^2 \left(\frac{v}{r} \right)^2 \right) \right\}
\]

\[
\frac{A'}{A} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) - \frac{\kappa r}{A} T^{00}_M
\]

\[
\frac{B'}{B} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) + \frac{\kappa r}{A} T^{00}_M \left(\frac{v}{c} \right)^2
\]
Next: use (1) to eliminate T_{M}^{00} from (2)

\[
(T_{M}^{00})_t + \left\{ \sqrt{AB} \left(\frac{v}{c} \right) (T_{M}^{00}) \right\}_r = -\frac{2\sqrt{AB}}{r} \left(\frac{v}{c} \right) (T_{M}^{00}) \tag{1}
\]

\[
\left(\left(\frac{v}{c} \right) T_{M}^{00} \right)_t + \left\{ \sqrt{AB} \left(\frac{v}{c} \right)^2 T_{M}^{00} \right\}_r = -\frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c} \right)^2 + \frac{1-A}{A} \left(1 - \left(\frac{v}{c} \right)^2 \right) \right\} T_{M}^{00} \tag{2}
\]

\[
\frac{A'}{A} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) - \frac{\kappa r}{A} T_{M}^{00}
\]

\[
\frac{B'}{B} = \frac{1}{r} \left(\frac{1}{A} - 1 \right) + \frac{\kappa r}{A} T_{M}^{00} \left(\frac{v}{c} \right)^2
\]
l.e.

\[
\left(\left(\frac{v}{c} \right) T_{M}^{00} \right)_{t} + \left\{ \sqrt{AB} \left(\frac{v}{c} \right)^{2} T_{M}^{00} \right\}_{r} = \\
- \frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c} \right)^{2} + \frac{1-A}{A} \left(1 - \left(\frac{v}{c} \right)^{2} \right) \right\} T_{M}^{00}
\]

\[
LHS = r \left(\frac{v}{r} \right) \left[\left(T_{M}^{00} \right)_{t} + \left\{ \sqrt{AB} r \left(\frac{v}{r} \right) T_{M}^{00} \right\}_{r} \\
+ rT_{M}^{00} \left(\frac{v}{r} \right)_{t} + rT_{M}^{00} \sqrt{AB} \left(\frac{v}{r} \right) \left(r \left(\frac{v}{r} \right) \right)_{r} \right]
\]

\[
\left(T_{M}^{00} \right)_{t} + \left\{ \sqrt{AB} \left(\frac{v}{c} \right) \left(T_{M}^{00} \right) \right\}_{r} = - \frac{2\sqrt{AB}}{r} \left(\frac{v}{c} \right) \left(T_{M}^{00} \right) \quad (1)
\]

Substitute (1) into (2):
Obtain:

\[-2\sqrt{AB} \left(\frac{v}{r} \right)^2 rT_{M}^{00} + rT_{M}^{00} \left(\frac{v}{r} \right)_t + rT_{M}^{00} \sqrt{AB} \left(\frac{v}{r} \right) \left(r \left(\frac{v}{r} \right) \right)_r \]

\[= - \frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c} \right)^2 + \frac{1-A}{A} \left(1 - \left(\frac{v}{c} \right)^2 \right) \right\} T_{M}^{00} \]
Obtain:

\[-2\sqrt{AB} \left(\frac{v}{r}\right)^2 rT_{M}^{00} + rT_{M}^{00} \left(\frac{v}{r}\right)_t \]

\[+ rT_{M}^{00} \sqrt{AB} \left(\frac{v}{r}\right) \left(r \left(\frac{v}{r}\right) \right)\]

\[= - \frac{\sqrt{AB}}{2r} \left\{ 4 \left(\frac{v}{c}\right)^2 + \frac{1-A}{A} \left(1 - \left(\frac{v}{c}\right)^2 \right) \right\} rT_{M}^{00} \]

Linearity in \(T_{M}^{00} \) ⇒ Divide by \(rT_{M}^{00} \)
Next: simplify and collect: \(z = \kappa T_{M}^{00} r^2 \)

\[
\left(\kappa T_{M}^{00} r^2 \right)_t + \left\{ \sqrt{AB} \frac{v}{r} (\kappa T_{M}^{00} r^2) \right\}_r = -2 \sqrt{AB} \frac{v}{r} (\kappa T_{M}^{00} r^2)
\]

\[
\left(\frac{v}{r} \right)_t + r \sqrt{AB} \left(\frac{v}{r} \right) \left(\frac{v}{r} \right)_r = -\sqrt{AB} \left\{ \left(\frac{v}{r} \right)^2 + \frac{1-A}{2Ar^2} \left(1 - r^2 \left(\frac{v}{r} \right)^2 \right) \right\}
\]

\[
r \frac{A'}{A} = \left(\frac{1}{A} - 1 \right) - \frac{1}{A} \kappa T_{M}^{00} r^2
\]

\[
r \frac{B'}{B} = \left(\frac{1}{A} - 1 \right) + \frac{1}{A} \left(\frac{v}{c} \right)^2 \kappa T_{M}^{00} r^2
\]
Simplify and collect: \(z = \kappa T_{M}^{00} r^2 \)

\[
\left(\kappa T_{M}^{00} r^2\right)_t + \left\{ \sqrt{A B} \frac{v}{r} \left(\kappa T_{M}^{00} r^2\right) \right\}_r = -2 \sqrt{A B} \frac{v}{r} \left(\kappa T_{M}^{00} r^2\right)
\]

\[
\left(\frac{v}{r}\right)_t + r \sqrt{A B} \left(\frac{v}{r}\right) \left(\frac{v}{r}\right)_r = -\sqrt{A B} \left\{ \left(\frac{v}{r}\right)^2 + \frac{1-A}{2Ar^2} \left(1 - r^2 \left(\frac{v}{r}\right)^2\right) \right\}
\]

\[
r \frac{A'}{A} = \left(\frac{1}{A} - 1\right) - \frac{1}{A} \kappa T_{M}^{00} r^2
\]

\[
r \frac{B'}{B} = \left(\frac{1}{A} - 1\right) + \frac{1}{A} \left(\frac{v}{c}\right)^2 \kappa T_{M}^{00} r^2
\]

(This is the self-similar variable in the waves from the radiation epoch!)
Final change of variables---
Final change of variables---

$$(t, r) \rightarrow (t, \xi)$$
Final change of variables---

\[(t, r) \rightarrow (t, \xi)\]

\[\xi = \frac{r}{t}\]
Final change of variables---

$$(t, r) \rightarrow (t, \xi)$$

$$\xi = \frac{r}{t}$$

$$(T_{M}^{00}, \nu) \rightarrow (z, w)$$

$$z = \kappa T_{M}^{00} r^2, \quad w = \frac{\nu}{\xi}$$
Final change of variables---

$$(t, r) \rightarrow (t, \xi) \quad \xi = \frac{r}{t}$$

$$(T^0_M, v) \rightarrow (z, w)$$

$$z = \kappa T^0_M r^2, \quad w = \frac{v}{\xi}$$

$$\frac{\partial}{\partial r} = \frac{1}{t} \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial r} f(t, r) = \left(\frac{\partial}{\partial t} - \frac{1}{t^2} \frac{\partial}{\partial \xi} \right) f(t, \xi)$$
Substituting into (1) and (2) we obtain the following dimensionless eqns:

\[tz_t + \xi \{(−1 + Dw)z\}_\xi = −Dwz, \quad (1) \]

\[tw_t + \xi \{(−1 + Dw)w\}_\xi = w − D \left\{ w^2 + \frac{1−\xi^2w^2}{2A} \left[\frac{1−A}{\xi^2} \right] \right\}, \quad (2) \]

Where:

\[D = \sqrt{AB} \]
Take A and D instead of A and B:
Take A and D instead of A and B:

\[\xi A_\xi = (A - 1) - z, \]
\[\xi \frac{B_\xi}{B} = \frac{1}{A} \left\{ 1 - A + \xi^2 w^2 z \right\}, \]
\[\xi (\sqrt{AB})_\xi = \sqrt{AB} \left\{ (1 - A) - \frac{(1 - \xi^2 w^2)}{2} z. \right\]
Take A and D instead of A and B:

\[
\xi A_\xi = (A - 1) - z,
\]

\[
\xi \frac{B_\xi}{B} = \frac{1}{A} \left\{ 1 - A + \xi^2 w^2 z \right\},
\]

\[
\xi (\sqrt{A B})_\xi = \sqrt{A B} \left\{ (1 - A) - \frac{(1 - \xi^2 w^2)}{2} z \right\}.
\]
This leads to the following Dimensionless Formulation of the $p=0$ Einstein Equations:
Einstein Equations when $p=0$

\[
\begin{align*}
 tz_t + \xi \left\{ (-1 + Dw)z \right\}_\xi &= -Dwz, \\
 tw_t + \xi (-1 + Dw) w_\xi &= w - D \left\{ w^2 + \frac{1-\xi^2 w^2}{2A} \left[\frac{1-A}{\xi^2} \right] \right\}, \\
 \xi A_\xi &= (A - 1) - z, \\
 \frac{\xi D_\xi}{D} &= (1 - A) - \left(\frac{1-\xi^2 w^2}{2} \right) z.
\end{align*}
\]
Einstein Equations when $p=0$

\[tz_t + \xi \left\{ (-1 + Dw)z \right\}_\xi = -Dwz, \]

\[
\begin{align*}
tw_t + \xi (-1 + Dw) w_\xi = & \\
& w - D \left\{ w^2 + \frac{1-\xi^2 w^2}{2A} \left[\frac{1-A}{\xi^2} \right] \right\},
\end{align*}
\]

\[
\xi A_\xi = (A - 1) - z,
\]

\[
\frac{\xi D_\xi}{D} = (1 - A) - \frac{(1-\xi^2 w^2)}{2} z.
\]

\[ds^2 = -Bdt^2 + \frac{1}{A} dr^2 + r^2 d\Omega^2, \quad D = \sqrt{AB}, \quad z = \frac{\rho r^2}{(1-v^2)}, \quad w = \frac{v}{\xi} \]
2. The **Ansatz** and Asymptotics for the Corrections:
Our Ansatz for Corrections to the Standard Model

\[z(t, \xi) = z_F(\xi) + \Delta z(t, \xi) \]
\[w(t, \xi) = w_F(\xi) + \Delta w(t, \xi) \]
\[A(t, \xi) = A_F(\xi) + \Delta A(t, \xi) \]
\[D(t, \xi) = D_F(\xi) + \Delta D(t, \xi) \]
Our Ansatz for Corrections to the Standard Model

\[z(t, \xi) = z_F(\xi) + \Delta z(t, \xi) \]
\[w(t, \xi) = w_F(\xi) + \Delta w(t, \xi) \]
\[A(t, \xi) = A_F(\xi) + \Delta A(t, \xi) \]
\[D(t, \xi) = D_F(\xi) + \Delta D(t, \xi) \]

- The Standard Model is Self-Similar:

\[z_F = \frac{4}{3} \xi^2 + \frac{40}{27} \xi^4 + O(\xi^6) \]
\[w_F = \frac{2}{3} + \frac{2}{9} \xi^2 + O(\xi^4) \]
\[A_F = 1 - \frac{4}{9} \xi^2 - \frac{8}{27} \xi^4 + O(\xi^6) \]
\[D_F = 1 - \frac{1}{9} \xi^2 + O(\xi^4) \]
Our Ansatz for Corrections to the Standard Model

\[z(t, \xi) = z_F(\xi) + \Delta z(t, \xi) \]
\[w(t, \xi) = w_F(\xi) + \Delta w(t, \xi) \]
\[A(t, \xi) = A_F(\xi) + \Delta A(t, \xi) \]
\[D(t, \xi) = D_F(\xi) + \Delta D(t, \xi) \]

● The Standard Model is Self-Similar:

\[z_F = \frac{4}{3} \xi^2 + \frac{40}{27} \xi^4 + O(\xi^6) \]
\[w_F = \frac{2}{3} + \frac{2}{9} \xi^2 + O(\xi^4) \]
\[A_F = 1 - \frac{4}{9} \xi^2 - \frac{8}{27} \xi^4 + O(\xi^6) \]
\[D_F = 1 - \frac{1}{9} \xi^2 + O(\xi^4) \]
Our Ansatz for Corrections to the Standard Model

\[z(t, \xi) = z_F(\xi) + \Delta z(t, \xi) \quad \Delta z = z_2(t)\xi^2 + z_4(t)\xi^4 \]

\[w(t, \xi) = w_F(\xi) + \Delta w(t, \xi) \quad \Delta w = w_0(t) + w_2(t)\xi^2 \]

\[A(t, \xi) = A_F(\xi) + \Delta A(t, \xi) \quad \Delta A = A_2(t)\xi^2 + A_4(t)\xi^4 \]

\[D(t, \xi) = D_F(\xi) + \Delta D(t, \xi) \quad \Delta D = D_2(t)\xi^2 \]

- **Note**: Corrections only involve even powers of \(\xi \)
- **The Standard Model is Self-Similar:**

\[z_F = \frac{4}{3} \xi^2 + \frac{40}{27} \xi^4 + O(\xi^6) \]

\[w_F = \frac{2}{3} + \frac{2}{9} \xi^2 + O(\xi^4) \]

\[A_F = 1 - \frac{4}{9} \xi^2 - \frac{8}{27} \xi^4 + O(\xi^6) \]

\[D_F = 1 - \frac{1}{9} \xi^2 + O(\xi^4) \]
Our Ansatz for Corrections to the Standard Model

\[
\begin{align*}
 z(t, \xi) &= \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \\
 w(t, \xi) &= \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4),
\end{align*}
\]
Reiterate:

We don’t use co-moving coordinates, but rather write the SSC eqns in (t, ξ)-coordinates.

$$ds^2 = -B(t, r)dt^2 + \frac{1}{A(t, r)}dr^2 + r^2d\Omega^2$$

$$\xi = \frac{r}{t} \quad D = \sqrt{AB}$$
Equations for the Corrections to SM

- When we plug into the equations a remarkable simplification occurs:

\[
A_2 = -\frac{1}{3} \bar{z}_2, \quad A_4 = -\frac{1}{5} \bar{z}_4, \quad D_2 = -\frac{1}{12} \bar{z}_2
\]
Equations for the Corrections to SM

- When we plug into the equations, a remarkable simplification occurs:

\[
A_2 = -\frac{1}{3} z_2, \quad A_4 = -\frac{1}{5} z_4, \quad D_2 = -\frac{1}{12} z_2
\]

- This is a coordinate gauge condition reflecting the serendipity of our \((t, \xi)\)-coordinate system!!
Plugging Ansatz into Equations...

Plugging

\[
A_2 = -\frac{1}{3}z_2, \quad A_4 = -\frac{1}{5}z_4, \quad D_2 = -\frac{1}{12}z_2
\]

and

\[
\begin{align*}
 z(t, \xi) &= z_F(\xi) + z_2(t)\xi^2 + z_4(t)\xi^4 \\
 w(t, \xi) &= w_F(\xi) + w_0(t) + w_2(t)\xi^2 \\
 A(t, \xi) &= A_F(\xi) + A_2(t)\xi^2 + A_4(t)\xi^4 \\
 D(t, \xi) &= D_F(\xi) + D_2(\xi)\xi^2
\end{align*}
\]

into equations:

\[
\begin{align*}
 tz_t + \xi \left\{ (-1 + Dw)z \right\}_\xi &= -Dwz \\
 tw_t + \xi (-1 + Dw) w_\xi &= w - D \left\{ w^2 + \frac{1-\xi^2w^2}{2A} \left[\frac{1-A}{\xi^2} \right] \right\}
\end{align*}
\]
Gives:
THEOREM: The $p = 0$ waves take the asymptotic form

\[
\begin{align*}
 z(t, \xi) &= \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \\
 w(t, \xi) &= \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4),
\end{align*}
\]

where $z_2(t), z_4(t), w_0(t), w_2(t)$ evolve according to the equations

\[
\begin{align*}
 -t \dot{z}_2 &= 3w_0 \left(\frac{4}{3} + z_2 \right), \\
 -t \dot{z}_4 &= -5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\} \\
 &\quad -5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\}, \\
 -t \dot{w}_0 &= \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2, \\
 -t \dot{w}_2 &= \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0 \\
 &\quad - \frac{1}{3} w_0^2 + 4w_0 w_2 - \frac{1}{4} w_0^2 z_2.
\end{align*}
\]
The Corrections to SM evolve according to

\[-t \dot{z}_2 = 3w_0 \left(\frac{4}{3} + z_2 \right),\]

\[-t \dot{z}_4 = -5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\} \]

\[-5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\};\]

\[-t \dot{w}_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2,\]

\[-t \dot{w}_2 = \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0 - \frac{1}{3} w_0^2 + 4w_0 w_2 - \frac{1}{4} w_0^2 z_2,\]

\textbf{Note:} RHS is Autonomous!
We can make LHS Autonomous too!

\[-z'_2 = -t\dot{z}_2 = 3w_0 \left(\frac{4}{3} + z_2 \right),\]

\[-z'_4 = -t\dot{z}_4 = -5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\} \]

\[-5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\},\]

\[-w'_0 = -tw_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2,\]

\[-w'_2 = -tw_2 = \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0 \]

\[-\frac{1}{3} w_0^2 + 4w_0 w_2 - \frac{1}{4} w_0^2 z_2.\]

\[\tau = \ln(t) \Rightarrow t \frac{d}{dt} = \frac{d}{d\tau} \equiv \] LHS Autonomous
Autonomous Eqns for Corrections to SM

\[-z'_2 = 3w_0 \left(\frac{4}{3} + z_2\right),\]
\[-z'_4 = -5 \left\{\frac{2}{27}z_2 + \frac{4}{3}w_2 - \frac{1}{18}z_2^2 + z_2w_2\right\}\]
\[-w'_0 = \frac{1}{6}z_2 + \frac{1}{3}w_0 + w_0^2,\]
\[-w'_2 = \frac{1}{10}z_4 + \frac{4}{9}w_0 - \frac{1}{3}w_2 + \frac{1}{24}z_2^2 - \frac{1}{3}z_2w_0\]
\[-\frac{1}{3}w_0^2 + 4w_0w_2 - \frac{1}{4}w_0^2z_2.\]

\[t_\ast \leq t \leq 10^{14} \text{ yr}\]
\[\ln(t_\ast) \leq \tau \leq 14 \cdot \ln(10)\]

Trivializes the large time simulation problem!
The Equations for the Corrections

\[-z'_2 = 3w_0 \left(\frac{4}{3} + z_2 \right),\]

\[-z'_4 = -5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\} - 5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\},\]

\[-w'_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2,\]

\[-w'_2 = \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0 - \frac{1}{3} w_0^2 + 4w_0 w_2 - \frac{1}{4} w_0^2 z_2.\]

Everything is dimensionless involving only pure numbers!
The Equations for the Corrections

Leading order

\[-z'_2 = 3w_0 \left(\frac{4}{3} + z_2 \right), \]
\[-z'_4 = -5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\}, \]
\[-w'_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2, \]
\[-w'_2 = \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0 \]
\[- \frac{1}{3} w_0^2 + 4 w_0 w_2 - \frac{1}{4} w_0^2 z_2. \]

Note: Leading order Eqns Uncouple!
The Leading Order Corrections...

\[z(t, \xi) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + O(\xi^4), \]
\[w(t, \xi) = \left(\frac{2}{3} + w_0(t) \right) + O(\xi^2), \]

...And Their Equations

\[-z_2' = -t \dot{z}_2 = 3w_0 \left(\frac{4}{3} + z_2 \right), \]
\[-w_0' = -t \dot{w}_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2. \]
Keep in mind that ξ is on the order of fractional distance to the Hubble Length:

$$\xi = \frac{r}{ct} \approx \frac{\text{arclength distance at fixed time}}{\text{distance of light travel since Big Bang}}$$

For example: At $1/10$ way across the visible universe, about 1.1 billion light-years out:

$$\xi^4 \approx \frac{1}{10,000} = .0001$$
Hubbles Law:

\[H_0 \; d_\ell = z \]

1929: Linear relation between redshift and luminosity

- Hubble's Constant
- Luminosity Distance
- Redshift Factor
Hubble's Law:

\[H_0 \; d_L = z + \Omega \pi^2 \]

1999: There is an anomalous acceleration
In Fact: ξ is on the order of the redshift factor, and (z_2, w_0) determines the quadratic correction to redshift vs luminosity = anomalous acceleration.

$$H_0 d_\ell = z + Q(z_2, w_0) z^2 + O(z^3)$$

This term accounts for the corrections to the Standard Model Observed in the Supernova Data (Nobel Prize)
In Fact: ξ is on the order of the redshift factor, and (z_2, w_0) determines the quadratic correction to redshift vs luminosity = anomalous acceleration

$$H_0 d_L = z + Q(z_2, w_0) z^2 + O(z^3)$$

Determined by the value of the so-called "Deceleration Parameter" q
The cubic correction is determined by \((z_2, w_0, w_2)\)

\[
H_0 d_\ell = z + Q(z_2, w_0) z^2 + C(z_2, w_0, w_2) z^3 + O(z^3)
\]

Determined by solving our system of four equations for \((z_2, z_4, w_0, w_4)\)
The cubic correction is determined by \((z_2, w_0, w_2)\)

\[
H_0 d_\ell = z + Q(z_2, w_0) z^2 + C(z_2, w_0, w_2) z^3 + O(z^3)
\]

A prediction

Beyond experimental precision
The quadratic correction is determined by our equations for (z_2, w_0)

$$H_0 d\ell = z + Q(z_2, w_0) z^2 + O(z^3)$$

$$-z'_2 = -t \dot{z}_2 = 3w_0 \left(\frac{4}{3} + z_2 \right),$$

$$-w'_0 = -t \dot{w}_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2.$$
Numerical Simulation

The \((z_2, w_0)\) phase portrait:

Thanks to: \textit{pplane} Rice University
\[z_2' = -3w_0 \left(\frac{4}{3} + z_2 \right) \]
\[w_0' = -\left(\frac{1}{6}z_2 + \frac{1}{3}w_0 + w_0^2 \right) \]
\[z'_2 = -3w_0 \left(\frac{4}{3} + z_2 \right) \]
\[w'_0 = - \left(\frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2 \right) \]
3. The Initial Data determined by the Self-Similar Waves from the Radiation Epoch
A SSC Self-Similar Formulation of the $k=0$ Friedmann Spacetimes when

\[p = \sigma^2 \rho : \]
A SSC Self-Similar Formulation of the $k=0$ Friedmann Spacetimes when $p = \sigma^2 \rho$:

FRW Co-moving: $ds^2 = -dt^2 + R(t)^2 \{dr^2 + r^2 d\Omega^2\}$
A SSC Self-Similar Formulation of the $k=0$ Friedmann Spacetimes when $p = \sigma^2 \rho$:

FRW Co-moving:

$$ds^2 = -dt^2 + R(t)^2 \left\{ dr^2 + r^2 d\Omega^2 \right\}$$

FRW Self-Similar:

$$\bar{t} = F(\eta) t; \quad \bar{r} = \eta t,$$
A SSC Self-Similar Formulation of the $k=0$ Friedmann Spacetimes when

\[p = \sigma^2 \rho : \]

\textbf{FRW Co-moving:}

\[ds^2 = -dt^2 + R(t)^2 \left\{ dr^2 + r^2 d\Omega^2 \right\} \]

\textbf{FRW Self-Similar:}

\[\tilde{t} = F(\eta)t; \quad \tilde{r} = \eta t, \]

\[\xi \equiv \frac{\tilde{r}}{t} = \frac{\eta}{F(\eta)}; \quad \eta \equiv \frac{\tilde{r}}{t}; \quad F(\eta) = \left(1 - \frac{1 - 3\sigma}{9(1 + \sigma)^2 \eta^2} \right)^{\frac{3(1+\sigma)}{2(1+3\sigma)}} \]
A SSC Self-Similar Formulation of the \(k=0 \) Friedmann Spacetimes when \(p = \sigma^2 \rho \):

FRW Co-moving: \[ds^2 = -dt^2 + R(t)^2 \left\{ dr^2 + r^2 d\Omega^2 \right\} \]

FRW Self-Similar: \[\bar{t} = F(\eta)t; \quad \bar{r} = \eta t, \]

\[
ds^2 = -\frac{F(\eta)^{-\frac{1+3\sigma}{3(1+\sigma)}}}{1 - \left(\frac{2}{3(1+\sigma)\eta^2}\right)^2} dt^2 + \frac{1}{1 - \left(\frac{2}{3(1+\sigma)\eta^2}\right)^2} d\bar{r}^2 + \bar{r}^2 d\Omega^2 \]

\[
\xi \equiv \frac{\bar{r}}{t} = \frac{\eta}{F(\eta)}; \quad \eta \equiv \frac{\bar{r}}{t}; \quad F(\eta) = \left(1 - \frac{1 - 3\sigma}{9(1 + \sigma)^2 \eta^2}\right)^{\frac{3(1+\sigma)}{2(1+3\sigma)}}
\]
\sigma = 0
\rho = 0
\[d s^2 = -B_F(\xi) d\bar{\tau}^2 + \frac{1}{A_F(\xi)} d\bar{r}^2 + \bar{r}^2 d\Omega^2 \]
\[ds^2 = -B_F(\xi) \, dt^2 + \frac{1}{A_F(\xi)} \, dr^2 + \bar{r}^2 \, d\Omega^2 \]

\[A_F(\xi) = 1 - \frac{4}{9} \xi^2 - \frac{8}{27} \xi^4 + O(\xi^6) \]

\[D_F(\xi) \equiv \sqrt{A_F B_F} = 1 - \frac{1}{9} \xi^2 + O(\xi^4). \]
\[ds^2 = -B_F(\xi) \, d\bar{t}^2 + \frac{1}{A_F(\xi)} \, d\bar{r}^2 + \bar{r}^2 \, d\Omega^2 \]

\[A_F(\xi) = 1 - \frac{4}{9} \xi^2 - \frac{8}{27} \xi^4 + O(\xi^6) \]

\[D_F(\xi) \equiv \sqrt{A_F B_F} = 1 - \frac{1}{9} \xi^2 + O(\xi^4). \]

\[\xi = \frac{\bar{r}}{\bar{t}} = \frac{\bar{r}}{ct} + O(\xi^2) \]
\[
ds^2 = -B_F(\xi)\,d\bar{t}^2 + \frac{1}{A_F(\xi)}\,d\bar{r}^2 + \bar{r}^2\,d\Omega^2
\]

\[
A_F(\xi) = 1 - \frac{4}{9}\xi^2 - \frac{8}{27}\xi^4 + O(\xi^6)
\]

\[
D_F(\xi) \equiv \sqrt{A_F B_F} = 1 - \frac{1}{9}\xi^2 + O(\xi^4).
\]

Note:

\[
\xi = \frac{\bar{r}}{t} = \frac{\bar{r}}{ct} + O(\xi^2)
\]

Where:

\[
\frac{\bar{r}}{ct} \approx \text{arclength distance at fixed time}
\]

\[
\frac{ct}{\text{distance of light travel since the Big Bang}}
\]

...a measure of "fractional distance to Hubble Radius"
Conclude: when $\xi << 1$

``Fractional distance to the Hubble Radius'' in a non-uniform spacetime measures approximately how far out you would think you were if you believed you were at the center of a Friedmann spacetime...
\[ds^2 = -B_F(\xi)\,d\bar{t}^2 + \frac{1}{A_F(\xi)}\,d\bar{r}^2 + \bar{r}^2\,d\Omega^2 \]

\[A_F(\xi) = 1 - \frac{4}{9}\xi^2 - \frac{8}{27}\xi^4 + O(\xi^6) \]

\[D_F(\xi) \equiv \sqrt{A_F B_F} = 1 - \frac{1}{9}\xi^2 + O(\xi^4). \]

\[z_F(\xi) = \frac{4}{3}\xi^2 + \frac{40}{27}\xi^4 + O(\xi^6) \]

\[\omega_F \equiv \frac{\nu}{\xi} = \frac{2}{3} + \frac{2}{9}\xi^2 + O(\xi^4) \]

The \(p=0 \) Friedmann Universe in Self-Similar Coordinates
Thus our equations are for the corrections to the Standard Model:

\[
z(t, \xi) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6),
\]

\[
w(t, \xi) = \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4)
\]
Self-similar coordinates for Friedmann with Pure Radiation

$p = \frac{c^2}{3} \rho$

$\sigma = \frac{1}{\sqrt{3}}$

$z^{1/3} \equiv z^{1/3}_1(t, \xi) = \frac{3}{4} \xi^2 + \frac{9}{16} \xi^4 + O(\xi^6),$

$v^{1/3} \equiv v^{1/3}_1(t, \xi) = \frac{1}{2} \xi + \frac{1}{8} \xi^3 + O(\xi^5),$

$A^{1/3} \equiv A^{1/3}_1(t, \xi) = 1 - \frac{1}{4} \xi^2 - \frac{1}{8} \xi^4 + O(\xi^6),$

$D^{1/3} \equiv D^{1/3}_1(t, \xi) = 1 + O(\xi^4).$
The Friedmann Universe admits a 1-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:

$$p = \frac{c^2}{3} \rho$$
The Friedmann Universe admits a 1-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:

\[p = \frac{c^2}{3} \rho \]

The Friedmann Universe DOES NOT admit Self-Similar perturbations!
The Friedmann Universe is embedded in 1-parameter family of Self-Similar spacetimes that **perturb the Standard Model** during the Radiation Epoch:

\[p = \frac{c^2}{3} \rho \]

The *p = 0* Friedmann Universe **DOES NOT** admit Self-Similar perturbations!

(The topic of our PNAS and MEMOIR)

Our interest is in the possible connection between these waves and the Anomalous Acceleration.

We extract properties of the waves from a system of ODE's we derived, that defines them:
The perturbations are described by ODE's:

\[
\begin{align*}
\xi A_{\xi} &= - \left[\frac{4(1 - A)v}{(3 + v^2)G - 4v} \right] \\
\xi G_{\xi} &= -G \left\{ \left(\frac{1 - A}{A} \right) \frac{2(1 + v^2)G - 4v}{(3 + v^2)G - 4v} - 1 \right\} \\
\xi v_{\xi} &= - \left(\frac{1 - v^2}{2 \{ \cdot \}_D} \right) \left\{ (3 + v^2)G - 4v + \frac{4 \left(\frac{1-A}{A} \right) \{ \cdot \}_N}{(3 + v^2)G - 4v} \right\} \\
\{ \cdot \}_N &= \left\{ -2v^2 + 2(3 - v^2)vG - (3 - v^4)G^2 \right\} \\
\{ \cdot \}_D &= \left\{ (3v^2 - 1) - 4vG + (3 - v^2)G^2 \right\}
\end{align*}
\]

\[
G = \frac{\xi}{\sqrt{AB}} ; \quad \xi = \frac{r}{t}
\]
Self-Similar perturbations of Friedmann for Pure Radiation

(The topic of our PNAS and MEMOIR)

\[p = \frac{c^2}{3} \rho \]

\[z^{a}_{1/3} = \frac{3a^2}{4} \bar{\xi}^2 + \left[\frac{9a^2}{16} + 3a^2 (V_0 + A_0) (1 - a^2) \right] \bar{\xi}^4 + O(\bar{\xi}^6) \]

\[v^{a}_{1/3} = \frac{1}{2} \bar{\xi} + \left[\frac{1}{8} + V_0 (1 - a^2) \right] \bar{\xi}^3 + O(\bar{\xi}^5) \]

\[A^{a}_{1/3} = 1 - \frac{a^2}{4} \bar{\xi}^2 - \left[\frac{a^2}{8} + a^2 A_0 (1 - a^2) \right] \bar{\xi}^4 + O(\bar{\xi}^6) \]

\[D^{a}_{1/3} = 1 + O(\bar{\xi}^4) \]

\[V_0 = \frac{2}{3} A_0 = \frac{1}{20} \]
A 1-parameter family of solutions depending on the Acceleration Parameter \(0 < a < \infty \)

\[
\begin{align*}
 z_{1/3}^a &= \frac{3a^2}{4} \bar{\xi}^2 + \left[\frac{9a^2}{16} + 3a^2 (V_0 + A_0) (1 - a^2) \right] \bar{\xi}^4 + O(\bar{\xi}^6) \\
 v_{1/3}^a &= \frac{1}{2} \bar{\xi} + \left[\frac{1}{8} + V_0 (1 - a^2) \right] \bar{\xi}^3 + O(\bar{\xi}^5) \\
 A_{1/3}^a &= 1 - \frac{a^2}{4} \bar{\xi}^2 - \left[\frac{a^2}{8} + a^2 A_0 (1 - a^2) \right] \bar{\xi}^4 + O(\bar{\xi}^6) \\
 D_{1/3}^a &= 1 + O(\bar{\xi}^4)
\end{align*}
\]

\[V_0 = \frac{2}{3} \quad A_0 = \frac{1}{20}\]
$a = 1$ is the Standard Model for Pure Radiation

\[
\begin{align*}
z_{1/3}^a &= \frac{3a^2}{4} \bar{\xi}^2 + \left[\frac{9a^2}{16} + 3a^2 (V_0 + A_0) (1 - a^2)\right] \bar{\xi}^4 + O(\bar{\xi}^6) \\
v_{1/3}^a &= \frac{1}{2} \bar{\xi} + \left[\frac{1}{8} + V_0 (1 - a^2)\right] \bar{\xi}^3 + O(\bar{\xi}^5) \\
A_{1/3}^a &= 1 - \frac{a^2}{4} \bar{\xi}^2 - \left[\frac{a^2}{8} + a^2 A_0 (1 - a^2)\right] \bar{\xi}^4 + O(\bar{\xi}^6) \\
D_{1/3}^a &= 1 + O(\bar{\xi}^4) \\
\end{align*}
\]

\[V_0 = \frac{2}{3} A_0 = \frac{1}{20}\]
The initial data created by self-similar waves at the end of the Radiation Epoch depends on:

1) The temperature T_* at which $p = 0$

2) The value of the acceleration parameter α
OUR GOAL NOW: Use our equations to evolve the initial data at the end of radiation to determine \((a, T_*)\) that gives the correct anomalous acceleration.

I.e., \((a, T_*)\) that give the observed quadratic correction to redshift vs luminosity at present time.
In the Standard Model $p=0$ at about

\[t_\ast \approx 10,000-30,000 \text{ yrs} \]

\[T_\ast \approx 9000^0 K \]

(Depending on theories of Dark Matter)

Our simulation turns out to be entirely insensitive to the initial t_\ast, T_\ast

I.e., we need only compute the value of the acceleration parameter that gives the correct anomalous acceleration.
Technical Problem: The self-similar waves at the end of radiation are in the wrong gauge due to the fact that time since the Big Bang changes between \(p = 0 \) and \(p = \frac{c^2}{3} \rho \).

That is: The initial data for the self-similar waves does not meet the gauge conditions for our \(p=0 \) ansatz

\[
A_2 = -\frac{1}{3} z_2, \quad A_4 = -\frac{1}{5} z_4, \quad D_2 = -\frac{1}{12} z_2
\]

(Resolving this held us back for close to a year!)
Resolution: We post-process the initial data by a gauge transformation of the form---

\[t = \bar{t} + \frac{1}{2} q (\bar{t} - \bar{t}_*)^2 - t_B \]
Resolution: We post-process the initial data by a gauge transformation of the form---

\[t = \bar{t} + \frac{1}{2} q (\bar{t} - \bar{t}_*)^2 - t_B \]

i.e., The SSC metric form is invariant under arbitrary changes of time, (choice of gauge)---match the gauge to match the metrics
Resolution: We post-process the initial data by a gauge transformation of the form---

\[t = \bar{t} + \frac{1}{2} q (\bar{t} - \bar{t}_*)^2 - t_B \]

I.e., The SSC metric form is invariant under arbitrary changes of time, (choice of gauge) - match the gauge to match the metrics

Check: Same change of gauge is required to match FRW metrics in SSC coordinates...
THEOREM: Let the transformation \(\bar{t} \to t \) be defined by

\[
 t = \bar{t} + \frac{1}{2} q(\bar{t} - \bar{t}_*)^2 - t_B,
\]

where \(q \) and \(t_B \) are given by

\[
 t_B = \bar{t}_*(1 - \alpha),
\]

\[
 q = \frac{a^2}{16\gamma} = \frac{a^2}{2(1 + a^2)},
\]

where

\[
 \alpha = \frac{1}{5} \left(\frac{1 + a^2}{1.3 - a^2} \right).
\]

Then, on the constant temperature surface \(T = T_* \), the initial data from the self-similar waves at the end of the radiation epoch meets the gauge conditions in \((\bar{t}, \bar{\xi}) \).
2nd Technical Problem: The surfaces are distinct from the constant time surfaces.
2nd Technical Problem: The surfaces are distinct from the constant time $t = t_*$ surfaces.

Resolution: To get the asymptotics correct we have to pull the initial data back to $t = t_*$.
The initial data created by self-similar waves on a constant temperature surface at the end of the Radiation Epoch
THEOREM The initial data for our \(p = 0 \) evolution at time \(t = t_* \) is given as a function of the acceleration parameter \(a \) and start temperature \(\rho_* = a_S B T_* \) by

\[
\begin{align*}
 z_2(t_*) &= \hat{z}_2, \\
 z_4(t_*) &= \hat{z}_4 + 3\hat{w}_0 \left(\frac{4}{3} + \hat{z}_2 \right) \gamma, \\
 w_0(t_*) &= \hat{w}_0, \\
 w_2(t_*) &= \hat{w}_2 + \left(\frac{1}{6} \hat{z}_2 + \frac{1}{3} \hat{w}_0 + \hat{w}_0^2 \right) \gamma,
\end{align*}
\]

where

\[\gamma = \alpha \bar{\gamma} = \alpha \left(\frac{2 - a^2}{4} \right) \]

\[
\begin{align*}
 t_* &= \sqrt{\frac{3a^2}{4\kappa \rho_*}}, \\
 \alpha &= 4 \frac{2 - a^2}{7 - 4a^2}
\end{align*}
\]

\[
\begin{align*}
 \hat{z}_2 &= \left\{ \frac{3a^2 \alpha^2}{4} - \frac{4}{3} \right\} z_2, \\
 \hat{z}_4 &= \left\{ 2a^3 (1 - \alpha) \bar{\gamma} Z_2 + \alpha^4 Z_4 - \frac{40}{27} \right\} z_4, \\
 \hat{w}_0 &= \left\{ \frac{\alpha}{2} - \frac{2}{3} \right\} v_1, \\
 \hat{w}_2 &= \left\{ \alpha^2 (1 - \alpha) \bar{\gamma} W_0 + \alpha^3 W_2 - \frac{2}{9} \right\} v_3, \\
 Z_2 &= \frac{3a^2}{4}, \\
 Z_4 &= \left[\frac{9a^2}{16} + 3a^2 (V_0 + A_0) (1 - a^2) \right], \\
 V_0 &= \frac{1}{20}, \quad A_0 = \frac{3}{40}, \\
 W_0 &= \frac{1}{2}, \quad W_2 = \left[\frac{1}{8} + V_0 (1 - a^2) \right].
\end{align*}
\]
4. Redshift vs Luminosity as a function of our corrections
A (long) Calculation gives:

\[H_0 d_\ell = z \left\{ 1 + \left[\frac{1}{4} + E_2 \right] z + \left[-\frac{1}{8} + E_3 \right] z^2 \right\} + O(z^4) \]

Anomalous Acceleration

\[E_2 = \frac{24w_0 + 45w_0^2 + 3z_2}{4(2 + 3w_0)^2} = E_2(z_2, w_0), \]

Cubic Correction

\[E_3 = E_3(z_2, w_0, w_3) \]
$E_3(z_2, w_0, w_2)$ is quite complicated:

\[
H_0 d_\ell = z \left\{ 1 + \left[\frac{1}{4} + E_2 \right] z + \left[-\frac{1}{8} + E_3 \right] z^2 \right\} + O(z^4)
\]
A calculation gives:

\[E_3 = 2I_2 + I_3, \]

\[I_2 = H_2 + \frac{9w_0}{2(2 + 3w_0)} \]

\[I_3 = H_3 + 3 \left[-1 + \left(\frac{8 - 8H_2 + 3w_0 - 12H_2w_0}{2(2 + 3w_0)^2} \right) \right], \]

\[H_2 = \frac{1}{4} \left\{ 1 - \frac{1 + 9 \left(\frac{2}{3} w_0 + \frac{1}{2} w_0^2 - \frac{1}{12} z_2 \right)}{(1 + \frac{3}{2} w_0)^2} \right\}, \]

\[H_3 = \frac{5}{8} \left\{ 1 - \frac{1 - \frac{18}{5} Q_2 - \frac{81}{5} Q_2^2 + \frac{9}{5} w_0 + \frac{27}{5} Q_3 + \frac{81}{10} Q_3 w_0}{(1 + \frac{3}{2} w_0)^4} \right\} \]

\[Q_2 = \frac{2}{3} w_0 + \frac{1}{2} w_0^2 - \frac{1}{12} z_2 \]

\[Q_3 = \frac{2}{9} w_0 + w_0^2 + \frac{1}{2} w_0^3 + w_2 - \frac{1}{18} z_2 - \frac{1}{3} z_2 w_0 \]

(Each term represents a different effect...)
The initial data parameterized by acceleration parameter α

The initial data cuts between the stable and unstable manifold of SM
Under-densities $a < 1$ are within the domain of attraction of the Stable Rest Point.
3. Comparison with the Standard Model
Redshift vs Luminosity for $k=0$ Friedmann can be obtained from exact formulas: $\rho = \sigma \rho$

\[H_0 d_\ell = \frac{2}{1 + 3\sigma} \left\{ (1 + z) - (1 + z)\left(\frac{1 - 3\sigma}{2}\right) \right\}. \]

In the case $\rho = \sigma = 0$, we get

\[H_0 d_\ell = z + \frac{1}{4} z^2 - \frac{1}{8} z^3 + O(z^4) \]

C.f. our formula:

\[H_0 d_\ell = z \left\{ 1 + \left[\frac{1}{4} + E_2 \right] z + \left[-\frac{1}{8} + E_3 \right] z^2 \right\} + O(z^4) \]
Cosmology now assumes a Cosmological Constant with Seventy Percent Dark Energy

\[H_0 d_\ell = (1 + z) \int_0^z \frac{dy}{(1 + z) \sqrt{1 + \Omega_M y}}. \quad \Omega_M + \Omega_\Lambda = 1 \]

Taylor expanding gives:

\[H_0 d_\ell = z + \frac{1}{2} \left(-\frac{\Omega_M}{2} + 1 \right) z^2 + \frac{1}{6} \left(-1 - \frac{\Omega_M}{2} + \frac{3\Omega_M^2}{4} \right) z^3 + O(z^4) \]

In the case \(\Omega_M = .3, \Omega_\Lambda = .7 \) this gives

\[H_0 d_\ell = z + .425 z^2 - .1804 z^3 + O(z^4) \]
CONCLUDE: $k = 0, \ p = 0$ Friedmann with and without Dark Energy $\Omega_M + \Omega_\Lambda = 1$

$H_0d_\ell = z + 0.425 z^2 - 0.1804 z^3 + O(z^4)$

Standard Model with Dark Energy
$\Omega_\Lambda = 0.7$

Standard Model Without Dark Energy
$\Omega_\Lambda = 0$

$H_0d_\ell = z + 0.25 z^2 - 0.125 z^3 + O(z^4)$
IN FACT: As the Dark Energy Parameter ranges from 0 to 1, the Anomalous Acceleration ranges from .25 to .5

\[H_0d_\ell = z + \frac{1}{2} \left(-\frac{\Omega_M}{2} + 1 \right) z^2 + \frac{1}{6} \left(-1 - \frac{\Omega_M}{2} + \frac{3\Omega_M^2}{4} \right) z^3 + O(z^4) \]

Range: .25 to .5

as

\[0 \leq \Omega_M \leq 1 \]
We get the **Same Conclusion** in the **Wave Theory**!

\[
H_0d_\ell = z \left\{ 1 + \left[\frac{1}{4} + E_2 \right] z + \left[-\frac{1}{8} + E_3 \right] z^2 \right\} + O(z^4)
\]

Range: **.25 to .5**

\[E_2 = \frac{24w_0 + 45w_0^2 + 3z_2}{4(2 + 3w_0)^2} \]

along the orbit from the Standard Model to the Stable Rest Point
The Anomalous Acceleration ranges from 0.25 to 0.5 along orbit from SM to Stable Rest Point \approx Dark Energy
5. Determination of the value of the Acceleration Parameter that matches the Anomalous Acceleration
We simulate our equations starting from the self-similar wave data at the end of radiation $T = T_*$, to find the value of (a, T_*) that gives the same Anomalous Acceleration as seventy percent Dark Energy when $H = H_0$:

$$H_0 d_\ell = z + 0.425 z^2 - 0.1804 z^3 + O(z^4)$$

Dark Energy

$$\Omega_\Lambda = 0.7$$

$$H_0 d_\ell = z + [0.25 + E_2]z^2 + [-0.125 + E_3]z^3 + O(z^4)$$

Our Wave Model

- $z_2' = -t z_2 = 3w_0 \left(\frac{4}{3} + z_2 \right)$,
- $z_4' = -t z_4 = -5 \left\{ \frac{2}{27} z_2^2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\}$
- $-5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\}$,
- $w_0' = -t w_0 = \frac{1}{6} z_2 + \frac{1}{3} w_0 + w_0^2$,
- $w_2' = -t w_2 = \frac{1}{10} z_4 + \frac{4}{9} w_0 - \frac{1}{3} w_2 + \frac{1}{24} z_2^2 - \frac{1}{3} z_2 w_0$
- $-\frac{1}{3} w_0^2 + 4w_0 w_2 - \frac{1}{4} w_0^2 z_2$.

$$E_2 = \frac{24w_0 + 45w_0^2 + 3z_2}{4(2 + 3w_0)^2}$$
THE ANSWER: The value of the acceleration for the wave perturbation of SM that produces a quadratic correction of .425 at the present value of H_0 is:

\[a = 0.99999957 = 1 - (4.3 \times 10^{-7}) \]

\[H_0 d_\ell = z + .425z^2 + .359z^3 \]
THE ANSWER: The value of the acceleration for the wave perturbation of SM that produces a quadratic correction of .425 at the present value of H_0 is:

- $a = 0.99999957 = 1 - (4.3 \times 10^{-7})$

- $H_0 d_\ell = z + .425z^2 + .359z^3$

- This corresponds to an relative underdensity of

$$\frac{\rho_{SM} - \rho_{ssw}}{\rho_{SM}} = 7.45 \times 10^{-6}$$
\[w' = -3w(4/3 + z) \]
\[w' = -(1/6z + 1/3w + w^2) \]

As Dark Energy

- Same Hubble Constant
- Same \(.425 \) Acceleration

Present Universe in the Wave Theory

Stable Rest Point

Present Universe in the Wave Theory

As Dark Energy
\[w(z) = -3w(\frac{4}{3} + z) \]

\[w'(z) = -(\frac{1}{6z} + \frac{1}{3w} + w^2) \]

-2 \quad -1.5 \quad -1 \quad -0.5 \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2
-2 \quad -1.5 \quad -1 \quad -0.5 \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2

Present Universe in the Wave Theory

Stable Rest Point

As Dark Energy

• Same Hubble Constant

• Same .425 Acceleration
$w' = -3w(4/3 + z)$

$w' = -\frac{1}{6}z + \frac{1}{3}w + w^2$
\[w' = -3w(\frac{4}{3} + z) \]
\[w' = -(\frac{1}{6z} + \frac{1}{3w} + w^2) \]

Present Universe in the Wave Theory

- Stable Rest Point

- Same Hubble Constant
- Same .425 Acceleration

As Dark Energy
\[w' = -\frac{1}{6}z + \frac{1}{3}w + w^2 \]
Stable Rest Point

Unstable Rest Point

1-Parameter Family of a-waves, $a<1$
The relative underdensity at the end of radiation:

\[
\frac{\rho_{SM} - \rho_{ssw}}{\rho_{SM}} = 7.45 \times 10^{-6}
\]

Numerical Simulation gives the relative under-density at present time as:

\[
\frac{\rho_{ssw}}{\rho_{SM}} = .144 \approx \frac{1}{7}
\]

Conclude: An under-density of one part in \(10^6\) at the end of radiation produces a seven-fold under-density at present time!
Conclude: The Standard Model is Unstable to Perturbation by this family of Waves…
Comparison with Dark Energy:

\[H_0 d_\ell = z + 0.425z^2 - 0.180z^3 \]

\[H_0 d_\ell = z + 0.425z^2 + 0.359z^3 \]
Comparison with Dark Energy:

\[H_0 d_\ell = z + 0.425z^2 - 0.180z^3 \]

\[H_0 d_\ell = z + 0.425z^2 + 0.359z^3 \]

The Wave Theory predicts a Larger Anomalous Acceleration far from the center than Dark Energy.
Comparison with Dark Energy:

\[H_0 d_\ell = z + 0.425z^2 - 0.180z^3 \]

\[H_0 d_\ell = z + 0.425z^2 + 0.359z^3 \]

Age of universe about the same:

\[t_0 \approx (0.95)t_{DE} \]

\[t_{DE} \approx 13.8 \text{ Billion years} \approx (1.45)t_{SM} \]
In Fact: A slight over-density will also create the Anomalous Acceleration

\[\bar{a} = 1.0000006747 = 1 + (6.747 \times 10^{-7}) \]

\[H_0 d_\ell = z + .425z^2 - 2.756z^3 \]

A different cubic correction
\[w' = -\frac{1}{2} \left(\frac{1}{z} + \frac{1}{3} w + w^2 \right) \]

As Dark Energy
- Same Hubble Constant
- Same 0.425 Acceleration

Present Universe Under-Dense Case

Stable Rest Point

UNDER-DENSITY
The diagram illustrates the relationship between the over-density \(z_2 \) and the dark energy parameter \(w_0 \). It shows the Stable Rest Point and the SM (Standard Model) scenario. The arrows indicate the direction of dark energy effect, labeled as the Present Universe Over-Dense Case.

Key points:
- Present Universe Over-Dense Case
- Stable Rest Point
- SM (Standard Model)
- Same Hubble Constant
- Same 0.425 Acceleration
- As Dark Energy

The graph includes arrows pointing to different points on the diagram, indicating transitions or changes in the over-density and dark energy parameters.
Conclude: The Standard Model is Unstable to Perturbation by this Family of Waves, and under-densities create an Anomalous Acceleration.
Theorem: Let \(t = t_0 \) denote present time since the Big Bang in the wave model and \(t = t_{DE} \) present time since the Big Bang in the Dark Energy model. Then there exists a unique value of the acceleration parameter \(a = 0.99999959 \approx 1 - 4.3 \times 10^{-7} \) corresponding to an under-density relative to the SM at the end of radiation, such that the subsequent \(p = 0 \) evolution starting from this initial data evolves to time \(t = t_0 \) with \(H = H_0 \) and \(Q = .425 \), in agreement with the values of \(H \) and \(Q \) at \(t = t_{DE} \) in the Dark Energy model. The cubic correction at \(t = t_0 \) in the wave theory is then \(C = 0.359 \), while Dark Energy theory gives \(C = -0.180 \) at \(t = t_{DE} \). The times are related by \(t_0 \approx (.95)t_{DE} \).
6. The Flat Uniformly Expanding Spacetime at the Center of the Wave

(Under-Dense Case: $a < 1$)
Consider the evolution of the spactime at the center obtained by neglecting all errors of order \(O(\xi^4) \).
The spacetime near the center evolves toward the Stable Rest Point.
\[w' = -3w(4/3 + z) \]

\[z' = -(1/6z + 1/3w + w^2) \]
\[w' = -3w(\frac{4}{3} + z) \]

\[w' = -(\frac{1}{6z} + \frac{1}{3}w + w^2) \]

Present Universe
Neglecting \(O(\xi^4) \)

Stable Rest Point
\[w_0 = -3w(4/3 + z) \]
\[w_0' = -(1/6z + 1/3w + w^2) \]

The Metric tends to flat Minkowski Spacetime

Neglecting \(O(\xi^4) \)

A = 1 + \left(-\frac{4}{9} - \frac{1}{3} \xi^2 \right) \xi^2 \rightarrow 1

D = 1 + \left(-\frac{1}{9} - \frac{1}{12} \xi^2 \right) \xi^2 \rightarrow 1
\[w' = -3w(\frac{4}{3} + z) \]

\[w' = -\left(\frac{1}{6z} + \frac{1}{3w} + w^2\right) \]

The Metric tends to flat Minkowski Spacetime

\[ds^2 = -Bdt^2 + \frac{1}{A} dr^2 + r^2 d\Omega^2 \]

Neglecting \(O(\xi^4) \)

Present Universe

Stable Rest Point

\[\begin{align*}
 w_0 &= 0 \\
 z_2 &= \end{align*} \]
At present time: \bar{z}^2

$$ds^2 = -\frac{D^2}{A} dt^2 + \frac{1}{A} dr^2 + r^2 d^2$$

$A \approx 1 - (0.063) \xi^2$

$D \approx 1 - (0.016) \xi^2$
The density drops faster than the \(O \left(\frac{1}{t^2} \right) \) of the Standard Model

\[
\rho(t) = \frac{\frac{4}{3} + z_2(t)}{t^2} = O \left(\frac{1}{t^3} \right)
\]

\[
\frac{z_2}{w_0} = -3w \left(\frac{4}{3} + z \right)
\]

\[
w' = -\left(\frac{1}{6z} + \frac{1}{3w} + w^2 \right)
\]

Neglecting \(O(\xi^4) \)

Present Universe

Stable Rest Point

SM
Neglecting $O(\xi^4)$ errors:
The spacetime near the center evolves toward the Stable Rest Point

- The metric tends to Flat Minkowski Spacetime which is not co-moving with the fluid

- BUT: The evolution creates a uniformly expanding density near the center, which, neglecting relativistic corrections, is CENTER-INDEPENDENT (like Friedmann Spacetimes)
THEOREM: Neglecting $O(\xi^4)$, as the orbit tends to the Stable Rest Point, the density drops *FASTER* than SM,

$$\rho(t) = \frac{k_0}{t^3(1+\bar{w})}, \quad \rho_{SM}(t) = \frac{4}{3t^2},$$

where $\bar{w}(t)$ and $k_0(t)$ change exponentially slowly.

CONCLUDE: The wave creates a

UNIFORMLY EXPANDING SPACETIME

with an

ANOMALOUS ACCELERATION

in a

LARGE, FLAT, CENTER-INDEPENDENT

region near in the center of the wave.
\[\dot{w} = -3w(4/3 + z) \]
\[\dot{z} = -(1/6z + 1/3w + w^2) \]

Neglecting \(O(\xi^4) \)

Present Universe

Stable Rest Point

A \approx 1 - (0.063) \xi^2

D \approx 1 - (0.016) \xi^2

\[\rho(t) = \frac{k_0}{t^3(1 + \bar{w})}, \]
7. The Universality of the Phase Portrait
A radially symmetric function $f(r)$ is a smooth function in Euclidean coordinates x at $r = 0$ if and only if

$$g(x) = f(|x|)$$

is a smooth function of x at $x = 0$.
Equating the n’th derivative of $g(x)$ from left and right at $r = 0$ gives
Equating the n’th derivative of $g(x)$ from left and right at $r = 0$ gives

$$f^n(0) = (-1)^n f^n(0)$$
Equating the n’th derivative of $g(x)$ from left and right at $r = 0$ gives

$$f^n(0) = (-1)^n f^n(0)$$

Theorem: f is smooth iff odd derivatives vanish, i.e.,

$$f(r) = f(0) + f_2 r^2 + f_4 r^4 + \cdots$$
Equating the n’th derivative of $g(x)$ from left and right at $r = 0$ gives

$$f^n(0) = (-1)^n f^n(0)$$

Theorem: f is smooth iff odd derivatives vanish, i.e.,

$$f(r) = f(0) + f_2 r^2 + f_4 r^4 + \cdots$$

...only even powers of r.
Consider now a metric in SSC:

\[ds^2 = -B(t, r)dt^2 + \frac{1}{A(t, r)}dr^2 + r^2 d\Omega^2 \]

Along radial geodesics at fixed time:

\[\frac{dr}{ds} = A(t, r) \]

Thus \(r \) is smooth with respect to arc-length at \(r=0 \) if and only if

\[A = 1 + A_2(t)r^2 + A_4(t)r^4 + \cdots \]
Since \(\xi = \frac{r}{t} = 0 \) at \(r = 0 \),

the smoothness condition is

\[
A = 1 + A_2(t)\xi^2 + A_4(t)\xi^4 + \cdots
\]
Since $\xi = \frac{r}{t} = 0$ at $r = 0$,

the smoothness condition is

$$A = 1 + A_2(t)\xi^2 + A_4(t)\xi^4 + \cdots$$

Conclude: our ansatz is just expressing smoothness at $r=0$ in SSC coordinates.
Our ansatz expresses smoothness at $r=0$ in SSC coordinates...

\[
\begin{align*}
\Delta z &= z_2(t)\xi^2 + z_4(t)\xi^4 \\
\Delta w &= w_0(t) + w_2(t)\xi^2 \\
\Delta A &= A_2(t)\xi^2 + A_4(t)\xi^4 \\
\Delta D &= D_2(t)\xi^2
\end{align*}
\]

\[
\begin{align*}
z_F &= \frac{4}{3}\xi^2 + \frac{40}{27}\xi^4 + O(\xi^6) \\
w_F &= \frac{2}{3} + \frac{2}{9}\xi^2 + O(\xi^4) \\
A_F &= 1 - \frac{4}{9}\xi^2 - \frac{8}{27}\xi^4 + O(\xi^6) \\
D_F &= 1 - \frac{1}{9}\xi^2 + O(\xi^4)
\end{align*}
\]
Thus our phase portrait applies to any SSC solution of the Einstein equations that is smooth at $r=0$...
Thus our phase portrait applies to any SSC $p=0$ solution of the Einstein equations that is smooth at $r=0$...
Lematre-Tolman-Bondi (LTB) coordinates are used in other under-density models…

In LTB the radial coordinate is co-moving with the fluid…

Transforming from SSC to LTB introduces a coordinate singularity at \(r=0 \)…
Lemma Assume that $\rho(t, r)$ is a scalar density function which extends to a smooth function $\rho(t, |x|)$ in SSC coordinates, so that it is given near $r = 0$ by

$$\rho(t, r) = f_0(t) + f_2(t)r^2 + \cdots.$$

Let

$$\hat{\rho}(\hat{t}, \hat{r}) = \rho(t(\hat{t}, \hat{r}), r(\hat{t}, \hat{r}))$$

denote the representation of the function $\rho(t, r)$ in LTB coordinates. Then the third partial derivative of $\hat{\rho}$ with respect to \hat{r} at $(\hat{t}, 0)$ is given by

$$\frac{\partial^3 \hat{\rho}}{\partial \hat{r}^3} = \frac{\partial \rho}{\partial t} \frac{\partial^3 t}{\partial \hat{r}^3} + 3 \frac{\partial^2 \rho}{\partial r^2} \frac{\partial r}{\partial \hat{r}} \frac{\partial^2 r}{\partial \hat{r}^2}.$$
Conclude: In LTB coordinates it's not so easy to expand about the center because coordinates can be singular with respect to the geometry at \(r=0 \).
When we submitted to RSPA, the editors asked us to address a long list of papers on under-density theories based on Lematre-Tolman-Bondi (LTB) Coordinates...

In LTB coordinates it's not so easy to expand about the center because coordinates can be singular with respect to the geometry at $r=0$...
CONCLUSIONS:

Our Proposal: The AA is due to a local under-density on the scale of the supernova data, created by a self-similar wave from the radiation epoch that triggers an instability in the SM when the pressure drops to zero.

We have made no assumptions regarding the space-time far from the center of the perturbations. The consistency of this model with other observations in astrophysics would require additional assumptions.
CONCLUSIONS:

• This is arguably the simplest explanation for the anomalous acceleration within Einstein’s original theory of GR, without requiring Dark Energy.

• It demonstrates that any local center of the Standard Model of Cosmology is unstable to perturbation by exact solutions from the Radiation Epoch.

• These perturbations are stabilized by a nearby stable rest point that generates the same accelerations as Dark Energy.

• It makes testable predictions.
QUESTIONS:

• On what scale would such waves apply?

• If these came from time-asymptotic wave patterns created in an earlier epoch, would we expect secondary transitional waves far from the center?

• How does cosmology address the instability? Can Dark Energy help? (NO!)

• Implications of a preferred center?

• Is this more fine-tuned than Dark Energy?
QUESTIONS:

- Was it reasonable to expect to observe the redshift vs luminosity relation of the SM if its unstable looking outward from any center? (Aren’t unstable solutions usually considered un-observable in Physics?)

- Given that that phase portrait applies to any smooth spherical perturbation, shouldn’t we expect to observe an anomalous acceleration in nearby galaxies?
We reiterate: The purpose of our paper is not to solve all the problems of Cosmology in one grand solution. Rather, our purpose is to introduce and deconstruct a new instability in the Friedmann space-time of the Standard Model of Cosmology, to identify mechanisms that trigger it, to show how it naturally could account for the anomalous acceleration within Einstein’s original theory without Dark Energy, and then to derive new predictions from it.
Prokopek...2013 (Astrophysicist, Utrecht University)

There are large scale anomalies in the data indicating a lack of uniformity on the largest length scale.

The main large angular scale anomalies are [4, 5]:

- a high quadrupole-octupole alignment (if accidental, it would occur in about 3% cases);
- a low variance in the lower galactic ecliptic plane and a low skewness in the southern plane;
- a northern/southern ecliptic hemisphere asymmetry (the northern hemisphere correlation function is featureless and lacks power on large angular scales);
- phase correlations on large angular scales shown in figure 2, whose significance is more than three standard deviations and which imply that there are non-Gaussian features on large angular scales;
Prokopek...2013 (Astrophysicist, Utrecht University)

- a dipolar asymmetry, which includes a dipolar modulation and a dipolar power asymmetry;
- a parity asymmetry (which is related to the dipolar modulation) that comes in two disguises: a parity reflection asymmetry and a mirror asymmetry, both of which show significant statistical evidence for low multipoles;
- a very cold spot (on angular scale of about 5° with significance of more than four standard deviations);
- a lack of power on one hemisphere on angular scales corresponding to the multipoles $\ell \in [5, 25]$ that has statistical significance of almost three standard deviations.
Every aspect of this work came from Applied Mathematics,

Whatever its implications to Physics, it stands on its own as a self-contained model in Applied Mathematics.
Mathematics is part of physics…
…the part of physics where experiments are cheap.

—Arnold, Paris, 1997
End
Big Bang blunder bursts the multiverse bubble

Premature hype over gravitational waves highlights gaping holes in models for the origins and evolution of the Universe, argues Paul Steinhardt.

When a team of cosmologists announced at a press conference in March that they had detected gravitational waves generated in the first instants after the Big Bang, the origins of the Universe were once again major news. The reported discovery created a worldwide sensation in the scientific community, the media and the public at large (see Nature 507, 281–283; 2014).

According to the team at the BICEP2 South Pole telescope, the detection is at the 5–7 sigma level, so there is less than one chance in two million of it being a random occurrence. The results were hailed as proof of the Big Bang inflationary theory and its progeny, the multiverse. Nobel prizes were predicted and scores of theoretical models spawned. The announcement also influenced decisions about academic appointments and the rejections of papers and grants. It even had a role in governmental planning of large-scale projects.

The BICEP2 team identified a twisty (B-mode) pattern in its maps of polarization of the cosmic microwave background, concluding that this was a detection of primordial gravitational waves. Now, serious flaws in the analysis have been revealed that transform the sure detection into no detection. The search for gravitational waves must begin anew. The problem is that other effects, including light scattering from dust and the synchrotron radiation generated by electrons moving around galactic magnetic fields within our own Galaxy, can also produce these twists.

The BICEP2 instrument detects radiation at only one frequency, so cannot distinguish the cosmic contribution from other sources. To do so, the BICEP2 team used measurements of galactic dust collected by the Wilkinson Microwave Anisotropy Probe and Planck satellites, each of which operates over a range of frequencies to discriminate from foreground effects without any contribution from gravitational waves.

Other dust models considered by the BICEP2 team do not change this negative conclusion, the Princeton team showed (R. Flauger, J. C. Hill, N. Spergel, preprint at http://arxiv.org/abs/1405.7351; 2014).

The sudden reversal should make the scientific community contemplate the implications for the future of cosmology experimentation and theory. The search for gravitational waves is not stymied. At least eight experiments, including BICEP3, the Keck Array and Planck, are already aiming at the same goal.

This time, the teams can be assured that the world will be paying close attention. This time, acceptance will require measurements over a range of frequencies to discriminate from foreground effects, as well as tests to rule out other sources of confusion. And this time, the announcements should be made after submission to journals and vetting by expert referees. If there must be a press conference, hopefully the scientific community and the media will demand that it is accompanied by a complete set of documents, including details of the systematic analysis and sufficient data to enable objective verification.

The BICEP2 incident has also revealed a truth about inflationary theory. The common view is that it is a highly predictive theory. If that was the case and the detection of gravitational waves was the ‘smoking gun’ proof of inflation, one would think that non-detection means that the theory fails. Such is the nature of normal science. Yet some proponents of inflation who celebrated the BICEP2 announcement already insist that the theory is equally valid whether or not gravitational waves are detected. How is this possible?

The answer given by proponents is alarming: the inflationary paradigm is so flexible that it is immune to experimental and observational tests. First, inflation is driven by a hypothetical scalar field, the inflaton, which has properties that can be adjusted to produce effectively any outcome. Second, inflation does not end with a universe with uniform properties, but almost inevitably leads to a multiverse with an infinite number of bubbles, in which the cosmic and physical properties vary from bubble to bubble. The part of the multiverse that we observe corresponds to a piece of just one such bubble. Scanning over all possible bubbles in the multiverse, everything that can physically happen happens an infinite number of times. No experiment can rule out a theory that allows for all possible outcomes. Hence, the paradigm of inflation is unfalsifiable.

This may seem confusing given the hundreds of theoretical papers on the predictions of this or that inflationary model. What these papers typically fail to acknowledge is that they ignore the multiverse and that, even with this unjustified choice, there exists a spectrum of other models which produce all manner of diverse cosmological outcomes. Taking this into account, it is clear that the inflationary paradigm is fundamentally untestable, and hence scientifically meaningless.

Cosmology is an extraordinary science at an extraordinary time. Advances, including the search for gravitational waves, will continue to be made and it will be exciting to see what is discovered in the coming years. With these future results in hand, the challenge for theorists will be to identify a truly explanatory and predictive scientific paradigm describing the origin, evolution and future of the Universe.

© 2014 Macmillan Publishers Limited. All rights reserved