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1 Nash Moser

We implement the Nash-Moser iteration, a Newton method that employs graded smoothing
following the development in [1].1 To start, let

U0 =

(

1
0

)

(1 + εm0) + εZ, (1)

and

F [U(·)] = U(θ, ·) − J [U(·)],

where U(y, t) solves

Uy + σ(u)HUt = 0. (2)

We assume the following two estimates. The first is Taylor’s Theorem,

F [U − v] − F [U ] + DUF [v] ≡ QU [v], (3)

where

‖QU [v]‖s ≤ K2‖v‖
2
s+p2

. (4)

The second one is our estimate for the inverse of the linearized operator,

‖DF−1(y)‖s ≤
K1

m0ε
‖y‖s+p1

. (5)

The main deficiency of the standard Newton method is that the estimates (4), (5) entail a
loss of derivatives at every stage, so to compensate for this, we smooth the errors by the
smoothing operators Sλ of Alinhac [1]. The smoothing operators Sλ then take the union of
all Ck to C∞, and satisfy the following basic estimates which we use here: (Here e represents
an error arising in the Newton method.)

‖e − Sλe‖s−p ≤ K0λ
−p‖e‖s p ≥ 0, (6)

1See [2] for an exposition of Nash-Moser Newton methods in analytic graded spaces.
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‖Sλe‖s ≤ K0λ
p‖e‖s−p p ≥ 0, (7)

and

‖
d

dλ
Sλe‖s ≤ K0λ

p‖e‖s−p, p ≤ s. (8)

The estimates (7) (8) imply that operating with Sλ compensates a gain of derivatives with a
power of λ, and (6) implies that we recover the true errors e in the limit λ → ∞. The use of
(4)-(5) in the Newton method is then to replace a loss of derivatives with a power of λ, then
use the quadratic convergence of the Newton method to overcome some choice of λ → ∞,
implying convergence of the modified Newton method.

We now define the modified Newton iteration. Assume for induction that U0, ..., Un, Yn and
En have been defined, with

Yn =
n

∑

k=1

yk, (9)

En =
n

∑

k=1

ek. (10)

To define Un+1 by induction, set

Un+1 = Un − vn+1, (11)

where vn+1 is defined by

DUn
F(vn+1) = yn+1, (12)

and yn+1 is to be chosen. Before choosing yn+1, define

en+1 = F [Un+1] − F [Un] + DUn
F [vn+1] = QUn

[vn+1], (13)

so by (4),

‖en+1‖s ≤ K2‖vn+1‖
2
s+p2

(14)

holds for every s. Summing from k = 0 to n thus gives

En + en+1 = F [Un+1] − F [U0] + Yn + yn+1, (15)

which is an exact expression, expressing en+1 in terms of yn+1. For a regular Newton method,
we would set en+1 exactly equal to F [Un+1], which would determine yn+1 through (15). To
incorporate graded smoothing in such a way as to control the loss of derivatives and keep all
errors higher than first order, we define,

yn+1 = F [U0] − Yn + Sλn+1
En, (16)
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where Sλn+1
are the smoothing operators of Alinhac. (The point is that the yn are smooth,

and this is compensated for in the en which may not be smooth.) The λn, chosen later to
satisfy λn → ∞, give the modulus of smoothing at the n’th iteration, and Sλn+1

En → En as
n → ∞, c.f. [1]. This then completes the definition of the Newton iteration.

Subtracting, (16) gives

yn+1 − yn = −Yn + Yn−1 + Sλn+1
En − Sλn

En−1, (17)

which simplifies to

yn+1 =
(

Sλn+1
− Sλn

)

En−1 + Sλn+1
en, (18)

because all the linear terms yi telescope out. In particular, note that all remaining terms on
the RHS are multiples of the quadratic errors ei. That is, according to (14), (12) and (5),
we have

‖ek‖s ≤ K2‖vk‖
2
s+p2

≤
K2K2

1

m2
0ε2

‖yk‖
2
s+p, (19)

k = 1, ..., n, where we have set p ≡ p1 + p2 > 0.

To estimate (18), use the Mean Value Theorem for (18), (c.f. [1]), to get

‖yn+1‖s = (λn+1 − λn) ‖
d

dλ
SλEn−1‖s + ‖Sλn+1

en‖s, (20)

and estimate the two terms separately. For the second term, use (7) and (19) to estimate,

‖Sλn+1
en‖s ≤ K0λ

p
n+1‖en‖s−p ≤ λp

n+1K∗‖yn‖
2
s, (21)

where

K∗ = K0
K2

1K2

m2
0ε2

. (22)

For the first term in (20), use (7) and (19) to estimate

‖
(

Sλn+1
− Sλn

)

ek‖s ≤ (λn+1 − λn)‖
d

dλ
Sλn

ek‖s

≤ (λn+1 − λn)K0λ
−q−1
n ‖ek‖s+q

≤ (λn+1 − λn)λ
−q−1
n K∗‖yk‖

2
s+q+p, (23)

and here we take q ≥ −s. Combining (21) and (23) gives

‖yn+1‖s ≤ (λn+1 − λn)λ−q−1
n K∗

n−1
∑

k=1

‖yk‖
2
s+q+p + λp

n+1K∗‖yn‖
2
s, (24)

which we use for q ≥ −p. To remove the constant K∗ from (24), set

zn(s) = K∗‖yn‖s,
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in which case (24) simplifies to our final form,

zn+1(s) ≤ (λn+1 − λn)λ−q−1
n

n−1
∑

k=1

z2
k(s + q + p) + λp

n+1 z2
n(s), (25)

which holds for q ≥ −p.

We now estimate (25) by a bootstrap argument. To motivate this, observe first that (25)
is a family of estimates for the same zn(s), the family depending on the choice of q. Note
that the second term on the right hand side of (25) is bounded by the purely quadratic
factor z2

n(s), and is dominated by the first term because the term
∑n−1

k=1 z2
k(s + q + p) should

be bounded and small, but being a cumulative sum, does not tend to zero. Note also that
because of the term

∑n−1
k=1 z2

k(s + q + p), the iteration (25) closes within the same ‖ · ‖s norm
only in the case when q = −p. But we see presently that when q = −p, choosing λn → ∞
as appropriate small powers of n, one can prove that zn(s) → 0, but the estimates are not
sufficient to prove that

∑∞
n=1 zn(s) is finite. The problem is that when q ≤ 0, the power

λ−q−1
n in the first term is larger than the critical power λ−1

n , and this is too slow for zn(s)
to sum. In light of this, our strategy is to first show there exist optimal λn sufficient to
prove the apriori estimate

∑∞
n=1 z2

n(s) < ∞, even though
∑∞

n=1 zn(s) = ∞ cannot be ruled
out. We then use this apriori estimate in (25) with values of q > 0 to get an improved
convergence rate, sufficient to conclude that

∑∞
n=1 zn(s) ≤ O(z1(s + q + p)), that is, so long

as z1 is measured q + p derivatives higher than s.

Consider then the first case q = −p, in which case (25) becomes

zn+1(s) ≤ (λn+1 − λn)λp−1
n

n−1
∑

k=1

z2
k(s) + λp

n+1 z2
n(s), (26)

a closed iteration for s+p < s < s. (We needed p derivatives below s to estimate ‖ek‖s−p by
‖yk‖2

s, c.f. (19).) We now find λn → ∞ sufficient to prove that zn(s) → 0 and
∑∞

n=1 z2
n(s) <

∞ as n → ∞. Since λn → ∞ and
∑∞

n=1 z2
n(s) (→ ∞ as n → ∞, we must have (λn+1−λn) → 0

in order for the first term on the right hand side of (26) to tend to zero. This then limits
the growth rate on λn. For this, a serendipitous choice of λn is

λn = λ1n
b, (27)

with

λ1 = 1, (28)

and b to be chosen, 0 < b < 1. (One could in principle use λ1 as an adjustable parameter,
but for our purposes here, λ1 = 1 suffices, c.f. [1]). 2

2To motivate (27), note that the obvious choice for λ is a power of n, or rn for some r > 1. Since the
iteration indicates that zn grows by some negative power λ−α

n
of λ, the choice λn = rn grows too fast, but

the choice (27) works, and assuming this, we look to estimate zn in (26)by n−a, for a to be found, depending
on b
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Assuming (27), we can write

λn+1 − λn = (n + 1)b − nb = b (n + θ)b−1 ≤ bnb−1, (29)

and using this in (26) gives

zn+1(s) ≤ bnb−1nb(p−1)
n−1
∑

k=1

z2
k(s) + (n + 1)bpz2

n(s). (30)

We now use (30) to prove by induction that for appropriately chosen a,

zn(s) ≤ z1(s)n
−a, ∀ n ≥ 1. (31)

Assuming (31) for induction, (30) gives

zn+1(s) ≤ z2
1(s)

[

bnbp−1
n−1
∑

k=1

k−2a + (n + 1)bpn−2a

]

, (32)

which implies the desired

zn+1(s) ≤ z1(s)(n + 1)−a, (33)

under the sufficient condition

z1(s)

[

bnbp−1
n−1
∑

k=1

k−2a + (n + 1)bpn−2a

]

≤ (n + 1)−a. (34)

By the integral test,

∞
∑

k=1

k−2a ≤
2a

2a − 1
, (35)

provided a > 1/2, and using this in (34) gives

z1(s) ≤ min
n≥1







(n + 1)−a

[

bnbp−1
∑n−1

k=1 d−2a + (n + 1)bpn−2a
]







∗

, (36)

as a condition sufficient for (33). To meet this, set

a = 1 − bp, and 1/2 < a < 1, (37)

forcing

0 < b <
1

2p
. (38)

Putting (38) into (36) then leads to

{·}∗ =







(1 + 1/n)bp−1

2b(1−bp)
1−2bp

+ (1 + 1/n)bpn2bp−1







∗

. (39)
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All terms in the bracket are now monotone in n, implying {·}∗ is an increasing function of
n, so replacing n = 1 gives

{·}∗ ≥
2bp−1

2b(1−bp)
1−2bp

+ 2bpn2bp−1
=

1 − 2bp

22−2bp(1 − bp)b + 2(1 − 2bp)

≥
1 − 2bp

4b + 2
≥

(

1 − 2bp

4

)

, (40)

where we have used 0 < bp < 1/2, and p ≥ 1. We therefore conclude from (34) and (40)
that zn+1(s) ≤ z1(s)n−a under the sufficient conditions

z1(s) ≤
1 − 2bp

4
=

2a − 1

4
, a = 1 − bp, 0 < bp < 1/2, (41)

where s ∈ (s+p, s] (to estimate ‖en‖s−p by z2
n(s)). We have thus proven the following lemma:

Lemma 1 Assume zn(s) satisfy (26) for every s ∈ [s, s], assume p ≥ 1, 0 < b < 1/2p, and
set a = 1 − bp, so that

1/2 < a < 1.

Assume that

z1(s) ≤
2a − 1

4
. (42)

Then for every s ∈ [s + p, s],
zn(s) ≤ z1(s)n

−a,

and

∞
∑

k=1

z2
n(s) ≤

2a

2a − 1
z2
1(s). (43)

For the second part of the bootstrap, consider next the case q ≥ 0, so that (25) gives,

zn+1(s) ≤ (λn+1 − λn)λ−q−1
n

n−1
∑

k=1

z2
k(s + q + p) + λp

n+1 z2
n(s).

Then assuming s ∈ [s + p, s − q − p], we can use (43) to estimate

zn+1(s) ≤ (λn+1 − λn)λ−q−1
n z2

1(s + p + q)
2a

2a − 1
+ λp

n+1 z2
n(s),

and now using (27) and (29) in this we get

zn+1(s) ≤ n−1−bq z2
1(s + p + q)

2ab

2a − 1
+ (n + 1)bp z2

n(s)

= Mn−1−bq + (n + 1)bp z2
n(s), (44)
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where (using bp = 1 − a)

M =
2a(1 − a)

p(2a − 1)
z2
1(s + p + q). (45)

We now prove by induction that

zn(s) ≤ z1(s)n
−1−r, (46)

true by definition at n = 1. So assume (46) at n. We find conditions on z1 sufficient for (46)
to hold at n + 1. Multiplying (44) by (n + 1)1+r gives

(n + 1)1+rzn+1(s) ≤ M
(

1 +
1

n

)1+r

nr−bq +
(

1 +
1

n

)1+r+bp

n−1−r+bpz2
1(s).

(47)

Now for this to be bounded, the powers of n must be bounded, and the condition for this is

−1 + bp ≤ r ≤ bq. (48)

Since bp < 1/2, the first term in (47) dominates, so we now fix r at the optimal choice for
q > 0, namely, choose

r = bq.

Using this in (47) gives

(n + 1)1+rzn+1(s) ≤ M21+bq + 21+bq+bpz2
1(s),

which gives

(n + 1)1+rzn+1(s) ≤ z1(s), (49)

provided (c.f. (45),

22+bq a(1 − a)

p(2a − 1)
z2
1(s + p + q) + 21+bq+bp z2

1(s) ≤ z1(s).

Using z1(s) ≤ z1(s + p + q) and bp < 1, we obtain following condition on z1(s) sufficient to
conclude (46) by induction:

22+bq

{

a(1 − a)

p(2a − 1)
+ 1

}

z2
1(s + p + q) ≤ z1(s).

A convenient value is a = 1− bp = 3/4 ∈ (1/2, 1), so bp = 1/4 ∈ (0, 1/2), q = 4pr, p ≥ 1 and

22+bq

{

a(1 − a)

p(2a − 1)
+ 1

}

≤ 23+r,

give the condition

23+rz2
1(s + p + q) ≤ z1(s) (50)

as sufficient for zn(s) ≤ z1(s)n−1−r. Putting the two inductions together, we have the
following Theorem:
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Theorem 2 Assume p ≥ 1, q = 4pr. and assume s ∈ (s + p, s − p − q). Assume further
that z1(s) satisfies

z1(s + p + q) ≤
1

8
, (51)

and

z2
1(s + p + q) ≤ 2−3−rz1(s), (52)

(so that (52) is sufficient for (52) when z1(s) < 1.) Then the Newton iterates zn(s) converge
and satisfy

zn(s) ≤ z1(s)n
−1−r. (53)

Proof: Condition (51) is condition (42) of Lemma 1 of the first induction in the boostrap
argument, and condition (53) is (50) of the second induction.

We can now prove convergence of our Newton method as follows:

Recall that

y1 = F(U0), (54)

where U0 is our ellipse

U0 =

(

1
0

)

(1 + εm0) + εZ. (55)

Now we have that there exists a constants K3 and K4 such that

‖y1‖s = ‖F(U0)‖s ≤ K3ε
2, (56)

and

‖F(U0)‖s ≥ K4ε
2, (57)

for every s ∈ [s, s]. Also, by definition,

zn(s) = K∗‖yn‖s. (58)

It follows that conditions (52) of Theorem 2 becomes

K∗‖F(U0)‖
2
s+p+q ≤ 2−3−r‖F(U0)‖s. (59)

Using (56)with s = s + p + q, and the definition of K∗, we get

K∗‖y1‖
2
s+p+q ≤

K0K2
1K2K2

3

m2
0

ε2,
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and from (57), we get
2−3 − r‖y1‖s ≥ 2−3−rK4ε

2,

so (59) holds provided we choose m0 large enough, namely

m2
0 ≥ K0K

2
1K2K

2
32

3+r/K4. (60)

The reason we are getting conditions on m0 is: although ‖yi‖ = O(ε2), the constant K∗ has
ε2m2

0 in the denominator, so the zi are only O(m−2
0 ). This means that we need m0 large to

make the z1 small enough that the induction works.

Thus the conclusion of (53) Theorem holds, namely

zn(s) ≤ z1(s)n
−1−r.

This then implies

‖yn‖s ≤ ‖y1‖sn
−1−r ≤

r + 1

r
‖y1‖s.

But now we can estimate

‖UN − U0‖s ≤
N

∑

k=1

‖vk‖s ≤
K1

m0ε

N
∑

k=1

‖yk‖s+p ≤
K1

m0ε

r + 1

r
‖y1‖s+p.

which by (56) gives

‖UN − U0‖s ≤ K1
r + 1

r
K3

ε

m0
≤

1

2
ε,

so long as

m0 > 2K1K3
r + 1

r
.

This completes the proof.

Keep in mind that this all requires our estimate on DF−1 for ε/m0 << 1. That is, we need

U0 =

(

1
0

)

(1 + εm0) + εZ +
ε

m0
W,

with ε/m0 << 1 must give us

‖DF−1(y)‖s ≥
K1

m0ε
‖y‖s+p.
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2 Leading Order Estimates for the Inverses:

We write down the formulas for the ε-order corrections to our linearized operator with small
divisors and show that, on solutions with enough regularity, or under Fourier cutoff of high
modes, the ε-order part kills the small divisors. We incorporate corrections that account for
a zero mode drift term δ = m0ε to kill the element of the kernel that has zeros in all the
v-entries. We use the notation in [5], Incorporating a zero mode drift term εm0 as follows:

U =

(

1
0

)

+

(

εm0

0

)

+ εZ0 + ε2W, (61)

with the otherwise unchanged notation,

U =

(

w∗

v∗

)

; Z0 =

(

w0

v0

)

; W =

(

w2

v2

)

, (62)

so that

U =

(

1
0

)

+

(

εm0 + w0

v0

)

+

(

w2

v2

)

,

where m0 is the zero mode drift constant, Z0 = (w0, v0) is the sinusoidal function of t giving
the elliptical 1− mode kernel, and W = (w2, v2) is an arbitrary perturbation. Note that m0

only changes the formula for A at the bottom of page 21, entering by just adding the constant
m0θ to the formulas for I±(t) given at the end. This then adds an order epsilon operator of
the form “constant times derivative”, which thus takes n-modes to n times n-modes.

Discussion: A motivation for putting the drift εm0 into the ansatz is that really, the zero
mode and 1-mode together form a two dimensional kernel, and even though we have set the
constant average density to (1, 0) in non-dimensionalizing the fully nonlinear problem, the
epsilon order linearized equations do not respect conservation of mass, so it is reasonable
to incorporate a parameter that sets the relative size of the zero and one mode kernels. In
fact, even if it turns out that only the entropy drift J + εJ ′ and zero order drift 1 + εm0 are
required to kill the kernel of the resonant operator, the main purpose of putting Z0 remains
to keep the nonlinear perturbation from giving the constant state solution under Newton
iteration. That is, it could well be that the fact that our linearized operator is invertible
off the kernel for almost every period, really tells us that we can solve for all of the Fourier
modes, we just can’t solve for them uniformly in ε, so genuine nonlinearity may not be the
main issue in killing the small divisors. That is, our kernel is so fantastically isolated, that a
small drift in the zero mode and entropy jump is all that is required to kill the small divisors
and solve for the nonlinear modes of the periodic solution.

The formulas for the ε-order operators recorded that incorporate a zero mode drift term to
kill the element of the kernel that has zeros in all the v-entries, is recorded in the following
Theorem, (c.f. [5]):
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Theorem 3 Let our four component operator be denoted

DUE =











DU1
E

DU2
E

DU3
E

DU4
E











, (63)

where

Uk =

(

1
0

)

+

(

εm0

0

)

+ εZ0
k + ε2Wk, (64)

and the 2 × 2 linearized operator DUk
E is given by:

DUk
E = Lk[V ] + εdAk[V ] + εdBk[V ] + O(ε2), (65)

where

Lk[V ](t) =

(

r(t + θk)
s(t − θk)

)

; V =

(

w
v

)

;

(

r = w−v
2

s = w+v
2

)

, (66)

Ak[V ](t) = A0
k[V ](t) + A1

k[V ](t) (67)

where

A0
k[V ](t) =

(

−m0θkr′(t + θk)
+m0θks′(t − θk)

)

(68)

A1
k[V ](t) =

(

−I−
k (t)r′(t + θk)

+I+
k (t)s′(t − θk)

)

(69)

and

Bk[V ](t) =





−r0
k
′(t + θk)

(

r(t + θk)θk +
∫ θk

0 s(t + θk − 2y)dy
)

+s0
k
′(t − θk)

(

s(t − θk)θk +
∫ θk

0 r(t − θk + 2y)dy
)



 . (70)

Then I±(t) =
∫ θ
0 w0(y, t ± y ∓ θ)dy leads to:

k = 1
θ1 = θ

:
I−
1 (t) = c(t + θ

2)
θ+s(θ)

2

I+
1 (t) = c(t − θ

2)
θ+s(θ)

2

:
r0
1
′(t + θ) = −1

2s(t + θ
2)

s0
1
′(t − θ) = −1

2s(t −
θ
2)

(71)

k = 2
θ2 = θ

:
I−
2 (t) = +ρs(t + θ

2)
θ−s(θ)

2

I+
2 (t) = −ρs(t − θ

2)
θ−s(θ)

2

:
r0
2
′(t + θ) = −1

2ρc(t + θ

2)
s0
2
′(t − θ) = +1

2ρc(t −
θ

2)
(72)

k = 3
θ3 = θ

:
I−
3 (t) = −c(t + θ

2)
θ+s(θ)

2

I+
3 (t) = −c(t − θ

2)
θ+s(θ)

2

:
r0
3
′(t + θ) = +1

2s(t + θ

2)
s0
3
′(t − θ) = +1

2s(t −
θ

2)
(73)

k = 4
θ4 = θ

:
I−
4 (t) = −ρs(t + θ

2)
θ−s(θ)

2

I+
4 (t) = +ρs(t − θ

2)
θ−s(θ)

2

:
r0
4
′(t + θ) = +1

2ρc(t + θ

2)
s0
4
′(t − θ) = −1

2ρc(t −
θ

2)
(74)
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