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Abstract. We provide details for the proof of convergence of the locally inertial
Godunov method with dynamical time dilation, introduced by Vogler in [13].

1. Introduction

In this paper we fill in the details in the proof of convergence stated in Section 7 of
[14], for the locally inertial Godunov method with dynamic time dilation, a numerical
method for computing shock wave solutions of the Einstein equations in Standard
Schwarzschild Coordinates (SSC). We refer the reader to [14] for an introduction and
for the notation assumed at the start here.

The main conclusion of the theorem stated and proved below is that a sequence of
approximate solutions (u∆x,A∆x) → (u,A) of the locally inertial Godunov scheme
that converge boundedly without oscillation to a limit function (u,A), must be a
weak solution of the Einstein Euler equations in SSC, c.f. [14, 2],

ut + f(A, u)x = g(A, u, x),

A
′ = h(h, u, x).

(1.1)

That is, the theorem reduced the proof that one has an exact solution to the two
thing things most easily established in a numerical simulation: convergence without
oscillations.

System (1.1) is the locally inertial formulation introduced in [2], which is weakly
equivalent to the Einstein equations, (see [14] for discussion). The proof here is a
modification of the Groah and Temple argument used for the locally inertial Glimm
scheme [2], with several differences. Both the Glimm scheme and the Godunov meth-
ods employ Riemann problem approximations, but the main difference is that the
Godunov method employs averaging rather than random sampling at the end of each
time step. The theorem proved here assums a total variation bound, (it is still an
open problem to prove such a bounde), while the Groah and Temple theorem estab-
lishes this bound by an argument using wave strengths to bound the total variaion of
waves in the Riemann problem solutions. In the theorem here, we also allow variable
time steps. The final difference is that here we include right and left boundary data
reflecting the limited extent in space of a computer simulation.

This work summarizes results credited to Vogler’s doctoral dissertation, [13], which was supervised
by Blake Temple. Both authors were partially supported by second author’s NSF Grant, where the
problem was first proposed.
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There are two main steps in the proof. The first is to show the discontinuities in
the metric A along the boundary of Riemann cells are accounted for by the inclusion
of the term

A
′ ·∇Af(Aij, û, x) (1.2)

in the ODE step (??). The second step is to prove the jump in the approximate
solution u∆x along the time steps are of order ∆x. In their work [2], Groah and
Temple did not need the convergence and total variation assumptions because with
the Glimm scheme, these assumptions are proven as long as there exists a total
variation bound on the initial data, a truly remarkable feature of the scheme. In this
paper, applicable to the simulations in [13, 14], these assumptions natural assumptions
that can be verified numerically. In particular, the theorem is perfectly suited to
the numerical simulation of points of shock wave interaction in [13, 14]. Once one
numerically establish convergence and a total variation bound, the theorem here
implies convergence to a weak solution of the Einstein equations.

2. The Convergence Theorem

The main theorem of this paper is the following:

Theorem 2.1. Let u∆x(t, x) and A∆x(t, x) be the approximate solution generated
by the locally inertial Godunov method starting from the initial data u∆x(t0, x) and
A∆x(t0, x) for t0 > 0. Assume these approximate solutions exist up to some time
tend > t0 and converge to a solution (u∆x,A∆x) → (u,A) as ∆x → 0 along with a
total variation bound at each time step tj

T.V.[rmin,rmax]{u∆x(tj, ·)} < V, (2.1)

where T.V.[rmin,rmax]{u∆x(tj , ·)} represents the total variation of the function u∆x(tj , x)
on the interval [rmin, rmax]. Assume the total variation is independent of the time step
tj and the mesh length ∆x. Then the solution (u,A) is a weak solution to the Einstein
equations (1.26)-(1.29) in [2].

Proof. Suppose we have approximate solutions (u∆x,A∆x) obtained by the locally
inertial Godunov method that satisfy the hypothesis of the theorem. Having a total
variation bound at each time tj places a total variation bound on the inputs to all
the Riemann problems posed at that time. In [2], Groah and Temple show a total
variation bound on the inputs implies a total variation bound on the solution to the
Riemann problem for any time t such that tj ≤ t < tj+1. By the self similarity of
the solution to the Riemann problem, this result also implies a total variation bound
for any space coordinate within the Riemann cell. More specifically, we have the
following bounds:

T.V.[xi−1,xi]{u∆x(t, ·)} < V, (2.2)

and
T.V.[tj ,tj+1){u∆x(·, x)} < V, (2.3)

for any x and t within the Riemann cell Rij .
All the functions f , G, and g derived in [2] are smooth, and it is the metric that

is only Lipschitz continuous. The smoothness of these functions is used throughout
this proof.
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Let T = tend − t0 be the overall time of the solution, and for each mesh length ∆x
define the minimum time length

∆t ≡ min
j
{∆tj} (2.4)

as the minimum over all the time lengths defined by (??). By definition, this time
length is proportional to the mesh length, ∆t ∝ ∆x, implying O(∆t) = O(∆x),
and there exists a constant C bounding all the time lengths, ∆tj < C∆t for all j.
Throughout this section, let C be a generic constant only depending on the bounds
for the solution [t0, tend] × [rmin, rmax]. This variable is created to unify all the time
steps, and more importantly, used to calculate the maximum number of time steps
needed to go from t0 to tend.

We now follow the development of Groah and Temple in [2]. Recall, uRP
∆x (t, x)

denotes the collection of the exact solutions in all the Riemann cells Rij for the
Riemann problem of the homogenous system

ut + f(Aij, u)x = 0. (2.5)

So uRP
∆x (t, x) satisfies the weak form of this conservation law in each Riemann cell

0 =

∫ ∫

Rij

{

−uRP
∆xϕt − f(Aij, u

RP
∆x )ϕx

}

dxdt

+

∫

Ri

{

uRP
∆x (tj+1, x)ϕ(tj+1, x) − uRP

∆x (t+j , x)ϕ(tj , x)
}

dx

+

∫

Rj

{

f(Aij, u
RP
∆x (t, xi))ϕ(t, xi)

−f(Aij, u
RP
∆x (t, xi−1))ϕ(t, xi−1)

}

dt,

(2.6)

where ϕ is a smooth test function with Supp(ϕ) ⊂ [t0, tend) × [a, b] for a < rmin <
rmax < b.

Remember, û(t, u0) denotes the solution to the ODE

ût = G(Aij, û, x) = g(Aij, û, x) − A
′ ·∇Af(Aij, û, x),

û(0) = u0.
(2.7)

Therefore,

û(t, u0) = u0 +

∫ t

0

{g(Aij, û(ξ, u0), x) − A
′ ·∇Af(Aij, û(ξ, u0), x)} dξ. (2.8)

Also, recall u∆x denotes the approximate solution obtained using the fractional step
method. Since our fractional method takes the Riemann problem solution and feeds
it into the ODE step, u∆x is defined on every Riemann cell Rij as

u∆x(t, x) = uRP
∆x (t, x) +

∫ t

tj

{

g(Aij, û(ξ − tj, u
RP
∆x (t, x)), x)

−
∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (t, x))) · A′

∆x

}

dξ.

(2.9)

This expression implies the error between the approximate solution and the Riemann
problem solution is on the order of ∆x; a fact that is repeatedly used throughout the
proof.
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Define the residual ε = ε(u∆x,A∆x,ϕ) of u∆x and A∆x as the error of the solution
in satisfying the weak form of the conservation law (1.1) by

ε(u∆x,A∆x,ϕ) ≡

∫ rmax

rmin

∫ tend

t0

{−u∆xϕt − f(A∆x, u∆x)ϕx − g(A∆x, u∆x, x)ϕ} dxdt

− I1 − I2

i=n+1
∑

i=1,j

∫

Rij

{−u∆xϕt − f(Aij, u∆x)ϕx − g(Aij, u∆x, x)ϕ} dxdt

− I1 − I2,
(2.10)

where

I1 ≡

∫ rmax

rmin

u∆x(t
+
0 , x)dx =

n+1
∑

i=1

∫

Ri

u∆x(t
+
0 , x)dx, (2.11)

and

I2 ≡

∫ tend

t0

{

f(Aij, u∆x(t, r
+
min))ϕ(t, r+

min) − f(Aij, u∆x(t, r
+
max))ϕ(t, r+

max)
}

dt

=
∑

j

∫

Rj

{

f(Aij, u∆x(t, r
+
min))ϕ(t, r+

min) − f(Aij, u∆x(t, r
+
max))ϕ(t, r+

max)
}

dt,

(2.12)

The expression
∑i=n+1

i=1,j denotes a double sum where the index i runs across all the
spatial gridpoints, and the index j runs across all the temporal gridpoints. Remember,
n is the number of spatial gridpoints, and there are n+1 Riemann cells as depicted in
Figure ??. Our goal is to show ε(u∆x,A∆x,ϕ) = O(∆x) because if the approximation
converges (u∆x,A∆x) → (u,A) as ∆x → 0, then the limit function satisfies the
condition of being a weak solution to the Einstein equations ε(u,A,ϕ) = 0.

Substituting (2.9) into (2.10) gives us

ε =
i=n+1
∑

i=1,j

∫ ∫

Rij

{

−uRP
∆xϕt − f(Aij, u∆x)ϕx − g(Aij, u∆x, x)ϕ

− ϕt

∫ t

tj

[

g(Aij, û(ξ − tj , u
RP
∆x (t, x)), x)

−
∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (t, x))) · A′

∆x

]

dξ
}

dxdt − I1 − I2.

(2.13)

Define

I1
ij(t, x) ≡

∫ t

tj

[

g(Aij, û(ξ − tj , u
RP
∆x (t, x)), x)

−
∂f

∂A
(Aij, û(ξ − tj, u

RP
∆x (t, x))) · A′

∆x

]

dξ

(2.14)
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Plugging the weak form of the conservation law (2.6) of each grid rectangle into (2.13)
gives us

ε =
i=n+1
∑

i=1,j

∫ ∫

Rij

{

ϕx[f(Aij, u
RP
∆x ) − f(Aij, u∆x)] − g(Aij, u∆x, x)ϕ

−ϕtI
1
ij(t, x)

}

dxdt

− I1 −
i=n+1
∑

i=1,j

∫

Ri

{

uRP
∆x (t−j+1, x)ϕ(tj+1, x) − uRP

∆x (t+j , x)ϕ(tj , x)
}

dx

− I2 −
i=n+1
∑

i=1,j

∫

Rj

{

f(Aij, u
RP
∆x (t, xi))ϕ(t, xi) − f(Aij, u

RP
∆x (t, xi−1))ϕ(t, xi−1)

}

dt.

(2.15)

Note
∣

∣f(Aij, u
RP
∆x ) − f(Aij, u∆x)

∣

∣ ≤ C∆t (2.16)

which implies
∣

∣

∣

∣

∣

i=n+1
∑

i=1,j

∫ ∫

Rij

ϕ[f(Aij, u
RP
∆x ) − f(Aij, u∆x)]dxdt

∣

∣

∣

∣

∣

≤ C ‖ϕ‖∞∆t2∆x

(

T

∆t

)

(n + 1) = O(∆x)

(2.17)

where the number of time steps is proportional to T/∆t and the number of space
steps is O(1/∆x) by (??).

Since uRP
∆x (t+j , x) = u∆x(t

+
j , x), the following sum is rearranged to become

−I1−
i=n+1
∑

i=1,j

∫

Ri

{

uRP
∆x (t−j+1, x)ϕ(tj+1, x) − uRP

∆x (t+j , x)ϕ(tj, x)
}

dx

=
∑

j $=0

∫ rmax

rmin

{

u∆x(t
+
j , x) − uRP

∆x (t−j , x)
}

ϕ(tj, x)dx

=
∑

j $=0

∫ rmax

rmin

ϕ(tj, x)
{

u∆x(t
+
j , x) − u∆x(t

−
j , x)

}

dx

+
∑

j $=0

∫ rmax

rmin

ϕ(tj, x)
{

u∆x(t
−
j , x) − uRP

∆x (t−j , x)
}

dx,

(2.18)

where the term u∆x(tj, x) is added and subtracted to isolate the jump in the solution
u∆x across the time step tj. We define this jump ε1 = ε1(u∆x,A∆x,ϕ) as

ε1(u∆x,A∆x,ϕ) ≡
∑

j $=0

∫ rmax

rmin

ϕ(tj, x)
{

u∆x(t
+
j , x) − u∆x(t

−
j , x)

}

dx, (2.19)
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and this definition allows us to rewrite (2.15) as

ε = O(∆x) + ε1 +
i=n+1
∑

i=1,j

∫ ∫

Rij

{

−g(Aij, u∆x, x)ϕ− ϕtI
1
ij(t, x)

}

dxdt

+
∑

j $=0

∫ rmax

rmin

ϕ(t, x)
{

u∆x(t
−
j , x) − uRP

∆x (t−j , x)
}

dx

− I2 −
i=n+1
∑

i=1,j

∫

Rj

{

f(Aij, u
RP
∆x (t, xi))ϕ(t, xi) − f(Aij, u

RP
∆x (t, xi−1))ϕ(t, xi−1)

}

dt

(2.20)

But the last sum is rearranged to cancel the boundary conditions as follows:

−I2−
i=n+1
∑

i=1,j

∫

Rj

{

f(Aij, u
RP
∆x (t, xi))ϕ(t, xi) − f(Aij, u

RP
∆x (t, xi−1))ϕ(t, xi−1)

}

dt

=
i=n
∑

i=1,j

∫

Rj

{

f(Ai+1,j, u
RP
∆x (t, xi)) − f(Aij, u

RP
∆x (t, xi))

}

ϕ(t, xi)dt

+
∑

j

∫

Rj

{

f(A1,j, u
RP
∆x (t, x0)) − f(A1,j, u∆x(t, x0))

}

ϕ(t, x0)dt

+
∑

j

∫

Rj

{

f(An+1,j, u
RP
∆x (t, xn+1)) − f(An+1,j, u∆x(t, xn+1))

}

ϕ(t, xn+1)dt,

(2.21)

where

∣

∣

∣

∣

∣

∑

j

∫

Rj

{

f(A1,j, u
RP
∆x (t, x0)) − f(A1,j, u∆x(t, x0))

}

ϕ(t, x0)dt

∣

∣

∣

∣

∣

≤ ‖ϕ‖∞ C∆t2
(

T

∆t

)

= O(∆x),

(2.22)

and similarly

∣

∣

∣

∣

∣

∑

j

∫

Rj

{

f(An+1,j, u
RP
∆x (t, xn+1)) − f(An+1,j, u∆x(t, xn+1))

}

ϕ(t, xn+1)dt

∣

∣

∣

∣

∣

= O(∆x).

(2.23)
Note that the resulting double sum in (2.21) lost a term, resulting in only n terms.

To simplify the I1
ij term, we add and subtract a term deviating from it by an order

of ∆x, use integration by parts on the new term, and with the result add and subtract
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another term to reduce the expression further. To this end, let

I∆S ≡
i=n+1
∑

i=1,j

∫ ∫

Rij

ϕt

∫ t

tj

{

g(Aij, û(ξ − tj , u
RP
∆x (ξ, x)), x) − g(Aij, û(ξ − tj , u

RP
∆x (t, x)), x)

−
∂f

∂A
(Aij, û(ξ − t, uRP

∆x (ξ, x))) · A′
∆x

+
∂f

∂A
(Aij, û(ξ − t, uRP

∆x (t, x))) · A′
∆x

}

dξdxdt.

(2.24)

From the total variation bound on the Riemann problems and the smoothness of f ,
this term is bounded by

|I∆S| ≤
i=n+1
∑

i=1,j

∫ ∫

Rij

‖ϕt‖∞

∫ t

tj

C T.V.[xi−1,xi] {u∆x(·, tj)} dξdxdt

≤ ‖ϕt‖∞ C∆t2∆x
∑

j

T.V.[rmin,rmax]{u∆x(·, tj)}

≤ CV ‖ϕt‖∞∆x∆t2
T

∆t
= O(∆x2),

(2.25)

and the above procedure reduces the term to

−

∫ ∫

Rij

ϕtI
1
ij(t, x)dxdt = I∆S −

i=n+1
∑

i=1,j

∫ ∫

Rij

ϕt

∫ t

tj

{

g(Aij, û(ξ − tj , u
RP
∆x (ξ, x)), x)

−
∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (ξ, x))) · A′

∆x

}

dxdt

= O(∆x2) −
i=n+1
∑

i=1,j

∫

Ri

{

ϕ(tj+1, x)

∫ tj+1

tj

[

g(Aij, û(ξ − tj, u
RP
∆x (ξ, x)), x)

−
∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (ξ, x))) · A′

∆x

]

dξ

−

∫ tj+1

tj

ϕ[g(Aij, u∆x, x) −
∂f

∂A
(Aij, u∆x) · A

′
∆x]dξ

}

dx

= O(∆x2) −
i=n+1
∑

i=1,j

∫

Ri

{

ϕ(tj+1, x)

∫ tj+1

tj

[

g(Aij, û(ξ − tj, u
RP
∆x (tj+1, x)), x)

−
∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (tj+1, x))) · A′

∆x

]

dξ

}

dt + I4 + I5,

(2.26)
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where

I4 ≡
i=n+1
∑

i=1,j

∫

Ri

{

ϕ(tj+1, x)

∫ tj+1

tj

[

g(Aij, û(ξ − tj , u
RP
∆x (tj+1, x)), x)

− g(Aij, û(ξ − tj , u
RP
∆x (ξ, x)), x) −

∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (tj+1, x))) ·A′

∆x

+
∂f

∂A
(Aij, û(ξ − tj , u

RP
∆x (ξ, x))) · A′

∆x

]

dξ

}

dx,

(2.27)

and

I5 ≡
i=n+1
∑

i=1,j

∫ ∫

Rij

ϕ

[

g(Aij, u∆x, x) −
∂f

∂A
(Aij , u∆x) ·A

′
∆x

]

dxdt. (2.28)

Again by smoothness and the total variation bound, we have

|I4| ≤ ‖ϕ‖∞

i=n+1
∑

i=1,j

C T.V.[xi−1,xi] {u∆x(·, tj)}∆x∆t

≤ ‖ϕ‖∞ C∆x∆t
∑

j

T.V.[rmin,rmax] {u∆x(·, tj)} = ‖ϕ‖∞ CV∆x∆t
T

∆t
= O(∆x).

(2.29)

Substituting (2.21) and (2.26) into (2.20) along with using (2.9) as an identity leaves
us with

ε = O(∆x) + ε1 −
i=n+1
∑

i=1,j

∫ ∫

Rij

ϕ
∂f

∂A
(Aij, u∆x) · A

′
∆xdxdt

+
i=n
∑

i=1,j

∫

Rj

ϕ(t, xi)
{

f(Ai+1,j, u
RP
∆x (t, xi)) − f(Aij, u

RP
∆x (t, xi))

}

dt

(2.30)

The second sum represents the jump in the flux function f , resulting from the dis-
continuities in the metric A, and the first sum is the addition to the ODE step (2.7)
specifically designed to cancel these jumps in the flux.

To see how the cancelation works, we perform a Taylor expansion on the test
function, and we add and subtract terms deviating by order ∆x. The first sum in
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(2.30) is expanded as

i=n+1
∑

i=1,j

∫ ∫

Rij

ϕ
∂f

∂A
(Aij , u∆x) ·A

′
∆xdxdt

=
i=n+1
∑

i=1,j

∫ ∫

Rij

ϕ(xi, t)
∂f

∂A
(Aij, u∆x) · A

′
∆xdxdt + O(∆x)

=
i=n+1
∑

i=1,j

∫

Rj

ϕ(xi, t)

∫

Ri

{

∂f

∂A
(Aij, u∆x) · A

′
∆x −

∂f

∂A
(Aij, u

RP
∆x ) · A′

∆x

}

dxdt

+
i=n+1
∑

i=1,j

∫

Rj

ϕ(xi, t)

∫

Ri

{

∂f

∂A
(Aij, u

RP
∆x ) · A′

∆x −
∂f

∂A
(Aij, u

RP
∆x (xi, t)) · A

′
∆x

}

dxdt

+
i=n+1
∑

i=1,j

∫

Rj

ϕ(xi, t)

∫

Ri

{

∂f

∂A
(Aij, u

RP
∆x (xi, t)) · A

′
∆x

−
∂f

∂A
(A∆x(x +

∆x

2
, tj), u

RP
∆x (xi, t)) · A

′
∆x

}

dxdt

+
i=n+1
∑

i=1,j

∫

Rj

ϕ(xi, t)

∫ xi

xi−1

∂f

∂A
(A∆x(x +

∆x

2
, tj), u

RP
∆x (xi, t)) · A

′
∆xdxdt + O(∆x)

(2.31)

From the smoothness of f , each of the first three sums in equation (2.31) are O(∆x) for
the following reasons: the first sum is order ∆x from the ODE step in the definition
of the approximate solution u∆x (2.9), the second sum is order ∆x2 by the total
variation bound on solutions to the Riemann problems, and the third sum is order
∆x by the Lipschitz continuity of the metric A. After these bounds are established,
(2.31) reduces to

i=n+1
∑

i=1,j

∫ ∫

Rij

ϕ
∂f

∂A
(Aij, u∆x) · A

′
∆xdxdt

=
i=n+1
∑

i=1,j

∫

Rj

ϕ(xi, t)

∫ xi

xi−1

∂f

∂A
(A∆x(x +

∆x

2
, tj), u

RP
∆x (xi, t)) · A

′
∆xdxdt + O(∆x)

=
i=n+1
∑

i=1,j

∫

Rj

ϕ(xi, t)

∫ xi

xi−1

∂f

∂x
(A∆x(x +

∆x

2
, tj), u

RP
∆x (xi, t))dxdt + O(∆x)

=
i=n+1
∑

i=1,j

∫

Rj

ϕ(t, xi)
{

f(Ai+1,j, u
RP
∆x (t, xi+)) − f(Aij, u

RP
∆x (t, xi+))

}

dt + O(∆x).

(2.32)
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Plugging this result (2.32) into (2.30) gives us

ε = O(∆x) + ε1

−
∑

j

∫

Rj

ϕ(t, xn+1)
{

f(An+2,j, u
RP
∆x (t, xn+1)) − f(An+1,j, u

RP
∆x (t, xn+1))

}

dt,

(2.33)

where one term remains due to the mismatch in the number of terms in the spatial
sum. Clearly, this last term is O(∆x).

So the residual boils down to

ε(u∆x,A∆x,ϕ) = ε1(u∆x,A∆x,ϕ) + O(∆x), (2.34)

with all that remains to show is

ε1 =
∑

j $=0

∫ rmax

rmin

ϕ(tj, x)
{

u∆x(t
+
j , x) − u∆x(t

−
j , x)

}

dx = O(∆x). (2.35)

To estimate ε1, we break up the sum by each time step tj and define

εj
1 ≡

∫ rmax

rmin

ϕ(tj , x)
{

u∆x(t
+
j , x) − u∆x(t

−
j , x)

}

dx

=
∑

i

∫ xi+

xi−

ϕ(tj, x)
{

u∆x(t
+
j , x) − u∆x(t

−
j , x)

}

dx,
(2.36)

with xi+ ≡ xi+ 1
2

and xi− ≡ xi− 1
2
.

Recall, the approximate solution for the new time step t+j is computed by the
Godunov step, using averages at the top of each Riemann cell Rij . In particular, the
solution at each new time step is

u∆x(t
+
j , x) ≡ û(tj − tj−1, ū(tj), x)) (2.37)

where

ū(tj) ≡
1

∆x

∫ xi+

xi−

uRP
∆x (tj, x)dx (2.38)

To finish the proof, a lemma is needed, which is proven at the end of this section.
This lemma states the difference of the ODE step taken on an average verses the
solution to the Riemann problem across the top of the Riemann cell is bounded by
the total variation of the Riemann problem.

Lemma 2.1. Let uRP
∆x represent the solution of the Riemann problem in the Riemann

cell Ri,j−1 and ū∆x(t) denote the average of the Riemann problem solution across
Riemann cell. Let û be the solution obtained by the ODE step (2.7) and ϕ be a
smooth test function. Then the following bound holds

∣

∣

∣

∣

∫ xi+

xi−

{

û(tj − tj−1, ū∆x(tj), x) − û(tj − tj−1, u
RP
∆x (tj , x), x)

}

ϕ(tj, x)dx

∣

∣

∣

∣

≤ C ‖ϕ‖∞∆x∆t T.V.[xi,xi+1]{u∆x(tj, ·)}

(2.39)

for some constant C.
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Using Lemma 2.1, (2.36) is rewritten as solutions to the ODE step (2.7) and
bounded by

εj
1 =

∑

i

∫ xi+

xi−

ϕ(tj, x)
{

û(tj − tj−1, ū(tj), x) − û(tj − tj−1, u
RP
∆x (tj , x), x)

}

dx

≤ C ‖ϕ‖∞∆x∆t
∑

i

T.V.[xi−,xi+]{u
RP
∆x (·, tj)} = C ‖ϕ‖∞∆x∆t T.V.[rmin,rmax]{u

RP
∆x (·, tj)}

(2.40)

By the total variation bound on u∆x(tj, ·), the residual is bounded by

ε1 ≤
∑

j $=0

C ‖ϕ‖∞∆x∆t T.V.[rmin,rmax]{u
RP
∆x (·, tj)} ≤ C

T

∆t
∆x∆tV = O(∆x). (2.41)

Therefore, ε = O(∆x) and the proof is complete. !

To prove Lemma 2.1, a preliminary result is needed: given a function on a set of
points the difference of the function between any point and the average is bounded by
the total variation of that function on the set. This result is provided by the following

Lemma 2.2. Let u(x) be a function on the set [xi−, xi+] and

ū =
1

∆x

∫ xi+

xi−

u(x)dx (2.42)

be the average of u on this set. Then we have

|ū − u(x)| ≤ sup
x1,x2∈[xi,xi+1]

|u(x1) − u(x2)| ≤ T.V.[xi−,xi+]{u(·)}. (2.43)

Proof. The second inequality is true by the definition of the total variation

sup
x1,x2∈[xi,xi+1]

|u(x1) − u(x2)| ≤ T.V.[xi−,xi+]{u(·)}. (2.44)

To prove the first inequality, we assume it is false to obtain a contradiction, so suppose
there exists x∗ ∈ [xi−, xi+] such that

sup
x1,x2∈[xi,xi+1]

|u(x1) − u(x2)| < |ū − u(x∗)|. (2.45)

Relabel the u-coordinates by an isometry ϕ : u → v that maps the point u(x∗) to
the origin in the v-coordinates (i.e. ϕ(u(x∗)) = 0), and the vector ū − u(x∗) in the
direction of the 1st coordinate v1, as show in Figure 1.

Since the average of a collection of points is independent of the coordinate system
in which they are labeled in, we have

v̄ ≡
1

∆x

∫ xi+

xi−

v(x)dx =
1

∆x

∫ xi+

xi−

ϕ(u(x))dx = ϕ

(

1

∆x

∫ xi+

xi−

u(x)dx

)

= ϕ(ū) (2.46)

The following inequality holds by transforming equation (2.45) over to v-coordinates

|v(x)| = |u(x) − u(x∗)| < |ū − u(x∗)| = |v̄| ∀x ∈ [xi−, xi+], (2.47)

which implies

|v̄| =

∣

∣

∣

∣

1

∆x

∫ xi+1

xi

v(x)dx

∣

∣

∣

∣

≤
1

∆x

∫ xi+1

xi

|v(x)|dx <
1

∆x

∫ xi+1

xi

|v̄|dx = |v̄|. (2.48)



12 Z. VOGLER AND B. TEMPLE

u2

u1

ū

u(x∗)

d

d

O = Φ(u(x∗))

Φ(ū) = v̄

Φ

v2

v1

Figure 1. The isometry Φ : u → v

This inequality |v̄| < |v̄| is an obvious contradiction, proving the first inequality in
(2.43). !

Now we prove the lemma used in the proof of Theorem 2.1

Proof of Lemma 2.1 Recall the solution to the ODE step has the form:

û(tj − tj−1, u
RP
∆x (tj, x), x) = uRP

∆x (t, x) +

∫ tj

tj−1

G(Aij , u
RP
∆x (t, x), x)dt. (2.49)

This solution implies the LHS of (2.39) is written out as
∣

∣

∣

∣

∫ xi+

xi−

{

û(tj − tj−1, ū∆x(tj), x) − û(tj − tj−1, u
RP
∆x (tj, x), x)

}

ϕ(tj , x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ xi+

xi−

{

(ū∆x(tj) − uRP
∆x (tj, x))

+

∫ tj

tj−1

(G(Aij, ū∆x(t), x) − G(Aij, u
RP
∆x (t, x), x))dt

}

ϕ(tj , x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ xi+

xi−

{

ū∆x(tj) − uRP
∆x (tj, x)

}

ϕ(tj , xi)dx

+

∫ xi+

xi−

∫ tj

tj−1

{

G(Aij, ū∆x(tj), x) − G(Aij, u
RP
∆x (tj , x), x)

}

dt ϕ(tj , xi)dx

∣

∣

∣

∣

∣

+ O(∆x2),

(2.50)

where the test function in the first term is approximated by a Taylor expansion. By
the definition of the average function ū, the first term is zero. By the smoothness of
G, the bound (2.39) is proven by

∣

∣

∣

∣

∫ xi+

xi−

{

û(tj − tj−1, ū∆x(tj), x) − û(tj − tj−1, u
RP
∆x (tj , x), x)

}

ϕ(tj, x)dx

∣

∣

∣

∣

≤ C ‖ϕ‖∞∆x∆t sup
xi−<x<xi+

{
∣

∣ū∆x(tj) − uRP
∆x (tj , x)

∣

∣}

≤ C ‖ϕ‖∞∆x∆t T.V.[xi−,xi+]{u∆x(tj , ·)},

(2.51)
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where Lemma 2.2 is used to bound the difference between the average and the solution
to the Riemann problem.

!
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